Test 2 (version A)

Calculus III (Maths 201-DDB)

(Marks)

Note: Justify all your answers — don't make me guess your thoughts!

- 1. Let Λ be the line passing through the point $P_0(1,2,3)$, parallel to the vector $\mathbf{v}=3\mathbf{i}+9\mathbf{j}+\mathbf{k}$, (4×2) and let Π be the plane given by 2x - y + 3z = 5.
 - (a) What are the equations of Λ ? (b) Show that Λ is parallel to the plane Π .
 - (c) What is the distance from Λ to Π ? (Hint: Choose a point Q on Π , then project the vector $\overline{P_0Q}$ onto the normal of the plane II. You know the length of the projection, right?)
 - (d) What is the angle between Π and the plane 3x + 2y + z = 1?
- 2. Name and sketch the following surfaces in 3-space. Show all your work, including traces, inter-(9) cepts (and contour curves if you use them).

(a) $\rho = 4 \sec \phi$

(b) $z = x^2 - y^2$

(c) $z - r^2 = 4$

- 3. Find the parametrization of $r(t) = \langle 3\cos t, 3\sin t, 4 \rangle$ in terms of the arclength s. Use t = 0(4)for the "starting point". This curve lies on a quadric surface: identify such a surface (give its equation) and draw a sketch of the graph of the curve and the surface on which it lies.
- 4. For a space curve given by a vector function r(t), show that $a \cdot T = a_T$ and that $a \cdot N = a_N$, where (3) (as usual) \boldsymbol{a} is the acceleration vector, and a_T, a_N are the tangential and normal components of acceleration.
- 5. A particle P moves along a curve $r(t) = 2t i + \ln t j + t^2 k$, t > 0. Find: (12)
 - (a) the unit tangent vector T(t); (b) the unit normal vector N(t); (c) the curvature $\kappa(t)$;
 - (d) the tangential and normal components a_T , a_N of acceleration;
 - (e) the length of the part of the curve from t=1 to t=2.

(Hint: do the algebra carefully, and you will find there is a lot of simplification—all the square roots work out easily if you factor where appropriate.)

- 6. Find the point (x,y) of maximum curvature for the parabola $y=1-\frac{1}{2}x^2$. Find the equation (6) of the osculating circle at that point. Draw the graphs of the parabola and the osculating circle (on the same axes).
- (4)7. Is the following function continuous at the origin? (Justify your answer.)

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

8. Show that $z = \sqrt{\frac{x}{y}}$ is a solution of the equation $\frac{x}{z} \frac{\partial z}{\partial x} + \frac{y}{z} \frac{\partial z}{\partial y} = 0$. (4)

(Total: 50)

Bonus: r = r(t) is a vector function: simplify $\frac{d}{dt}(r \cdot (r' \times r''))$ as much as possible. Is this derivative a vector function or a scalar function?