The errors of definitions multiply themselves according as the reckoning
proceeds; and lead men into absurdities, which at last they see but cannot
avoid, without reckoning anew from the beginning. —THoMmAas HoBBES

Mathematicians are like lovers . . . Grant a mathematician the least prin-
ciple, and he will draw from it a consequence which you must also grant
him, and from this consequence another. —FONTENELLE

3 The Axiomatic Method
By RAYMOND L. WILDER

1. EVOLUTION OF THE METHOD

IF the reader has at hand a copy of an elementary plane geometry, of a
type frequently used in high schools, he may find two groupings of funda-
mental assumptions, one entitled “Axioms,” the other entitled “Postu-
lates.” The intent of this grouping may be explained by such accompany-
ing remarks as: “An axiom is a self-evident truth.” “A postulate is a geo-
metrical fact so simple and obvious that its validity may be assumed.” The
“axioms” themselves may contain such statements as: “The whole is
greater than any of its parts.” “The whole is the sum of its parts.” “Things
equal to the same thing are equal to one another.” “Equals added to
equals yield equals.” It will be noted that such geometric terms as “point”
or “line” do not occur in these statements; in some sense the axioms are
intended to transcend geometry—to be “universal truths.” In contrast, the
“postulates” probably contain such statements as: “Through two distinct
points one and only one straight line can be drawn.” “A line can be ex-
tended indefinitely.” “If L is a line and P is a point not on L, then through
P there can be drawn one and only one line parallel to L.” (Some so-called
“definitions” of terms usually precede these statements.)

This grouping into “axioms” and “postulates” has its roots in antiquity.
Thus we find in Aristotle (384-321 B.c.) the following viewpoint: !

Every demonstrative science must start from indemonstrable principles;
otherwise, the steps of demonstration would be endless. Of these inde-
monstrable principles some are (a) common to all sciences, others are
(b) particular, or peculiar to the particular science; (a) the common prin-
ciples are the axioms, most commonly illustrated by the axiom that, if
equals be subtracted from equals, the remainders are equal. In (b) we
have first the genus or subject-matter, the existence of which must be
assumed.

! As summarized by T. L. Heath, The Thirteen Books of Euclid's Elements, Cam-

bridge (England), 1908, p. 119, The reader is referred to this book for citations from
Aristotle, Proclus, et al.
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1.1. In Euclid’s Elements (written about 300 B.c.), the two groups occur,
respectively labeled “Common notions” and “Postulates.” From these and
a collection of definitions, Euclid deduced 465 propositions in a logical
chain. Although the actual background for Euclid's work is not clear,
apparently he did not originate this method of deducing logically from
certain unproved propositions, given at the start, all the remaining propo-
sitions. As we have just noted, Aristotle, and probably other scholars of
the period, had a well-conceived notion of the nature of a demonstrative
science; and the logical deduction of mathematical propositions was com-
mon in Plato’s Academy and perhaps among the Pythagoreans. Neverthe-
less, the influence of Euclid’s work has been tremendous; probably no
other document has had a greater influence on scientific thought. For
example, modern high school geometries are usually modeled after Euclid’s
famous work (in England, Euclid is still used as a textbook), thus ex-
plaining the still common grouping into “axioms” and “postulates.” Also
the use in non-mathematical writings of such phrases as “It is axiomatic
that . . .,” and “It is a fundamental postulate of . . .,” in the sense of
something being “universal” or beyond opposition, is explained by this
traditional use of the terms in mathematics.

The method featured in Euclid's work was employed by Archimedes
(287-212 B.c.) in his two books which provided a foundation for the
science of theoretical mechanics; in Book I of this treatise Archimedes
proved 15 propositions from 7 postulates. Newton's famous Principia, first
published in 1686, is organized as a deductive system in which the well-
known laws of motion appear as unproved propositions, or postulates,
given at the start. The treatment of analytic mechanics published by
Lagrange in 1788 has been considered a masterpiece of logical perfection,
moving from explicitly stated primary propositions to the other proposi-
tions of the system.

1.2. There exists a large literature devoted to the discussion of the nature
of axioms and postulates and their philosophical background. Most of this
is influenced by the fact that only within comparatively recent years have
axioms and postulates been very generally employed in parts of mathe-
matics other than geometry. Even though the method popularized by
Euclid is acknowledged now as a fundamental part of the scientific method
in every realm of human endeavor, our modern understanding of axioms
and postulates, as well as our comprehension of deductive methods in
general, has resulted to a great extent from studies in the field of geometry.
And, since geometry was conceived to be an attempt to describe the actual
physical space in which we live, there arose a conviction that axioms and
postulates possessed a character of logical necessity. For example, Euclid’s
fifth postulate (the “parallel postulate”) was “Let the following be postu-
lated that, if a straight line falling on two straight lines make the interior
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angles on the same side less than two right angles, the two straight lines,
if produced indefinitely, meet on that side on which are the angles less
than the two right angles.” 2 Proclus (A.n. 410-485) described vividly in
his writings the controversy that was taking place in connection with this
postulate even in his time; in fact, he argued in favor of the elimination
“from our body of doctrine this merely plausible and unreasoned state-
ment.” 2 With the renewal of interest in Greek learning during the Renais-
sance, controversy in regard to the fifth postulate was renewed. Attempts
were made to prove the “parallel postulate,” often from logical—non-
geometrical—principles alone. Surely if a statement is a “logical necessity”
the assumption of its invalidity should lead to contradiction—such was the
motivation of much of the work on the postulates of geometry. With the
invention of non-euclidean geometries the futility of such attempts became
clear.

1.3. The development of the non-euclidean geometries was evidence of a
growing recognition of the independent nature of the fifth postulate; that
is, this postulate cannot be demonstrated as a logical consequence of the
other axioms and postulates in the euclidean system. By a suitable replace-
ment of the fifth postulate, one may obtain the alternative and logically
consistent geometry of Bolyai, Lobachevski, and Gauss in which the fifth
postulate of Euclid fails to hold. In it appears, for example, the proposi-
tion that the sum of the interior angles of a triangle is less than two right
angles. Riemann in 1854 developed another non-euclidean geometry, like-
wise composed of a non-contradictory collection of propositions, in which
all lines are of finite length and the sum of the interior angles of a triangle
is greater than two right angles.

The invention of the non-euclidean geometries was only part of the
rapidly moving developments of the nineteenth century that were to
lead to the acceptance of formal geometries apart from those that might
be regarded as constituting definitive sciences of space or extension. Grass-
mann's Ausdehnungslehre, published in 1844 a d a critical landmark dur-
ing this era of changing ideas, was described by its author in these terms:
“My Ausdehnungslehre is the abstract foundation for the doctrine of
space, i.e., it is free from all spatial intuition, and is a purely mathematical
discipline whose application to space yields the science of space. This
latter science, since it refers to something given in nature (i.e., space),
is no branch of mathematics, but is an application of mathematics to
nature.” 3 In explanation of Grassmann's concept of a formal science,
Nagel writes: “Formal sciences are characterized by the fact that their
sole principles of procedure are the rules of logic as well as by the further

2 Quoted from T. L. Heath, op. cit., pp. 154-155, 203.
3 As quoted by E. Nagel, “The formation of modern conceptions of formal logic
in the development of geometry,” Osiris, vol. 8 (1939), pp. 142-222, pp. 169, 172.
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fact that their theorems are not ‘about’ some phase of the existing world
but are ‘about’ whatever is postulated by thought.” 3

1.4. The idea expressed by Grassmann is essentially the one held at the
present time; that is, a mathematical system called “geometry” is not
necessarily a description of actual space. One must distinguish, of course,
between the origin of a theory and the form to which it evolves. Geom-
etry, like arithmetic, originated in things “practical,” but to assert that
any particular type of geometry is a description of physical space is to
make a physical assertion, not a mathematical statement. In short, the
modern viewpoint is that one must distinguish between mathematics and
applications of mathematics.

A natural consequence of this change in viewpoint on the significance
of a mathematical system was a re-examination of the nature of the basic,
unproved propositions. It became clear, for instance, that the euclidean
“common notion” that “the whole is greater than the part” has no more
of an absolute character than the “parallel postulate” but is contingent
upon the meaning of “greater than”; in fact, the proposition may even fail
to hold, as in the theory of the infinite. Although there was much discus-
sion as to whether the parallel postulate should be listed as a “postulate”
or as a “common notion” (axiom), it was finally realized that neither had
any more universality than the other and the distinction might as well be
deleted.* Accordingly we find in the classical work of Hilbert on the foun-
dations of geometry,® published in 1899, that only one name “*axioms,” is
applied to the fundamental statements or assumptions, and that certain
basic terms such as “point” and “line” are left completely undefined. To
be sure, Hilbert made a grouping of his axioms—into five groups—but
this pertained only to the technical character of the statements, and not
to their relative status of “trueness” or “commonness.”

1.5. Although this work of Hilbert has come to be regarded by many as
the first to display the axiomatic method in its modern form, it should be
recognized that similar ideas were appearing in works of his contem-
poraries. . . .

1.6. . . . Such studies as those of Pasch, Peano, Hilbert, and Pieri in
euclidean geometry provided a tremendous impetus for investigations of
possible formal organizations of the subject matter of this old discipline;
these considerations, in turn, provided new understanding of mathematical
systems in general and were partly responsible for the remarkable mathe-
matical advances of the twentieth century. . . .

4 For an excellent non-technical description of this “revolution” in thought, see
E. T. Bell, The Search for Truth, Baltimore, 1934, chap. XIV.

5 Hilbert, Grundlagen der Geometrie, Leipzig, 1899 (published in Festschrift zur
Feier der Enthiillung des Gauss-Weber-Denkmals in Gdttingen); The Foundations of
Geometry, Chicago, 1902, See also the seventh edition of Grundlagen der Geometrie.
Leipzig, 1930.
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It is noteworthy that these early studies in the field of geometry were
revealing the great generality that was inherent in formal mathematical
systems. Mathematics was evolving in a direction that was to compel the
development of a method which could encompass in a single framework of
undefined terms and basic statements concepts like group and abstract
space that were appearing in seemingly unrelated branches of mathe-
matics. . . . The economy of effort so achieved is one of the character-
istic features of modern mathematics.

2. DESCRIPTION OF THE METHOD; THE UNDEFINED TERMS
AND AXIOMS

As commonly used in mathematics today, the axiomatic method con-
sists in setting forth certain basic statements about the concept (such as
the geometry of the plane) to be studied, using certain undefined tech-
nical terms as well as the terms of classical logic. Usually no description
of the meanings of the logical terms is given, and no rules are stated about
their use or the methods allowable for proving theorems; perhaps these
omissions form a weakness of the method." The basic statements are
called axioms (or, synonymously, postulates). It is assumed that in prov-
ing theorems from the axioms the rules of classical logic regarding con-
tradictions and “excluded middle” may be employed; hence the “reductio
ad absurdum” type of proof is in common use. The statements of both
the axioms and the theorems proved from them are said to be implied by
or deduced from the axioms. An example might be instructive:

2.1. Let us consider again the subject of plane geometry. It will be unnec-
essary to recall many details. We may perhaps assume, however, that the
reader recalls from his high school course that points and straight lines,
and such notions as that of parallel lines, were fundamental. Now, if we
were going to set forth an axiomatic system for plane geometry in rigorous
modern form, we would first of all select certain basic terms that we would
leave undefined; perhaps “point” and “line” would be included here (the
adjective “straight” can be omitted, since the undefined character of the
term “line” enables us to choose to mean “straight line” in our thinking
as well as in the later selection of statements for the axioms). Next we
would scan the propositions of geometry and try to select certain basic
ones with an eye to both their simplicity and their adequacy for proving
the ones not selected; these we would call our primary propositions or
axioms, to be left unproved in our system.

2.2. To be more explicit, let us proceed as though we were actually carry-

® We are not here describing the method as used in modern mathematical logic or
.wm formalistic treatises of Hilbert and his followers, where the rules for operations
with the basic symbols and formulas are (of necessity) set forth in the language of
ordinary discourse.
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ing out the above procedure; although we do not intend to give a complete
system of axioms, a miniature sample of what the axioms and secondary
propositions or theorems might be like, together with sample proofs of
the latter, follows:

Undefined terms: Point; line.

Axiom 1. Every line is a collection of points.

Axiom 2. There exist at least two points.

Axiom 3. If p and q are points, then there exists one and only one line
containing p and q.

Axiom 4. If L is a line, then there exists a point not on L.

Axiom 5. If L is a line, and p is a point not on L, then there exists one
and only one line containing p that is parallel to L.

These axioms would not by any means suffice as a basis for proof of all
the theorems of plane geometry, but they will be sufficient to prove a
certain number of ‘the theorems found in any organization of plane geom-
etry. Their selection is motivated as follows: In the first place, the unde-
fined terms “point” and “line” are to play a role like that of the variables
in algebra. Thus, in the expression

2—yi=(x—y)(x+y)

the x and y are undefined, in the sense that they may represent any indi-
vidual numbers in a certain domain of numbers (as for instance the do-
main of ordinary integers). In the present instance, “point” may be any
individual in a domain sufficiently delimited as to satisfy the statements
set forth in the axioms. On the other hand, “line,” as indicated in Axiom 1,
has a range of values (= meanings) limited to certain collections of the
individuals that are selected as “points.” Thus Axiom 1 is designed to set
up a relationship between the undefined entities point and line. It is not
a definition of line, since (if the study is carried through) there will be
other collections of points (circles, angles, etc.) that are not lines. Further-
more, it enables us, as we shall see presently, to define certain terms
needed in the statements of the later axioms. Axiom 2 is the first step
toward introducing lines into our geometry, and this is actually accom-
plished by adding Axiom 3. Before the latter can have meaning, however,
we need the following formal definition:

2.3. Definition. If a point p is an element of the collection of points which
constitutes a line L (cf. Axiom 1), then we say, variously, that L con-
tains p, p is on L, or L is a line containing p.

Having stated Axioms 2 and 3, we would have that there exists a line
in our geometry, but in order to have plane geometry and not merely a
line or “one-dimensional” geometry we would have to say something to
insure that not all points lie on a single line; Axiom 4 is designed to ac-
complish this. We would now imagine, intuitively (since we have a line L,
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a point p not on that line, and also a line through p and each point ¢
of L), that we have practically a plane; however, so far as euclidean
geometry is concerned, we have not provided, in Axioms 1-4, for the
parallel to L through p until we have stated Axiom 5. And of course
Axiom 5 is not significant until we have the definition:

2.4. Definition. Two lines L, and L., are called parallel if there is no point
which is on both L, and L,. (We may also call L, “parallel to” L., or
conversely.)

2.5. Let us denote the above set of five axioms, together with the unde-
fined terms point, line, by T and call it the axiom system T.

(We shall also frequently use the term “axiom system” in a broader
sense to include the theorems, etc., implied by the axioms.)

For future purposes we note two aspects of T, but we shall not go into
these fully at this point: (1) In addition to the geometrical (“technical™)
undefined terms point, line, we have used logical (“universal”) undefined
terms such as collection, there exist, one, every, and not. (2) That T is
far from being a set of axioms adequate for plane geometry may be shown
as follows: Since point and line are left undefined, we are at liberty to
consider possible meanings for them, subject of course to the restriction
that we take into account the statements made in the axioms. If we have
been educated in the American or English school systems, our reactions
to these terms will no doubt immediately be specialized, our geometric
experience in the schools having the upper hand in our response. But let
us imagine that the terms are entirely unfamiliar, although the logical
terms used in the axioms are not unfamiliar, so that we may consider
other possible meanings for point and line. Unquestionably this will in-
volve considerable experimentation before suitable meanings are found.
For example, we might first try letting “point” mean book and “line”
mean library; we know from the statement in Axiom 1 that a line is a
collection of points, and libraries form one of the most familiar collections
in our daily experience. We can imagine that we live in a city, C, which
has two distinct libraries, and that by library we mean either one of the
libraries of C, and by book any one of the books in these two libraries.
Axiom 2 becomes a valid statement: “There exist at least two books.”
However, Axiom 3 fails, since, if p and ¢ designate books in different
libraries, then there is no library that contains p and q. However, before
trying other meanings for point and line, we notice that Axioms 4 and
5 are valid, becoming, respectively, “If L is a library, then there exists a
book not on (i.e., in) L,” and “If L is a library and p a book not on (i.e.,
in) L, then there exists one and only one library containing p that is
parallel to (has no books in common with) L.” 7

) 7 __._ parentheses we have placed the terms commonly employed in connection with
libraries and books that are indicated by our definition of “on"” and “parallel.”
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Now, impressed by our failure to satisfy Axiom 3 on our mq.ﬁ attempt
at meanings for ““point” and “line,” we may, with an eye o.n >E.o_= 3, try
to imagine a community, which we denote by Z, of vncm_o in which every-
one belongs to some club, but in such a manner that, if n and g are two
persons in Z, then there is one and only one club of which p and g are
both members. In other words, we may try letting “‘point” Hnm_., a .ﬁ&w;
in Z and “line” mean a club in Z, and imagine that the n_.._a m:cm:o: .5
Z is such that the statement just made is valid, so that Axiom 3 is satis-
fied. We would then have no difficulty in seeing that Axioms 1, 2, m._a 4
are satisfied: “A club in Z is a collection of people in Z"; ,..;.mR nn._mn at
least two people in Z"; etc. However, Axiom 5 cnn.o_.:om Aid:._ suitable
change of wording to suit the new meanings) : .._: LisaclubinZ, and p
is a person in Z not in the club L, then there exists one mqa only one Q‘zc
in Z of which p is a member and which has no members in common s__z._
L.” This is a statement which apparently makes a rather strong ..no_.:__m::o:
regarding the club situation in Z, and which may _.."o_._g._ﬁ&:ﬁ a.m__ to apply;
in any case, the stipulation that only one club have a given pair oa.unac:m
as members can hardly be expected to suffice for Axiom 5! To clinch the
matter suppose that Z is a “ghost” community, there being .o_..;w ..E.an per-
sons, whom we shall designate by a, b and c respectively, living in Z; and
that as a result of certain circumstances each pair ab, bc, and ac mrm:”a a
secret from the third member of the community, so that we may no.nm_a.m_.
this bond between each two as forming them into a club (“secret monmnﬁ )
excluding the third member. Now, with the meaning of point and line as
before, we see that Axioms 1-4 hold but Axiom 5 does not hold.

Before rejecting the latter attempt as impossible, however, let us
imagine that Z has four citizens: a, b, ¢, and d. And suppose that each
pair of these people forms a club excluding the other two members of the
community; that is, there are six club consisting of ab, ac, ad, be, ?.m.
and cd. Now all the axioms of I are satisfied with the meanings person in
Z for “point” and club in Z for “line”! And we may then notice :_mp. we
could arrive at a similar example by taking any collection Z of four things
a, b, ¢, and d, and, by letting “point” mean a member or element of the
collection Z, and “line” mean any pair of elements of Z, satisfy the state-
ments embodied in the axioms of T. .

2.6. Although we may experience no particular thrill at this a_mno<n_.wu|
may, rather, begin to feel that it is a rather trivial game we are vmmw:..w
in toying with possible meanings for the system I'—we might conceivably
be beguiled into seeking an answer to questions such as: In.:z many
“points” must a collection have in order to serve as the basis for an
example satisfying the statements in I'? For a given collection at hand,
how many “points” must a “line” have in order to satisfy T? (For example,
a “line” above could not have consisted of three persons in Z in the case
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where Z has exactly four citizens.) Furthermore, if we have already a
general knowledge of, or experience with, plane geometry, the above ex-
ample shows us that I is far from being a sufficient basis for euclidean
geometry; certainly an adequate set of axioms for plane geometry would
exclude the possibility of the geometry permitting a set of only four points
satisfying all the axioms.

Before proceeding any further with this general discussion, however,
let us notice how theorems would be proved from such a system as T

3. DESCRIPTION OF THE METHOD; THE PROVING OF THEOREMS

Having set down a system, such as T' for instance, we then proceed
to see what statements are implied, or can be proved or deduced from
the system. Contrary to the manner in which we proceeded in high school,
when we brought in all kinds of propositions and assumptions not included
in the fundamental terms and axioms (such as “breadth”; “a line has no
breadth™), and even drew diagrams and pictures embodying properties
that we promptly accepted as part of our equipment,® we take care to use
only points and lines, and those relations and properties of points and
lines that are given in the axioms. (Of course, after we have proved a
statement, we may use it in later proofs instead of going back to the
axioms and proving it all over again.) There is no objection to drawing
diagrams, provided they are used only to aid in the reasoning process and
do noy trick us into making assumptions not implied by the axioms; indeed,
the professional mathematician uses them constantly. .
3.1. Consider the following formal theorem and proof:

Theorem 1. Every point is on at least two distinct lines.

Proof. Let p denote any point. Since by Axiom 2 there exist at least
two points, there must exist a point q distinct from p. And by Axiom 3
there exists a line L containing p and g. Furthermore, by Axiom 4 there
exists a point r not on L, and (again by Axiom 3) a line K containing
p and r.

Now by Axiom 1 every line is a collection of points. Hence, for two
lines to be distinct (i.e., different), the two collections which constitute
them must be different; or, what amounts to the same thing, one of them
must contain a point that is not on the other. The lines L and K are dis-
tinct, then, because K contains the point r which is not on L. As p is on
both L and K, the theorem is proved.

3.2. Now it will be noticed that we have used Axioms 1-4 in the proof,

) S A n_muumn.m_ example may be found in the well-known “proof"
_w_m.mn,lnm. which .mm based on a diagram that deceives the eye by placing a certain point
within an angle instead of outside, where rigorous reasoning about the situation would

place it. This may be found in J. W. Young, Lectures on Fundamental Concepts of
Algebra and Geometry, New York, 1916, pp. 143145,

that all triangles are
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but not Axiom 5. We could, then, go back to the example of the com-
munity Z, let “point” mean person in Z and “line” mean pair of persons in
Z, rephrase Axioms 1-4 in these terms, and carry through the proof of
Theorem 1 in these terms. That is, Theorem 1 is a “true” statement about
any example, such as Z, which satisfies the statements embodied in
Axioms 1-4 of I. In proving Theorem 1, then, we have in one step
proved many different statements about many different examples, _...w:..n_w.
the statements corresponding to Theorem 1 as they appear in the different
examples that satisfy Axioms 1-4 of I'. This [is an important] aspect of
the “economy” achieved in using the axiomatic method. . . . If, because
of some diagram or other aid to thought, we had used some property of
point or line not stated in Axioms 1-4, we could not expect to make the
above assertions, and the “economy” cited would be lost!

Note, too, that Theorem 1 will remain valid in any axiom system (such
as ') that contains the undefined terms point and line as well as »io_.:m
1-4. In particular, it is valid for euclidean plane geometry, which is o.a_w
one of the possible geometries embodying these four axioms, and which,
as we stated before, would require many more axioms than those stated
above.

3.3. Now consider the following statement, which we call a corollary of
Theorem 1:

Corollary. Every line contains at least one point. .
3.4. Before considering a proof, we hasten to meet an objection which
the “uninitiated” might make at this point; to wit, since Axiom 1 ex-
plicitly states that a line is a collection of points, of course every line
contains at least one point, so why should this be repeated as a corollary
of Theorem 1? This is not a trivial matter, and it leads directly to a ques-
tion which causes considerable concern in modern mathematics, namely,
what is meant by collection? We said above that “collection” is an Eam-
fined logical term, and as such we took it for granted that its use is
universally understood and employed, just as the word “the” is universally
understood and used by anyone familiar with the English language. But
now we find ourselves almost immediately in need of explaining the use of
the term in the above corollary.

However, there is nothing so very astonishing about this if we reflect
that, whenever we try to make very precise a term in ordinary use, it is
usually necessary to adopt certain conventions. For example, such terms
as mnwﬁa?__m. fruit, animal are commonly “understood” and used by any-
one who habitually uses the English language, but, when we come to apply
them to certain special objects, it is frequently necessary to agree on some
convention; as, for example, that a certain type of living substance shall
be called “animal” rather than “fish” (e.g., whale). So, for instance, we
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may want to make the convention that, if person A wishes to talk about
“the collection of all coins in B’s pockets,” he may do so even though
person B is literally penniless! In other words, no matter whether there
actually are coins in B's pockets or not, the collection of all such coins
is to be regarded as an existing entity; we call the collection empty if B
has no coins. (In case B is penniless, we may also talk about “the coin in
B’s pocket,” but in this case there is no existing entity to which the phrase
refers.) And this is the convention that is generally agreed on throughout
mathematics and logic, namely, that a collection may “exist,” as in the
case of the collection of all coins in B's pockets, even though it is
empty. . . .

3.5. Proof of corollary to Theorem 1. There exists a point p by Axiom 2,
and by Theorem 1 there exist two distinct lines L, and L, containing p.

Now, if there exists a line L that contains no points, then both L, and
L, are parallel to L (by definition). As this would stand in contradiction
to Axiom 5, it follows that there cannot exist such a line L.

3.6. A statement “stronger” than the above corollary is embodied in the
next theorem:

Theorem 2. Every line contains at least two points.

Proof. Let L be any line. By the above corollary, L contains a point p.
To show p not the only point on L, we shall use a “proof by contradic-
tion.” Suppose p is the only point that L contains. By Theorem 1 there
is another line L, containing p. Now L, must contain at least one other
point, g; for otherwise L and L, would each contain only p, hence be
the same collection of points and ergo the same line (Axiom 1). By
Axiom 4 there is a point x which is not on L,, and by Axiom 5 there is a
line L, containing x and parallel to L,. But both L and L, are lines con-
taining p and parallel to L,, in violation of Axiom 5. We must conclude,
then, that the supposition that p is the only point on L cannot hold and
hence that L contains at least two points.

Now, since by Theorem 2 every line contains at least two points, and
since by Axiom 3 two given points can lie simultaneously on only one
line, we can state:

Corollary (to Theorem 2). Every line is completely determined by any
two of its points that are distinct.

3.7. Theorem 3. There exist at least four distinct points.

Proof. By Axiom 2 there exist at least two distinct points p and q. By
Axiom 3 there exists a line L containing p and g, and by Axiom 4 there
exists a point x not on L. By Axiom 5 there exists a line L, containing x
and parallel to L, and by Theorem 2 L, contains at least two distinct
points (cf. Definition 2.4),

3.8. Theorem 4. There exist at least six distinct lines.
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Before proving Theorem 4, we perhaps need .8 make sure that =”n
meaning of another one of our “‘common” terms 1s mm_.mm.n_ upon, =m=._n y
the word “distinct.” As we are using the term, two nc__on.:o:m are n_._m::nﬂ
if they are not the same. Thus, the lines L and L, which mm.c._.n in the
proof of Theorem 2 are distinct, although under the mcvvom:_oz made
there L, contains L, for they are not the same line (L, contains g and L
n_owwh%m wom Theorem 4. We proceed, as in the proof of Theorem 3, to ob-
tain the line L containing the points p and g, and the line L, _.Eqm:m_ to L
containing two distinct points (Theorem 2) x and y. .w« Axiom 3 there
exist lines K and K, determined respectively by the pairs (p, x), (g, ).
Now the point ¢ is not on K, else by Axiom 3 K and L s_.o:_m be the
same line (which is impossible since x is not on L). Also, y is not on hm.
else K and L, would be the same line. Similarly, p is :2. on K; mzn.u is
not on K,. Now there also exist lines M and M, n_n..o_.asmn Hnwunn.:é_m
by the pairs (p, ¥), (g, x); and we can show that g is not on M, x is not
on M, p is not on M, and y is not on M,. It follows that no two of the
lines L, L,, K, Ky, M, M, are the same.

4. COMMENT ON THE ABOVE THEOREMS AND PROOFS

If the reader has followed the proofs given above, he has E.ocww_w. re-
sorted to the use of figures by this time! This would be quite natural, md_..nn
in high school geometry he used figures; and :._n.w rn_.n. to keep the various
symbols (L, p, g, --+) and their significance in mind. Ioinda._.. .m..m we
stated above, no special meanings have been assigned to :wo::. and
“line,” and consequently the above proofs should, and do, hold wﬂ._mp mw
well if the reader uses coins for “points” and pairs of coins for .___..mm._.
As a matter of fact, if any collection of four objects is employed, :vm.:.;
meaning any object of the collection and “line” any pair of the wd_on».m,
then the reader may follow the above proofs with these meanings in
mind. . .

‘Of course, the theorems we have stated in the preceding sections are
not by any means all the theorems that we might state. wo_. example, we
can show that any collection of objects satisfying the axioms cm. the 3;....
tem T must, if not infinite as in ordinary geometry, satisfy nnn.m:.. mo:n_-
tions regarding the number of points (there cannot be Em.ﬁ 5 points in the
collection, for instance), and that there must be a relation between the
number of lines and the number of points in the collection. In fact, we
can continue the above study to a surprising extent; we could hardly ex-
pect to reach a point where we could confidently assert that no more
theorems could be proved. It is not our intention to extend the ===.5an
of theorems, however, since we believe that we have already obtained
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enough theorems and proofs to serve as specimens for our later purposes.
4.1. As a useful terminology in what follows, let us agree that, when we
use the term “statement” in connection with an axiom system %, we shall
mean a sentence phrased, or phrasable, in the undefined terms and uni-
versal terms of X; such a statement may be called a 3-statement. Thus the
axioms of I" are I'-statements (Axiom 5 contains the word “parallel,” but
this is “phrasable” in the undefined terms and universal terms), as are
also the theorems.
4.2. In conformance with the conventions made in Section 2, we shall say
that an axiom system X implies a statement S if S follows by logical argu-
ment, such as used above, from =. In particular, each axiom is itself im-
plied, trivially. We shall also say S is logically deducible from 3 if %
implies S.
4.3. In the course of our work above we had to pause in two instances
to explain the conventions we were making in regard to the use of
two words commonly used in ordinary discourse, namely “collection” and
“distinct.” These words were left undefined, to be sure, in the sense that
they are supposedly universally understood non-technical terms; but, as
we discovered, not so “universal” but that it was felt advisable to give
some conventions we were making in regard to their use here! On the
other hand, the words “point” and “line” we left strictly undefined, say-
ing that any meaning whatsoever could be assigned to them as long as
these meanings were consistent with the statements embodied in the
axioms. We saw that the “collection = library,” “point = book” meanings
were not permissible, but that, if C is any collection of four objects, then
“point = object of C,” “line = pair of objects of C” are permissible mean-
ings. The terms “point,” “line,” “parallel,” etc., we may call technical
terms of the system, the terms “point” and “line” being the undefined
technical terms. The terms “collection,” “distinct” might be called uni-
versal terms or logical terms.

Other examples of universal terms in T are “exist” (in Axiom 2), “one”

_ (Axiom 3), “two” (Theorem 1), “four” (Theorem 3), “six” (Theorem

4), “and” (Axiom 3), “or” (Definition 1), “not” (Axiom 4), and “every”
(Theorem 1). However, if we were setting up an axiom system for the
elementary arithmetic of integers (1 +2=3,2 x 2= 4, etc.), we might
use a term like “one” as an undefined technical term. Thus the same term
may have different roles in different axiom systems! . . . As the term
“exist” is used above, it is chiefly permissive so far as proofs are con-
cerned, and stipulative for examples; thus in the proof of Theorem 3 we
were permitted to introduce the line L, by virtue of Axiom 5, and the ex-
ample of the “ghost community” containing only three persons failed
because it could not meet the stipulation concerning the existence of a
certain line parallel to another line which is made in Axiom 5.
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5. SOURCE OF THE AXIOMS

Let us consider more fully the source of the statements embodied in
the axioms. We chose axioms for geometry in our example I' since we
felt that we could assume the reader had studied some elementary geom-
etry in high school. That is, we were careful to pick a subject already
familiar! The undefined technical terms “point” and “line” already have
a meaning of some sort for us. And . . . this is the usual way in which
axioms are obtained; they are statements about some concept with which
we already have some familiarity. Thus, if we are already familiar with
arithmetic, we might begin to set down axioms for arithmetic. Of course
the method is not restricted to mathematics. If we are familiar with some
field such as physics, philosophy, chemistry, zoology, economics, for in-
stance, we might choose to set down some axioms for it, or a portion of
it, and see what theorems we might logically deduce from them.? We may
say, then, that an axiom, as used in the modern way, is a statement which
seems to hold for an underlying concept, an axiom system being a collec-
tion of such statements about the concept.

Thus, in practice, the concept comes first, the axioms later. Theoreti-
cally this is not necessary, of course. Thus, we may say “Let us take as
undefined terms aba and daba, and set down some axioms in these and
universal logical terms.” With no concept in mind, it is difficult to think
of anything to say! That is, unless we first give some meanings to “aba”
and “daba”—that is, introduce some concept to talk about—it is difficult
to find anything to say at all. And, if we finally do make some statements
without first fitting a suitable concept to “aba” and “daba,” we shall, very
likely, make statements that contradict one another! The underlying con-
cept is not only a source of the axioms, but it also guides us to con-
sistency (about which we shall speak directly).

Thus, we select the concept; then we select the terms that are to be left
undefined and the statements that are to form our axioms; and finally we
prove theorems as we did above. This is a simplification of the process,
to be sure, but in a general way it describes the method. It is to be noted
how the procedure, as so formulated, differs from the classical use of the
method. In the classical use the axioms were regarded as absolute truths—
absolutely true statements about material space—and as having a certain
character of necessity. To have stated the parallel axiom, Axiom 5 above,
was to have stated something “obviously true,” something one took for
granted if one had thought about the character of the space in which he
lived. It would have been inconceivable before the nineteenth century to
state an axiom such as “If L is a line and p a point not on L, then there

? As an example in genetics and embryology, see ..‘__:. Woodger, The Axiomatic
Method in Biology, Cambridge (England), 1937.
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exist at least two distinct lines containing p and parallel to L.” To have in
mathematics, simultaneously, two axiom. systems T, and I, with axioms
in I'y denying axioms in I'; as is the case in mathematics today with the
euclidean and non-euclidean geometries, would also have been inconceiv-
able! But, if we take the point of view that an axiom is only a statement
about some concept,}® so that axioms contradicting one another in dif-
ferent systems only express basic differences in the concepts from which
they were derived, we see that no fundamental difficulty exists. What is
important is that axioms in the same system should not contradict one

another. This brings us to the point where we should discuss consistency
and other characteristics of an axiom system.

5.1. REMARK

The derivation of an axiom system for non-euclidean geometry from
axioms for euclidean geometry, using the device of replacing the parallel
axiom by one of its denials, is an example of another manner in which
:n.s_ axiom systems may be obtained. In general, we may select a given
axiom system and change one or more of the axioms therein in suitable
manner to derive a new axiom system.

I
ANALYSIS OF THE AXIOMATIC METHOD

[When the undefined terms and prima ropositions or axio
system have been selected at least three nﬂ«nwmaw questions m:mmnm”ﬂ:oham
selves: (1) Is the system suited to the purposes for which it was set up?
(2) Are Sa.mu_oﬂw truly independent, i.e., are any of them provable from
the others (in which case they should perhaps be deleted from the system
and transferred to the body of theorems to be proved)? (3) Does the sys-
tem imply any contradictory theorems (if so, this defect must be elimi-
nated if the theorems are to be relied on)? Of these questions, the third
relating to contradictoriness, is by far the most fundamental and critical,
In the selection below, a continuation of the preceding discussion, I have

excerpted Wilder's analysis of the consistency and i
et okl y ndependence of an

1. CONSISTENCY OF AN AXIOM SYSTEM

From a logical point of view we can make the following definition:
L1. Definition. An axiom system % is called consistent if contradictory
statements are not implied by 3.

Now this definition gives rise to certain questions and criticisms. In
the first place, given an axiom system X, how are we going to tell whether

21t is only in this sense—that an axiom i
m is a statement frue of some co o
the word “true” can be used of an axiom. concept—that

e S -
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it is consistent or not? Conceivably we might prove two theorems from
3 which contradict one another, and hence conclude that % is not con-
sistent.

For example, if we added to the system I, discussed above, the new
axiom, “There exist at most three points,” it would become m_uvm_.nﬂ.r as
soon as Theorem 3 of I' was proved, that the new system of axioms is not
consistent.

But, supposing that this does not happen, are we going to conclude
that = is consistent? How can we tell that, if we continued stating and
proving theorems, we might not ultimately arrive at contradictory state-
ments and hence inconsistency? We remarked about the system I' that we
could hardly expect to reach a point where we could say with confidence
that no more theorems could be stated. And, unless we could have all
possible theorems in front of our eyes, capable of being mn.mannn_ for con-
tradictions, how could we assert that the system is consistent? We are
immediately faced with the problem: Is there any procedure for proving
a system of axioms consistent? And, if so, on what basis aonm. the proof
rest, since the proof cannot be conducted within the system as in the case
of the theorems of the system?

Another difficulty would arise from the fact that it might be very hard
to recognize that a contradiction is implied, when such is the case. There
are examples in mathematical literature of cases where considerable ma-
terial was published concerning systems which later were found to be
inconsistent. Until someone suspected the inconsistency and set out to
prove it, or (as in some cases) stumbled upon it by chance, the systems
seemed quite valid and worth while. It can also happen, for example, that
the theorems become so numerous and complicated that we fail to detect
a pair of contradictory ones. For example, although two theorems might
really be of the form “S" and “not S” respectively, because of the Em::.m_.
in which they are stated it might escape our attention that they contradict
one another. In short, the usefulness of the above definition is limited by
our ability to recognize a contradiction even when it is staring us in the
face, so to speak. .

The former objection, that hinging upon the probable impossibility of
setting down all theorems implied by the system, is the more serious from
the point of view of the working mathematician. And as a consequence
the mathematician usually resorts to the procedure described below:

Let us make the definition:

1.2. Definition. If = is an axiom system, then an interpretation of % is the
assignment of meanings to the undefined technical terms of X in such .m
way that the axioms become true statements for all values of the vari-
ables (such as p and g of Axiom 3, I 2.2, for instance).

This definition requires some explanation. First, as an example we can
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cite the system I above and the meanings “point” = any one of a collec-
tion of four coins and “line” = any pair of coins in this collection. The
axioms now become statements about the collection of coins and are easily
seen to be true thereof. Hence this assignment of meanings is an interpre-
tation of T. As the axioms stand, with “point” and “line” having no as-
signed meanings, they cannot be called either true or not true. (Similarly,
we cannot speak of the expression “x2 — y2 = (x — y) (x 4+ y)" as being
either true or false until meanings, such as “x and y are integers,” are as-
signed.) But, with the meanings assigned above, they are true statements
about a “meaningful” concept. As a rule, we shall use the word “model”
to denote the result of the assignment of meanings to the undefined terms.
Thus the collection of four coins, considered a collection of points and
lines according to the meanings assigned above, is a model of T. Gen-
erally, if an interpretation I is made of an axiom system, we shall denote
the model resulting from I by 99(1).

For some models of an axiom system 3, certain axioms of 3 may be

vacuously satisfied. That is, axioms of the form “If ..., then .. .”
such as Axiom 3 of I, which we might call “conditional axioms,” may
be true as interpreted only because the conditional “If . . " part is not

fulfilled by the model.

Suppose, for example, we delete Axioms 2 and 4 from T' and denote
the resulting system by I”. Then a collection of coins containing just one
coin is a model for 17, if we interpret “point” to mean coin and “line” to
mean a collection containing just one coin. For in this model the “If . . .”
parts of Axioms 3 and § are not fulfilled. (Note that, for Axiom 3 to be
false of a model @Y, there must be two points p and ¢ in @9 such that
either no line of @9 contains P and g or more than one line of A contains
p and q.)

This may be better illustrated, perhaps, by the following digression:
Suppose boy A tells girl B, “If it happens that the sun shines Sunday, then
I will take you boating.” And let us suppose that on Sunday it rains all
day, the sun not once peeping out between the clouds. Then, no matter
whether A takes B boating or not, it cannot be asserted that he made her a
false promise. For his promise to have been false, (1) the sun must have
shone Sunday and (2) A must not have taken B boating. And, in general,
for a statement of the form “If . . . , then . . .” to be false, the “If . . .”
condition must be fulfilled and the “then . . .” not be fulfilled.

Now we did not have in mind a collection of four coins when we set
down the axioms of I. We were thinking of something entirely different,
namely euclidean geometry as we knew it in high school. “Point” had
for us then an entirely different meaning—something “without length,
breadth, or thickness”; and “line” meant a “straight™ line that had “length,
but no breadth or thickness.” Do not these meanings also yield a model
of '—what we might perhaps call an “ideal” model? We may admit that
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this is so, and we resort frequently in mathematics to such ideal models—
always, of course, when it happens that every collection of objects serving
as a model must of necessity be infinite in number. (Such is the case, for
instance, when we have enough axioms in a geometry to insure an infinite
number of lines.) We return to this discussion later (see 2.3); at present,
let us go on to the so-called “working definition” of consistency:

1.3. Definition. An axiom system X is satisfiable if there exists an interpre-
tation of =.

Now what is the relation between the two definitions 1.1 and 1.3?
What we actually want of any axiom system is that it be consistent in the
sense of 1.1. But we saw that 1.1 was not a practicable definition except
in cases where contradictory statements are actually found to be implied
by the system and inconsistency is thus recognized. Where a system is
consistent, we are usually unable to tell the fact from 1.1. But, as in the
case of the four-coin interpretation of I' above, we have a very simple
test showing “satisfiability” in the sense of 1.3. Does this m:..v_z_no_._-
sistency in the sense of 1.1? The mathematician and the logician take the
point of view that it does, and, in order to explain why, we have to go
into the domain of logic for a few moments.

2. THE PROOF OF CONSISTENCY OF AN AXIOM SYSTEM

The Law of Contradiction and the Law of the Excluded Middle.

First let us recall two basic “laws” of classical (i.e., Aristotelian) logic,
namely the Law of Contradiction and the Law of the Excluded Middle;
the latter is also called the Law of the Excluded Third (“tertium non
datur”). These are frequently, and loosely, described as follows: If S is
any statement, then the Law of Contradiction states that S and a contra-
diction (i.e., any denial) of S cannot both hold. And the Law of the Ex-
cluded Middle states that either S holds or a denial of S holds. For
example, let S be the statement “Today is Tuesday.” The Law of Con-
tradiction certainly holds here, for today cannot be both Tuesday and
Wednesday, for example. And the Law of the Excluded Middle states that
either today is Tuesday or it is not Tuesday.

But “things are not so simple as they seem” here. Unless one limits
himself to a specified point on the earth (or parallel of longitude), it can
be both Tuesday and Wednesday at the same time! And, without includ-
ing in S such a geographical provision, the statement “Either today is
Tuesday or it is not Tuesday” can hardly be accepted. As a matter of fact,
whenever such statements are made there usually exists a tacit understand-
ing between speaker and listener that their locale at the time is the place

being referred to.
Or consider the statement “The king of the United States wears bow
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ties.” Does the Law of the Excluded Middle hold here? Or let S be the
statement “All triangles are green.”

The upshot of this is merely that, although these “laws” are called
“universally valid,” some sort of qualifications have to be made with
regard to their applicability in order for them to have validity. In so far
as axiomatic systems are concerned, the problem is not so great, since we
can restrict our use of the term “statement” to the convention already
made in section I 4.1 (“S-statement”). And this will be our understanding
from now on.

2.2. As soon as an interpretation of a system ¥ is made, the statements of
the system become statements about the resulting model. Let us assume
the following, which may be considered basic principles of applied logic.
2.2.1. All statements implied by an axiom system 3 hold true for all
models of 3;

2.2.2. The Law of Contradiction holds for all statements about a model of
an axiom system 3, provided they are 3-statements whose technical terms
have the meanings given in the interpretation. We can make this clearer
and more precise by introducing the notion of an I-2-statement:

2.2.3. If % is an axiom system and I denotes an interpretation of %, then
the result of assigning to the technical terms in a Z-statement their mean-
ings in I will be called an I-3-statement.

Then 2.2.1 and 2.2.2 become respectively:

2.2.1. Every I-3-statement, such that the corresponding -statement is im-
plied by 3, holds true for MW (1) (cf. 1.2);
2.2.2. Contradictory I-3-statements cannot both hold true of MW(I).

Under the assumption that 2.2.1 and 2.2.2 hold, satisfiability implies
consistency. For, if an axiom system X implies two contradictory 3-state-
ments, then by 2.2.1 these statements ag I-2-statements hold true for the
model 99 (1); but the latter is impossible by 2.2.2. Hence we must con-
clude that, if 2.2.1 and 2.2.2 are valid, then the existence of an interpre-
tation for an axiom system ¥ guarantees the consistency of 3 in the sense
of 1.1. And this is the basis for the “working definition” 1.3. For example,
the existence of the “four-coin interpretation” of the system T above guar-
antees the consistency of I' if we grant 2.2.1 and 2.2.2.

. The reader will have noticed that we have not proved that consistency
in the sense of 1.1 implies satisfiability. To g0 into this question would be
impractical, since it would necessitate going into detail concerning formal
logical systems and is too complicated to describe here.

2.3. In Section 1 we used the term “ideal” model, by way of contrast to
such models as that of the four coins for I'; the latter might be termed a
“concrete” model. It was pointed out that, whenever an axiom system =
requires an infinite collection in each of its models, then of necessity the
models are “ideal.”
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This raises not only the question as to how reliable are “ideal” models,
but also the question as to what constitutes an allowable model. What we
should like, of course, is a criterion which would allow only models that
satisfy assumptions 2.2.1, 2.2.2, and especially the latter. If there is any
danger that an ideal model may require such a degree of abstraction that
it harbors contradictions in violation of 2.2.2, then clearly the use of
models is no general guarantee of consistency in spite of what we have
said above.

Further light can be shed on this matter by a consideration of well-
known examples. It is not an uncommon practice, for instance, to obtain
a model of an axicm system X in another branch of mathematics—even
in a branch of mathematics that is, in its turn, based on an axiom system
3’. How valid are such models? Do they necessarily satisfy 2.2.2? For ex-
‘ample, to establish the consistency of a non-euclidean geometry we give
a model of it in euclidean geometry. (See Richardson [Fundamentals of
Mathematics, New York, 1941, pp. 418-19] for instance.) But suppose
that the euclidean geometry harbors contradictions; what then? Evidently
all we can conclude here is that, if euclidean geometry is consistent, then
so is the non-euclidean geometry whose model we have set up in the
euclidean framework.

We are forced to admit that in such cases we have no absolute test for
consistency, but only what we may call a relative consistency proof. The
axiom system X’ may be one in whose consistency we have great confi-
dence, and then we may feel that we achieve a high degree of plausibility
for consistency, but in the final analysis we have to admit that we are
not sure of it.11, . .

3. INDEPENDENCE OF AXIOMS

Earlier we mentioned “independence” of axioms. By “independence”
we mean essentially that we are “not saying too much” in stating our
axioms. For example, if to the five axioms of the system T (I 2.2) we
added a sixth axiom stating “There exist at least four points,” we would
provide no new information inasmuch as the axiom is already implied by
I' (see Theorem 3 of I 3.7). Of course the addition of such an axiom
would not destroy the property of consistency inherent in T
3.1. In order to state a formal definition of independence, let = denote an
axiom system and let A denote one of the axioms of =. Let us denote
some denial of A by ~A, and let £ — A denote the system ¥ with A
deleted. If S is any Z-statement, X + S will mean the axiom system con-

'! In one well-known case, the system Z' is a subsystem of Z; viz., the Godel proof
(Godel, The Consistency of the Axiom of Choice and the Generalized Continuum
Hypothesis with the Axioms of Set Theory, Princeton, 1940) of the relative con-
sistency of the axiom of choice when adjoined to the set theory axioms.

EEEEEEE————— S —————
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taining the axioms of ¥ and the statement S as a new axiom. Then we
define: )

3.1.1. Definition. If £ is an axiom system and A is one of the axioms of 3,
then A is called independent in %, or an independent axiom of %, if both
% and the axiom system (X — A) + ~A are satisfiable.

3.2. Just which of the many forms of ~A is used is immaterial. Thus
Axiom 5 is independent in ' (I 2.2) if T is satisfiable and if the first four
axioms of T' togther with a “non-euclidean” form of the axiom constitute
a satisfiable system. For example, for a denial of Axiom 5 take the state-
ment: “There exist a line L and point p not on L, such that there does
not exist a line containing p and parallel to L.” To show that the system I
with Axiom 5 replaced by this statement forms a satisfiable system, let us
take a collection of three coins, let “point” mean a coin of this collection,
and “line” mean any pair of points of this collection. Then we have an
interpretation of the new system, showing it to be satisfiable. We have
already ascertained (2.2) that T is satisfiable, and so we conclude that
Axiom 5 is independent in T.

3.3. The reader will probably gather by this time that the reason for speci-
fying the satisfiability of ¥, in Definition 3.1.1, is to insure that some ~A
is not a necessary consequence of the axioms of % — A; for, if it were,
we would not wish to call A “independent.” And, as the definition is
phrased, it insures that neither A nor any denial, ~A, of A is implied by
the system 3 — A, so that the addition of A to 3 — A is really the supply-
ing of new information.

3.4. Actually, however, we do not place the same emphasis on independ-
ence as we do on consistency. Consistency is always desired, but there may
be cases where independence is not desired. . . . Generally speaking, of
course,it is preferable to have all axioms independent; but, if some axiom
turns out not to be independent, the system is not invalidated.

As a matter of fact, some well-known and important axiom systems,
when first published, contained axioms that were not independent (a fact
unknown at the time to the authors, of course). An example of this is
the original formulation of the set of axioms for geometry given by Hilbert
in 1899. This set of axioms contained two axioms which were later dis-
covered to be implied by the other axioms.!? This in no way invalidated
the system; it was only necessary to change the axioms to theorems (sup-
plying the proofs of the latter, of course). .

'2 See, for example, E. H. Moore. “On th jecti i
. , E. H. i e project :
Amer. Math. Soc., vol. 3 (1902), pp. _hul_um.v PRI BRI 0 foommetry,™ Trom,




