MAT 1361: Notes on Formal Proofs!
P. J. Scott January, 1997

1 What is a Formal Proof?

In its crudest form, a formal proof is a finite list of formulas where each formula in the list
has to be one of the following two things: it is either (i) an hypothesis (of some kind) or
(ii) it arises from previous formulas in the list by a rule of inference. Hence every formula
in a proof has to have a “reason” or “justification” written beside it : this tells us whether
the formula is an hypothesis or else which rule it arises from (using previous formulas in the
list).

In our course, we use Natural Deduction for Propositional Calculus, which closely cor-
responds to ordinary mathematical reasoning. Our natural deduction proofs have specific
geometric shapes, similar to block, structured programming languages. The rules are divided
into two kinds: Introduction and Elimination rules for each connective in Propositional Cal-
culus. It is important that you see how to connect these rules with correct, informal logical
reasoning (say the reasoning done in ordinary mathematics.)

Notation: A logical argument

from (global) hypotheses or premisses H; - - - H, and with conclusion C'is sometimes written
Hy,---,H, FC.

Let ' = {Hy,---,H,} be the set of global hypotheses (or premisses ) in the above
argument. A natural deduction proof of this argument has the form

| I’ Hypotheses
C
The formula C appears to the immediate right, at the bottom of a vertical line, called
the spine of the proof of C. The set of hypotheses I' = {Hy,- - -, Hy} is put at the top of the
spine of the proof, immediately to its right. Note: we always make a small horizontal line
under hypotheses to set them apart from the rest of the proof.

Each line of the proof starting with the set I' must be justified by a reason: it is either
a (global) hypothesis, a local hypothesis of some rule of inference, or else it arises by using
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some rule of inference applied to (formulas in) preceeding lines of the proof.
Let’s examine each rule:

Conjunction (A) In ordinary mathematics, we certainly use the following kind of reason-
ing:
e Introduction of Conjunction: Suppose we have proved A and we have proved
B, for any two statements A, B . Then of course we can immediately conclude
Aand B, since we already have a proof of each component. This corresponds to
the following rule of A-Introduction for natural deduction:

K |A

2 |B

AANB AT k-1

Actually, we don’t care whether A or B comes first: so there’s a similar rule where
A and B come in the opposite order:

X | B

2|4

AAB A-1,k—1

Observe that in the A-introduction rule, the formulas A, B, AA B lie on the spine
of the proof: they are at the same “level” or “distance from the spine” .

e Elimination of Conjunction: Suppose we have proven A and B. Then of course we
can infer A and also infer B. Essentially, that’s because we have simple tautologies
(AAB) — A and (AAB) — B. To formalize this, we use the following rules of A-
Elimination:

X |AAB & |AAB

' A AN—E, k l B AN—E, k
Again, notice in the A-Elimination rule that all formulas used in the rule are on
the spine of the proof: they are on the same “level” .

Implication (—) Implication is the fundamental concept in logical reasoning. Let’s exam-
ine the two rules:



o Introduction of Implication This rule is based on the following simple concept: in
order to prove A — B, we must assume A and prove B from this assumption. Note
that A is a “local” assumption for this inference only: we make this assumption
and then based on it, we prove B . Then from this entire subproof (or subprogram)
we can infer A — B. The general form is:

x| | A Hyp(—-I
2| |B
m|A—=B —-1,k-1

There are some important comments to make about this rule.

(i) The spine of the proof is the vertical line to the left of the formula A — B.
The subproof on lines k — [ above is “one level inwards” from the main body
of the proof-that is, it is nested inwards one level (i.e. it is distance one from
the spine). This subproof is a complete proof in its own right: it has its own
spine, which starts with hypothesis A and ends with final formula B. Each
line within this subproof must be justified by a rule, as usual.

(ii) You can reiterate any formula X on lines 1,---,(k — 1) into this subproof
provided the formula X is on the spine of the proof. For a more general
discussion, see the section on Reiteration.

e Elimination of Implication This is the major rule of logical inference, /%oirf ba%c
—

thousands of years. It is based on the simple rule called modus ponens: B
This rule says: if we assume A and A — B, then we can infer B. Of course, this
rule is valid: by examining the truth table, we see that if A is true, and A — B
is true, then of course B is true.

In natural deduction, modus ponens is captured by the —-Elimination rule,
which is the following (we give two versions, so it doesn’t depend on the order of
the assumptions):

X |a k |A—B
2 |lA-B £ |4A
B =B, k1 B —E, k1

Observe that the formulas A,B,A — B mentioned in the —-Elimination rule
occur on the spine of the proof.



Disjunction (V) In ordinary mathematics we sometimes use the following kind of reason-
ing:

e Introduction of Disjunction: Suppose we have proved a statement A. Then we
can infer Aor B for any B whatsoever, no matter how complicated B is. One
justification for this is that we know that there are tautologies A — (A V B) and
B — (AV B), so from A we can certainly infer AV B, and similarly from B we
can infer A V B. Motivated by this idea, we introduce the following rules:

klﬁ ,kl}B

AVB V-1, k AVB V-1, k

e Elimination of Disjunction This is one of the harder rules. It is based on the
idea of Case Analysis. Mathematicians often argue by looking at the different
possible cases. This should be familiar to you, based on the Knights and Knaves
logic puzzles. Here is the general form. Suppose we know A or B. There are two
cases: Case 1: suppose A is true. Case 2: Suppose B is true. Now suppose we
know that in each case the hypothesis for that case logically implies C. That is,
In Case 1, suppose we know that from A we can infer C, and in Case 2, suppose
we know that from B we can infer C. Since in either case we can infer C, then
overall we can conclude C, since we assumed globally that A or B is true. In
natural deduction we have:

R |AVB
b | A Hyp(V - Elim)
L C
¥\ B Hyp(V — Elim)
" c
wm+l | C V- Elimkk+1—11+1—m.

Notice that each case is actually a little subproof (= subprogram): Case 1 assumes
A and then eventually proves C, Case 2 assumes B and eventually proves C. The
assumptions in each of the subproofs are local hypotheses for those cases only.
Since we assume AV B on line k (so AV B is kind of a global hypothesis for all
later lines) then together with each of the two subcases (subprograms), we can
conclude C on line m + 1.

This reasoning really corresponds to the following tautology (do you see why?):

[(AvB) = C] « [(A—C)A(B—C)]
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Comments:
1. Both subproofs in V-Elimination are at the same inner‘level”, 1 unit from

the spine (the same level of nesting as in —-Introduction). We think of them
as parallel programs, corresponding to each case of the disjunction AV B.

In the two subproofs of V-Elimination, you cannot reiterate a formula from
one case (subproof) into the other case (subproof) because they are separate
proofs at the same level. When we argue by cases, each case is a separate
proof, happening simultaneously but independently from the other case. So
cases cannot share information between themselves. But you can reiterate
from a global formula on the spine at line k into any subproof after line k+ 1.

Negation Again, there are two rules.

o —-Introduction This rule is simply based on proof by contradiction. In words: “to
prove —A, assume (in a subproof) A and get a contradiction . Since from A we
get a contradiction, then it must be the case that —A.” In natural deduction, it
has the following form:

K| |A Hyp(--1) X | A Hyp(~-1)
X C X -C
wm .—tC w C
i\ [ -A -—I,k—m(l,m) ™y | DA -~ — I,k —m(l,m)
Comments:

1. The contradiction is written in parentheses in line m + 1 after the rule name

= — I . There are two rules, since we don’t care whether C precedes —~C or
vice versa.

Notice that the subproof containing the contradiction is “nested 1 level in-
wards” from the spine of the main proof.

To simplify the subproof, we allow A itself to be one of C or ~C. So if starting
from local hypothesis A we derive —A then that counts as a contradiction.
This special case looks like, for example:

.
.

R | | A Hyp(--1)

W -A

W\ | 04 - = I,k —m(k,m)

e ——-Elimination This rule, sometimes just called ~-Elimination, is the easiest rule
of all. It is based on the fact that two negations cancel, that is =—A equals A,
in terms of truth values. In words, it says “in a proof, whenever we have derived
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——A, then at any later time we can immediately conclude A.” Of course this rule
is obviously logically valid. Formally, we have the following rule:

k| =4

lA -—~—-Ek

Reiteration This rule allows us to reuse a formula we have already proved (or assumed, if
it is an hypothesis of some kind) later in a proof. The idea is that if we have already
derived A in a proof, we can use it later in the proof. Here is an example:

R
R |D some reason
L4
s
D  Reiteration, k
Comments:

1. The above is just an illustration of reiterating into a later subproof nested at level
2. Note: D can be any formula, possibly one of the hypotheses

2. You can reiterate D in one step into any depth of proper nested subproof (provided
the subproof occurs after the formula D and has greater nesting level than D).

3. In V — Elim you cannot reiterate between the two cases: each case is a separate
subproof.

2 General facts about proofs
It is important to remember the following:
1. You may only use the rules given in class. You can use supplementary Lemmas (if you
prove them) but I strongly discourage it-all proofs can be done quite easily directly.

2. The basic strategy is to reason bottom-up (that is, start at the bottom from the formula
you are trying to prove), although there are some rules (e.g. V-Elim) where you may
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wish to reason top-down. In more advanced proofs, we use a mixture of the two kinds
of strategies.

. We can only prove tautologies. More generally, every line of a proof is either (i) an
hypothesis of some kind, or (ii) a formula which is a tautological consequence of all the
previous lines. That is, a formula at line k£ which is not a hypothesis is implied by the
set of all formulas “above” it, on lines 1,-- -, (k — 1) (actually, we can be more precise
here, but this suffices for our purposes).

. The reason we can only prove tautolcgies, or tautological consequences of the global
hypotheses, is the following: all rules preserve truth. That is, if we apply a rule
of inference to true formulas, we get true formulas. Hence, we can only prove true
statements. In particular, before you try to prove something, I recommend you check
that it is either a tautology or a valid argument.




