
11 Estimating Arithmetic

Numeracy

Most children enjoy their first encounters with arithmetic. Mastering the basic operations 
is “empowering” – it gives one power over numbers. After years of practicing these operations 
over and over – adding long columns of numbers or multiplying long strings of digits – it 
becomes tedious. Students come to associate mathematics with boring drill. Exploration of 
mathematical concepts bogs down because of the need to perform calculations. Calculators 
and computers permit one to study mathematical ideas and free one from long, error-prone 
computations. That’s good. 

On the other hand, the use of calculators often leads people to be alienated from numbers. 
They can get numeric results quickly, but they often fail to understand what the numbers 
mean. When a student takes out a calculator to figure out what 12% of 200 is, or to figure 
what percentage 20 is of 1000, she demonstrates innumeracy. That’s bad. 

To divide one integer by another integer and report the result to eight or ten decimal 
places is innumerate and ignorant. Such precision is utterly bogus and meaningless, but the 
calculator or computer gives results to that precision. People learn to trust the calculator, even 
when it seems to tell them that 42 is 0.251497005988% or 2.51497005988% of 167. Numerate 
people would notice that these answers are obviously wrong. 

Numerate people know how to do manual calculations, and how to simplify the task of 
manual calculation. They should also know how to use calculators, without losing the “hands-
on” familiarity and “feel” for numbers that comes from intimate acquaintance. To be numerate 
requires that one have a “vocabulary” of numbers against which one can compare other num-
bers that one encounters. One should know (approximately) the population of one’s city, one’s 
province or state, one’s country, and the world. One should have a bunch of distances (how 
wide is North America? how far away is Europe? the moon? the sun? the nearest star?). Sizes 
of commonly-met things (cars, bricks, books, packages of 500 sheets of paper, your hand, 
your height, the height of one storey of a building) are useful for comparisons. 

One should exercise this vocabulary frequently. When driving, estimate (mentally 
calculate) the distance traveled, the average speed, the distance remaining to the destination. 
While shopping, practice keeping a running total in one’s head. Exercising one’s “arithmetic 
muscles” leads to a familiar ease with numbers, just as frequent reading and talk improve 
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one’s ability to use one’s language. Edward MacNeal1 suggests that you “don’t count any-
thing, look up, or ask for any figure without estimating it first.” 

Most important of all, don’t skip over numerical claims when reading an article or book. 
Think about the numbers that are presented. Consider carefully what they mean. Are they 
credible? Are they relevant to the author’s point? Learn to judge the reasonableness of the 
numbers you read. 

John Allen Paulos makes a convincing case for the claim that innumeracy leads to 
gullibility and makes us prey to demagogues and all kinds of moronic pseudo-science like 
“biorhythms” and astrology. Innumeracy makes it difficult to distinguish between science and 
nonsense. Tabloid claims are ranked higher than the measured opinions of scientists because 
the innumerate can understand the tabloids, while science requires more thinking. 

Inability to think clearly about probabilities leads to irrational fears and prejudices that 
can interfere with our lives. Without the ability to evaluate probability, any sort of coincidence 
may seem meaningful. Statistical reports and the results of polls make up a huge proportion of 
our news, but most citizens are incapable of making intelligent judgments about what they 
mean. 

Up to this point, this book has emphasized logic and mathematics as abstract sciences. 
They are products of human imagination and creativity, comparable in beauty and significance 
to anything humans have produced. 

This last section is concerned with mathematics as a practical ability without which 
nobody should be considered educated. 

Using Numbers Intelligently 

How many numbers are there? “Infinitely many” is correct, but it is not a good answer. 
First, it is vague. As we have seen, there are several “orders” of infinity. There are infinitely 
many natural numbers, and there are infinitely many real numbers. However, there are more 
real numbers between 0.000000… and 0.999999… than there are natural numbers altogether. 
“Infinitely many” tells only part of the story. 

Second, the “correct” answer fails to recognize that the question is ambiguous. The 
answer to “How many numbers are there?” depends on the purpose of the numbers. 

Everyday non-technical communication does not use infinitely many numbers. As 
Edmund C. Berkeley2 explains, non-technical communication uses number-words. “Familiar 
numbers” are those that can be expressed using no more than two number-words. The first 

                                                     
1  Edward MacNeal, Mathsemantics: Making Numbers Make Sense (New York: Viking Penguin, 1994). 
2  Edmund C. Berkeley, A Guide to Mathematics for the Intelligent Nonmathematician, (New York: Simon and 

Schuster, 1966). 
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number-words are the common numerical words that count units. Berkeley lists “14 such 
words expressing 12 numerical ideas: ‘one,’ ‘a,’ ‘two,’ ‘three,’ ‘four,’ ‘five,’ ‘six,’ ‘seven,’ 
‘eight,’ ‘nine,’ ‘ten,’ ‘eleven,’ ‘twelve,’ ‘dozen.’” To some of the words from this list we 
append the suffixes “-teen” or “-ty” (to get words like “seventeen” and “twenty”) or words 
from the list of powers of ten – “hundred,” “thousand,” “million.” “Billion”3 is becoming a 
“familiar word” because of concerns with national debts and population. Then we have words 
like “half,” “third,” “quarter” and the suffix “-th” (with which we make “fifth,” “tenth,” 
“hundredth,” etc.). And we have a bunch of words for 0 (“none,” “zero,” “naught,” “no,” etc.). 
When we put more than two of these terms together to express a number it ceases to be 
ordinary discourse. It becomes technical. Non-technical numbers include just those that can 
be made with pairs of terms from these choices. 

Using just the words for numbers from 1 to 12 combined with the powers of ten (“mil-
lionth,” “thousandth,” “hundredth,” “tenth,” “-teen,” “hundreds,” “thousands,” “millions,” and 
“billions” – 9 terms in all) we can make only 12  9 = 108 two-word numbers. With the 12 
non-combined terms we have 120 numbers. If we include the indefinite numbers (“some,” “a 
few,” “many” or the numbers we get by adding the suffix “-s” as in “millions,” “tenths”) we 
have about 150 different numbers in non-technical usage. Slightly-technical usage using three 
terms (as “forty-seven,” made from “four”+”-ty”+”seven”) increases this to a mere 1500 
numbers. Compared with some cultures which use only three numbers (“one,” “two,” and 
“many”), our smallish collection is very powerful and expressive. But there are only about 
1500 numbers in ordinary non-technical use. 

How about technical usage? How many numbers are there in science?

In empirical science, the only numbers that are meaningful are those that can result from 
measurement. This depends on how precisely we can measure things with the best instruments 
we have. The greatest precision I know of is measurement to eight significant decimal digits. 
That is, we can measure precisely a value like 1.2345678 (or 12,345,678), but we cannot 
distinguish (measure any difference between) 1.23456775 and 1.23456784 (or between 
12,345,677.5 and 12,345,678.4). In science, if we cannot measure a difference between two 
numbers, they are the same number. There are only 100,000,000 (108) different strings of 
eight digits. 

Scientists express numbers as a coefficient times a power of ten. One hundred would be 
expressed as 1.0  102 or as 1.0E2. A million would be 1.0  106. One one-thousandth 
(1/1000) would be 1.0  10-3. Assuming that no more than eight digits of precision are 
meaningful, there are only 108 numbers we can use for coefficients. 

The smallest number in science is about 10-40, which is 1 divided by 1 followed by 40 
zeros. The largest number is about 10120, or 1 followed by 120 zeros. The range from 10-40 to 
10120 requires 161 powers of ten. Each of them can be used with any of the 108 coefficients, so 
there are 161  108 (more than 16 billion) positive numbers in science, and the same 

                                                     
3  An American billion is one thousand million (109). A British billion is one million million (1012).
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number of negative numbers. 32 billion is a lot of numbers, but it is far from infinitely 
many. 

Data for Estimating 
Estimating means forming an approximate idea of a quantity (distance, size, cost, count) 

without actually measuring or counting. 

How far is Montreal from Toronto? The speed limit on the highway to Toronto is 100 
km/hr. I drive slightly faster than that, but I stop at least once. I estimate my average speed at 
about 90 km./hr. My usual trip time is between five and six hours. I estimate the distance as 
something between 90  5  450 km. and 90  6  540 km., and call it about 500 km. A 
road map says it’s 542 km., so 500 km. is not a bad estimate. I made another estimate by 
measuring the straight-line distance on the map and got 510 km. It’s somewhere in that 
ballpark, and “ballpark figures” are what one aims at in simple estimating. 

The two processes in estimating a number are: (1) gather some data (observations, 
experiences, facts, statistics, reasonable assumptions, etc.) to base the estimate on; (2) use 
logic and arithmetic to operate on those data to arrive at the number. 

Gathering data is much easier if you already have a good numerical vocabulary at your 
fingertips. If you don’t have relevant data in your memory, you’ll have to do some research. 
Two points should be made about data-gathering. First, don’t do more research than the 
estimate is worth. If you’re going to do a lot of intensive research, you might as well look up 
or calculate the number instead of making an estimate. Second, your estimate will never be 
more precise than the least precise of your data-numbers. Both my time (5-6 hours) and speed 
(~90 km./hr.) were accurate to only one figure. That is, my time could be anywhere between 
five and six hours and the average speed could be anywhere between 85 and 95. So my 
estimate should be expressed with no more than one significant figure (500 km.). To express 
my estimate as 450 or 540 km. would be misleading. 

Keep your eyes and ears open to pick up data and facts for estimating. Notice that a long 
drive at what seems to be a steady 110 km./hr. is probably at least 10% slower. How many 
weeks per year does a person usually work? How many pages are there in an average-size 
book? How many words on an average printed page? How many lines per inch does a 
computer printer normally print? How many characters are there on an average line of type? 

At least some of the following data are worth remembering: 
Montreal to Toronto 540 km. (by road) 
Halifax to Vancouver 5,500 km. (by road) 
New York to Los Angeles 4,500 km. (by road) 
diameter of the earth 13,000 km. 
circumference of Earth 40,000 km. 
earth to moon 390,000 km. 
earth to sun 150 million km. 
sun to Pluto 6 billion (109) km. 
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speed of light 300,000 km./sec. 
1 light-year 9.5 trillion (1012) km. 
sun to nearest star 4.3 light-years 
500 sheets of paper 3 cm. thick 

A minimally-numerate person (or anyone who presumes to call himself or herself 
“educated”) should be familiar with the relation between the most-common fractions and their 
representation as percentages and as decimal numbers. “Per” is a Latin word meaning “for 
each” (as in “one per person”). Centum means “hundred.” So 1 per cent means 1 out of each 
hundred. One should be able to convert any fraction of a hundred instantly into a percentage – 
24 out of 100 is 24% – right away. One should know that 1/2 is 50% or 0.5; 1/4 is 25% or 
0.25; 3/4 is 75% or 0.75; 1/8 is 12.5% or 0.125; 1/3 is 33%4 or ~0.33; 2/3 is 67%; 1/5 is 
20%; 2/5 is 40%; 3/5 is 60%; 4/5 is 80%; 1/6 is 17%; 1/7 is 14%; 1/9 is 11%; 1/10 is 
10%; and so on. One should be aware that there is a nice relationship so that 1/9 is 11% and 
1/11 is 9%; 1/5 is 20% and 1/20 is 5%. You should know that a 200% increase results in a 
number that is three times as big as the original number, and that three times as big means 
300% of the original number. Know that increasing a price by 50% and then lowering the 
resulting price by 50% will not return you to the same number. 

You should also have (or have ready access to) common formulas for calculating 
volumes and areas and converting units (e.g., metric to English) and so on. 

Significant Figures and Orders of Magnitude 
Scientific notation, using a coefficient and an exponent (power of ten) is useful for 

recording very small and very large numbers economically. 4 1020 is a lot easier to write than 
400,000,000,000,000,000,000.

Another advantage of scientific notation is that one can indicate very clearly just how 
precise a number is. When you look at a number like 4 followed by 20 zeroes, it is not clear 
whether that number is precise down to the last digit or not. But 4 1020 announces its 
precision explicitly; the number is somewhere between 3.5 1020 and 4.5 1020. If a scientist 
wrote 4.0 1020 she would be announcing that the number was between 3.95 1020 and 
4.05 1020. It is precise to two digits. 4.00 1020 is precise to three digits of accuracy, so we 
know it is between 3.995 1020 and 4.005 1020. And so on. 

The coefficient of a number written in scientific notation contains the number’s signifi-
cant figures. The power of ten indicates the number’s order of magnitude. A number is of a 
higher order of magnitude than another when its magnitude is a higher power of ten. So 
when someone says that one number is “of a different order of magnitude” than another, he is 
saying that it is at least 10 times as large or small as the other. Or he's just ignorant. 

                                                     
4  The “ ” symbol here means “approximately.” 
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Simply Useful Arithmetic 
Ordinary arithmetic addition is boring and error-prone when the numbers contain many 

digits. Use a calculator or computer to do ordinary arithmetic addition of multi-digit numbers 
or long lists of numbers. However, even adding with a calculator can produce errors. One 
should estimate the sum of the numbers one adds, to check on the result. Use the estimate to 
verify that the calculated sum is reasonable (“in the ball-park”). 

In estimating arithmetic, we simplify the numbers and use shortcuts to get an approxi-
mate answer. A couple of examples will illustrate different methods. 

Suppose we are adding the following prices:
 $2.49  $0.84  $5.22  $3.16  $1.89 
 $4.69  $1.99  $4.71  $5.45  $4.95 
 $5.49  $5.50  $3.62  $3.16  $1.50 
 $4.87  $5.16  $1.36  $1.07  $4.43 
The average price on the list seems to be about $4.00. There are 20 items, so we’d expect the 
total to be in the neighborhood of 4 20 or about $80. To estimate this total more accurately, 
round off the amounts to the nearest dollar, giving 2 1 5 3 2 5 2 5 5
5 5 6 4 3 2 5 5 1 1 4. Adding these single-digit numbers is almost as easy as 
counting, and gives a sum of $71. The exact sum is $71.55. 

As a second example, add this list of large numbers: 
 1,352,795 3,562,979 2,029,969 3,667,411 3,121,915 
 486,190 519,808 1,814,640 107,178 1,679,702 
 3,053,271 1,640,387 674,252 3,176,745 499,858 
 555,131 811,031 448,264 1,204,260 181,893 
There are 20 numbers, and the average seems to be somewhere around one million. A first 
estimate would be approximately 20 million. A second, more-careful estimate would be to 
round the numbers off to the nearest million and add. The sum (going from left to right on 
each row) would be 1+4+2+4+3+0+1+2+0+2+3+2+1+3+0+1+1+0+1+0. The answer we get is 
31 million. Another way is to add just the millions digits 1+3+2+3+3+ 1+1+3+1+3+1, getting 
22 millions, and then add the number of times that the hundred-thousands digit (the sixth digit 
from the right) is greater than 4 (9 times). 22+9 gives 31 million. The exact answer is 
30,587,679. 31 million is very close than we would ordinarily expect. 20 million is not very 
close, because our estimate of the average size of the numbers was not good. 

Two methods of estimating a sum have been presented. The first (less reliable, unless 
you’re good at estimating the average of a list of numbers) is: 

1. estimate the average item to be added, A;
2. count the number of items to be added, N;
3. take A times N as an estimate of the sum. 

This turns a long addition into a short multiplication. 

The second (more reliable) method is: 
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1. add the most significant digits only (making sure to use the most-significant figure 
of the largest number, and only adding digits of the same significance from every 
number), obtaining S;

2. count the number of times the digit in the same place as the second-most-significant 
digit of the larger number is greater than 4, obtaining H;

3. then S plus H is an estimate of the sum. 

As an example of the importance of using the most-significant digit of the largest number 
and using the same digit for all the numbers, consider the sum of 7,618 plus 21,143,211 plus 
562 plus 3,224. Using only the most-significant digit of the largest number, our estimate 
would be 20 million. The three smaller numbers have no effect on the estimate. This may be 
clearer when we re-write the numbers in scientific notation so that we emphasize the orders of 
magnitude of the four numbers. In scientific notation they are 7.618 103, 2.1143211 107,
5.62 102, and 3.224 103. 107 is four orders of magnitude greater than 103; it is 104 (10,000) 
times as big. 

A drop of water contains less than 0.5 cc. of water, so a drop of water is less than 1/104 of 
the volume of a 5-liter bucket. So a number that is four orders of magnitude smaller than 
another is literally “a drop in the bucket.” 

It is sometimes easier to estimate a sum if you re-write the numbers in scientific notation. 
Start with the largest number, and skip any number that is two or more orders of magnitude 
smaller. For example, if the biggest number is two million (2 106), you’d ignore any number 
smaller than 1 104.

Be careful, however, if the list contains one or two really big numbers and many small 
numbers. If you were estimating the total of all the salaries of all the employees of a company, 
where the CEO makes 5 million per year, and a hundred employees make salaries between 
$20,000 and $50,000, you could not leave out the other employees’ salaries, even though they 
are two orders of magnitude less than the CEO’s. In this case, a better procedure would be to 
estimate the sum of the other employees’ salaries using one of our methods (here, the A times 
N method would probably be adequate). In this case, the number might be somewhere around 
100 3 104 or 1.0 102 3 104 = 3 106. Added to the CEO’s 5 106, we get 8 106, or 8 
million dollars. If we had just ignored the other salaries, we’d have estimated the sum as only 
5 106 – a pretty bad estimate. 

How bad was that estimate? We express the imprecision of an estimate as a percentage. 
We find out how far our estimate was off (in the last case, it would have been off by 3 106),
and divide that by the actual value 8 106, giving 3/8 or about 38%. We were about 38% off in 
our estimate. There was an error of ~38%. 

Subtraction usually just involves two operands rather than a list. The main clue in 
estimating-arithmetic subtraction is to pay close attention to the order of magnitude of the 
numbers. When you subtract 30 from 4000, the estimated answer is 4000. In subtraction, 
precision is important if the operands are approximately equal. For example, 4340 is about 
4000 for estimating purposes, as is 3720. But 4340 3720 is not 4000 4000 = 0. 0 would be a 
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very bad estimate of the difference. To one digit of precision, the correct estimate of the 
difference is 600.

Multiplication is the most important operation in estimating arithmetic. The first thing to 
remember is that your answer should never have more digits of precision than the numbers 
you base it on. If the operands have two significant digits, then your answer must have no 
more than two significant digits. The second thing is to convert all your multiplicands into 
scientific notation with no more than two digits of precision, one digit before the decimal 
point and one (at most) after. 

As an example, I estimate how many cigarettes I have smoked. I have been smoking for 
over 40 years. That’s 4.0 10. Each year contains 365 days. Call it 370 or 3.7 102 days per 
year. The total number of days I have smoked is about 4.0 3.7 10 102 or 15 103

1.5 104 days. At different times in my life I have smoked more (about 60-75 cigarettes per 
day) or less (about 20-30 per day). Call it about 40 per day on average or 4.0 10. That’s 
4.0 1.5 10 104, or about 6.0 105 cigarettes. We won’t leave two digits of precision in the 
answer, because our data estimates weren’t very precise. It’s about 6 105 cigarettes. 600,000 
cigarettes! Notice that we add the powers of 10 when we multiply. That is, 10 104  101+4

105, and 102 103 10  102+3+1  106, and so on. 

To multiply by 25, you can multiply by 100 (102) and divide by 4. To multiply by 50, 
multiply by 100 and divide by 2. To multiply by 5, multiply by 10 and divide by 2. To 
multiply by 17, multiply by 100 and divide by 6. 

Division should also be kept to two digits of precision. Again, translate into scientific 
notation. Dividing powers of ten uses subtraction. For example, to estimate how much those 
600,000 cigarettes cost, we could estimate that, at 20 cigarettes per pack, it represents 
6 105/2 10 = 6/2  105/10 = 3 104 packages of 20 cigarettes. When I started smoking, a 
pack cost about $0.50. Now it’s about $6.00. The average cost was probably about $2.00 per 
pack. So the cost was about 2 3 104 = 6 104 = about $60,000. 

Another important trick in estimating arithmetic involving division is to write out all the 
factors of the dividend (before multiplying) above a horizontal line, and all the factors of the 
divisor (before multiplying) below the line, and “cancel out” similar factors. This works 
especially well in eliminating powers of ten. 

Another trick: If you have to divide by 25, it is easier to multiply by 4 and divide by 100. 
To divide by 50, multiply by 2 and divide by 100. And so on. 

Examples
1. How many seconds are there in a year? A year is about 365.25 days. A day is 24 hours. 

An hour is 60 minutes. A minute is 60 seconds. So the answer is 365.25 24 60 60.
Say 4 102 2 10 6 10 6 10  4 2 6 6 105  8 40 105  320 105

3.2 107 (32 million seconds in a year). My calculator gives 31557600, or 3.16 107. Not 
bad, especially when you consider that I rounded off 365.25 to 400, and 24 to 20, and 
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6 6 (36) to 40. The error of my estimate was 3.2 107  3.16 107  .04 107  4 105.
The percentage error was .04 107 / 3.16 107. Canceling the 107 from the numerator and 
denominator, we get .04/3.16, or about 4 in 300, or about 1.3%. 

2. How long is a million seconds? A million seconds is 1 106 seconds. Divide that by 60 

(seconds in a minute) to get 1 106 / 6 10  1 105 / 6. This is about 
1
6 105. Remem-

bering that 1/6 is about 0.17, or 1.7 10-1 we get 1.7 10-1 105  1.7 104. There are 
about 17,000 minutes in a million seconds. There are 60 minutes in an hour, so 1.7 104

minutes is (1.7 104)/6 10  0.3 103  3 102 or 300 hours. Since there are 24 hours in 
a day, this is about 12 (rounding 24 off to 25 hours/day) days. The calculated answer is 
11.57 days. Another way to calculate a million seconds is to use the answer to the 
previous question to discover that a year is about 32 million seconds, so a million 
seconds is about 1/32 of a year. 32 goes into 365 somewhere between 11 and 12 times. 

3. How long is a billion seconds? An American billion is a thousand million. A million 
seconds is 1.16 10 days, so a billion would be 1.16 10 103  1.16 104 days. Since a 
year is about 4 102 days, this is about (1 104)/4 102  (1 102)/4  0.25 102 or 25 
years. The calculator gives 31.69 years. Think about these last two numbers. We all have 
a “feel” for how long a second is. A million seconds is 12 days! But look how much 
more a billion is than a (mere) million! A billion seconds is almost 32 years!

 If a package of 500 sheets of printer paper is about 3 cm. thick, then 1000 sheets is about 
6 cm. A million is a thousand thousand sheets, 6,000 cm. thick. That’s 60 meters, or 
about the height of a 20-storey building. A billion is a thousand million, so a billion 
sheets would be 60,000 meters or 60 km. high. 

4. If you shrink the Earth to the size of a basketball (about 30 cm. diameter), how far above 
the surface of the oceans would Mount Everest stick up? Everest’s peak is about 9 km. 
above sea level. Earth’s diameter is about 13,000 km. So Everest would stick up about 
9 30
13000

2.7 102

1.3 104  2 10-2 cm., or 0.2 millimeters. It would be so small you would 

have trouble finding it. If the Earth were the size of a billiard ball, Everest would be too 
small to count as an imperfection. 

5. Recently the world population was about five billion people. If we lined everybody up as 
if they were queued to go through a turnstile (with two people per meter), the length of 
the line would be 0.5 5 109  2.5 109 meters  2.5 109/1 103  2.5 106 km. The 
distance to the moon is about 3.9 105 km. (2.5 106)/(3.9 105)  6. We could make 6 
lines of people that reached all the way to the moon. That’s a lot of people! If we put 
every man, woman, and child into military formation one meter apart (so each person 
took up one square meter), we could put 1000 1000 = one million people per square 
kilometer. The whole five billion would occupy 5 109 / 1 106  5 103  5000 square 
kilometers. They would all fit into Trinidad. 
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Internal Consistency 
When you read or hear a number, think about whether the number makes sense in that 

context.

The Bible says that the Great Flood covered the highest hills as the result of forty days 
and nights of rain. Does that make sense? Mount Ararat was one of the hills that were covered. 
The top of Ararat is about 5200 meters above average (mean) sea level. So 5200 meters of 
water would have to fall in 40 24  960 hours. Call it 5000 meters in 1000 hours. That’s five 
meters of water per hour. Too much to be possible. Didn't happen. 

When science (or other) fiction stories describe gigantic people or insects, think about the 
numbers. If a woman were 15 meters tall (the “fifty-foot woman”), she would be about ten 
times as tall as a normal human woman. Her bones would be about ten times as thick. The 
cross-sectional area of her thighbones would be about 10 10  100 times as great, so they 
could carry about 100 times as much weight.5 But the woman’s volume (length
width height) would be 1000 times as great, as would her weight. Her bones would be ten 
times as likely to break. Her muscles might be 100 times as strong, but they’d have to move 
1000 times as much mass. 

An ant that was two meters long (as in the movie Them) is about 200 times as long as a 
large ordinary ant. Its legs would be 200 times as thick. It would weigh 40,000 times as much. 
Its legs couldn’t carry it, and its own weight would cause it to squish. 

John Allen Paulos6 gives a number of examples from newspapers. He quotes Khalid 
Abdul Muhammad as saying that 600 million African-Americans died because of slavery. Is 
this consistent with the fact that the total number of slaves brought to the New World was 
between 8 and 15 million? Louis Farrakhan has said that Jews owned 75 percent of African 
slaves. At the beginning of the Civil War, the 20,000 southern Jews were only 0.22% of the 
southern white population of 9 million. Of the 1.9 million slaveholders, the 5,000 Jewish 
slaveholders were only 0.26 percent. It is highly unlikely that the average Jewish slaveholder 
had 300 times as many slaves as the average non-Jewish slaveholder, but that’s what these 
numbers would entail. 

Edward MacNeal7 gives an example of a report in the February, 1989 issue of Soviet Life,
saying that 2,700 Soviet couples get married every year. The number looked wrong to him, as 
it should have looked wrong to you. There were more Soviets than Americans, and there were 
250 million Americans. Assuming an average lifetime of about 70 years, one could estimate 
that about 1/70 of the population would reach marriageable age each year. If there were 280 
million Soviets, 1/70 of the population would be four million people reaching marriageable 
age. That’s about two million marriageable couples. Is it likely that less than 3,000 couples 

                                                     
5  Not really, because a thighbone acts like a column and a column ten times as tall will bend and break more 

easily, even if its diameter is ten times as great. 
6  John Allen Paulos, A Mathematician Reads the Newspaper (New York: Basic Books, 1995). 
7  Edward MacNeal, Mathsemantics: Making Numbers Make Sense (New York: Viking Penguin, 1994). 
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(about three people out of every two thousand reaching marriageable age) got married? One 
could reasonably assume that the correct figure was 1000 times as large as reported, or about 
2,700,000 people (1,350,000 couples). 

Adding percentages causes really silly bloopers. A.K. Dewdney in Scientific American
magazine cited a newspaper headline that claimed “Seven Italians Out of Ten Have 
Committed Adultery.” The survey on which the headline was based had found that 49% of 
Italian men and 21% of Italian women surveyed confessed to extramarital affairs. If the 
number of women and men are about equal, and if the survey was representative of the whole 
population, then 49% of half the population (men) and 21% of the other half committed 
adultery, so 35% of the whole population committed adultery. The paper added the two 
percentages and got a number that was twice as high as it should have been. 

Thinking carefully about numbers in context can improve your understanding of a 
complex situation. Very large numbers can leave one numb to the reality they describe. Get 
other numbers to compare with. Given a number like the amount of the Canadian national 
debt, turn it into a more-meaningful number by estimating how much each Canadian would 
owe if the debt were transferred to individuals, or how many BMWs one could buy with that 
much money. 

A large (and growing) number of people dies of AIDS each year. To get some 
perspective, compare that number with the number of children who die of respiratory 
infections (eight times as many per year) or diarrhea (six times as many). 

Numbers that get reported more frequently may seem more important. Deaths due to 
cocaine or heroin make news. About 8,000 people per year die due to cocaine, and about 
6,000 due to heroin. However, tobacco is blamed for 400,000 deaths each year, and alcohol 
for 90,000. What is the real drug problem? 

A commuter airplane crash makes news, but the number who die each year from 
smoking-related illness is the equivalent of three fully-loaded jumbo jets crashing every day of 
the year. The attention we give airplane crashes and heroin fatalities is disproportionate to 
their real significance. 

Watch out for numbers that seem to be too “round” and numbers that seem to be too 
precise. Paulos reports a recipe which, after giving very approximate instructions and 
quantities of ingredients, states that the dish contains “761 calories, 428 milligrams of sodium, 
and 22.6 grams of fat per serving.” Some parents worry when their children have a 
temperature of 99 Fahrenheit degrees, because “normal” is 98.6 degrees. They don’t realize 
that “normal” body temperature can vary quite a lot, and the spuriously-precise 98.6ºF. figure 
was calculated from an approximate Celsius temperature of 37ºC. 37ºC. is somewhere 
between 36.5 and 37.5 degrees Celsius, or between 97.7ºF. and 99.5ºF. 22.6 grams of fat and 
98.6 Fahrenheit degrees are meaninglessly (spuriously) precise. 
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Theories of Probability 
The theory of probability is the theory that aims to provide principles for 

estimating the likelihood that something will happen or has happened. 

"Probability" is only meaningful where (1) it is impossible or impractically diffi-
cult to know or infer exactly what will happen (or has happened), and (2) we believe 
that the outcome is at least partly random. The concept of randomness is fundamental 
to probability and statistics. Deterministic phenomena1 are not random. If one knows 
their causes, one can predict them with certainty, rather than merely probabilistically. 

Some phenomena (e.g., the emission of a particle by a radioactive atom) are 
random. Other phenomena are parts of complex interacting systems where all of the 
interactions are the result of the operation of simple causal laws, but the huge number 
and complexity of the interactions make deterministic prediction impossible. We treat 
such systems as if their behaviour were random. 

Randomness is more than just unpredictability. There must be a long-term
pattern or regularity in the phenomena. If coins preferred coming up heads and 
occasionally (but irregularly) came up heads by choice, coin flipping would not be 
random. Although it would be unpredictable, there would be no long-term pattern. 

When we use the word "random" in probability theory, we mean: 
1. The exact outcome is not predictable in advance of its occurrence.
2. A predictable long-term pattern of outcomes exists. We can predict the 

relative frequencies of the different outcomes in a series of many trials.

Probability is conceived in several mutually-incompatible ways. Some of the 
notions of "probability" are (1) probability as believability, (2) the a priori notion of 
probability (mathematical probability), and (3) probability as relative frequency. 

1  "Deterministic phenomena" are events where science has discovered the laws by which we can predict what 
will happen or retrodict what has happened when we know the conditions that prevail at some other time. 
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1. Believability 

1(a) Personal or subjective probability 
People estimate probabilities in an informal way that reflects their personal judg-

ment about the likelihood of an event. Personal probabilities are more-or-less 
subjective. They may be based on some kind of reasoning and evidence, but another 
person who is aware of all the same reasons and evidence might appraise the 
probabilities quite differently. Even when they are expressed numerically, they are 
usually not the result of formal mathematical reasoning, and are not vulnerable to 
mathematical criticism. In response to such criticism, a believer can say, "That's just 
the way I see it." 

1(b) Credibility of an hypothesis (based on experimental evidence) 
When we prove a conjecture, as in the formal sciences, we show that there cannot

be any counterexample. In empirical science we try to confirm theories by experimen-
tation. After a conjecture is proposed, scientists deduce consequences of the 
conjecture and conduct tests to discover if the predicted consequences happen. 
Conjectures that have withstood more tests and more different kinds of tests are 
considered more probable. Yet some future experiment could disconfirm any theory, 
no matter how highly confirmed by previous observations. Theories in empirical 
science are never proved. Just one counterexample can falsify any hypothesis. 

There are many stipulations and restrictions on statements about the probability of 
scientific theories or laws. Whether one conjecture is "more probable" than another 
depends on more than just the number and kinds of tests to which they have been 
exposed. The claim that one hypothesis is more probable than another is not usually 
quantifiable (i.e., scientists cannot put a numeric value on the respective probabilities), 
and not usually subject to any kind of formal mathematical or logical treatment. 

2. A Priori Probability 
In many situations, (1) any of a number of outcomes is possible and (2) there is no 

objective evidence that any of the possible outcomes will be favoured over any of the 
others. In such situations, take all of the outcomes as equally probable (equi-
probable). If we assume that a die is symmetrical, we expect that any of the six 
possible outcomes is equally probable. If the two sides of a coin are symmetrical and 
if the person flipping the coin cannot make one side come up in preference to the 
other, we say that it is equally probable that either side will face up when the coin is 
flipped.

The a priori interpretation of probability specifies probabilities in terms of the 
behaviour of ideal coins, dice, decks of cards, etc., where none of the possible 
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outcomes is favoured. Mathematical probability (discussed below) is based on a
priori ideal models. 

3. Relative Frequency 
The belief that heads is as likely as tails can be tested empirically. Just flip a coin 

over and over again, counting the number of heads and the number of tails. In 
Statistics: Concepts and Controversies2, D.S. Moore reports that, around 1900, Karl 
Pearson (an English statistician) spun a coin 24,000 times, getting heads 12,012 times. 
The relative-frequency interpretation of probability uses such tests to determine the 
probability of an outcome. From Pearson's test, we could infer that it is slightly more 
probable that a flipped coin will come up heads than that it will show tails. 

The relative-frequency interpretation defines "probability" as: 

If, in a long sequence of repetitions of a random phenomenon, the relative 
frequency of an outcome approaches a fixed number, that number is the 

probability of the outcome. A probability is always a number between 0 (the 
outcome never occurs) and 1 (the outcome always occurs).

The frequency of some thing or event is the number of occurrences of that thing 
or event. It is a simple count. The frequency of red jellybeans in a jar of jellybeans is 
the number of red jellybeans. Relative frequency is a proportion or ratio. The 
relative frequency of red jellybeans is the percentage or fraction of the jellybeans that 
are red. 

Suppose we want to know the probability that heads will come up when we flip a 
coin. We flip coins thousands of times. After a certain number of tosses, we write 
down the number of heads, and then we continue. We might make a table like this: 

Number of tosses (n) 10 20 50 100 200 500 1000 2000 5000 10000
Number of heads (m) 7 11 24 43 86 228 491 977 2495 4978
Relative frequency (m/n) 0.7 0.55 0.48 0.43 0.430 0.456 0.491 0.4885 0.4990 0.4978

We see that seven out of the first 10 flips were heads. The frequency of heads 
was 7. The relative frequency was 7/10 (0.7 or 70%). After 20 tosses, the relative 
frequency was 0.55 (55%) heads. As we flipped the coin more and more times, the 
relative frequency got closer and closer to 50%. That is what the definition of 
"probability" means when it says that the relative frequency of an outcome 
"approaches a fixed number." In the long run, the relative frequency of heads seems to 
be approaching 0.500000…. 

The somewhat paradoxical nature of our definition of "random" is illustrated in 
this table. It is impossible to predict the particular outcome of one flip of a fair coin. 

2  David S. Moore, Statistics: Concepts and Controversies (3d ed.) (New York: W.H. Freeman, 1991), p. 334. 
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Yet we can predict very accurately and with a high degree of certainty that heads will 
turn up almost exactly half the time in a long sequence of flips. 

Another important point is illustrated in this table. While the relative frequency of 
heads is getting closer and closer to 50%, the frequency (number) of heads is not
getting closer and closer to the number of tails. After 10 flips, the number of heads is 4 
more than the number of tails. After 10,000 flips, there were 44 more tails than heads. 
This illustrates a famous fallacy called the "Law of Averages." Many people who fail 
to understand probability believe that the total number of heads should approach 
closer and closer to half the number of tosses. Based on this misunderstanding of 
probability, they believe that tails is more probable after a long run of heads (as it 
would have to be if the number of heads and tails is to get closer to even). This is 
fallacious. Another example may make this clearer. 
Number of tosses (n) 10 20 50 100 200 500 1000 2000 5000 10000
Number of heads (m) 2 6 29 56 107 258 508 1032 2558 5092
Relative frequency (m/n) 0.2 0.30 0.58 0.56 0.535 0.516 0.508 0.5160 0.5116 0.5092
Number away from half 3 4 4 6 7 8 8 32 58 92

The idea of probability in random phenomena is that relative frequencies display 
regularities in the long run. The "myth of short-run regularity" is another fallacy, 
which proposes that the long-run regularity will reveal itself in the short run as well. 
People who fall for this myth believe that truly random coin flipping should not result 
in sequences like 10 heads in a row. While such a sequence is not very common (i.e., 
such sequences occur with a low relative frequency and therefore a low probability), 
they do occur, even when the coin toss is truly random. I looked for sequences of 
heads and tails in a simulation of flipping a coin 1,000 times. In 10 simulations, there 
was always at least one run of 8 or more heads or tails. There was a run of 15 heads in 
a row in one of the simulations, and 11-in-a-row came up in three of them. 

The usefulness of the relative-frequency interpretation of probability can be seen 
in the classic "taking coloured balls out of a jar" situation. 

Take a large jar containing 1,000 red and white balls. You randomly (i.e., without 
seeing, and without deliberately choosing balls from the top or bottom, etc.) select one 
ball. It's white. You throw the ball back in and shake up the jar, and randomly select 
another ball. It's white again. The relative frequency of white balls in the sample (2 
balls) you've observed is 2/2 = 100%, suggesting that all the balls in the jar (the whole 
population) are white. You would estimate the probability that the next ball will be 
white to be 100% (certainty). To avoid writing "the probability that the next ball will 
be white," we write P(W), and P(R) for the probability of drawing a red ball. You 
draw another ball, and it's white again. Your estimate is unchanged. If the next ball is 
red, you revise your probability estimate. Since the relative frequency of white balls 
was 75%, you should now say that P(W) 75%. One out of four balls was red, so you 
estimate P(R)  25%.
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You could believe that your fourth draw found the only red ball in the jar, and 
estimate that P(W) is still almost 100%. Or you could believe that there is only one 
white ball, and the first three draws were flukes. That's what's wrong with subjective 
probability. What you believe to be probable depends more on your psychological 
makeup than on the evidence. 

One great weakness of the relative-frequency interpretation is that it is no use for 
estimating the probability of a unique event. It only works when there can be "a long 
sequence of repetitions of a random phenomenon." 

Mathematical probability 
Theorists are somewhat divided between the relative frequency and a priori

interpretations. In 1931, the Russian mathematician A.N. Kolmogorov axiomatized
probability theory. He created a postulational system for a "calculus of probabilities." 

When we use a postulational system to describe the "real world," we interpret it 
– we find an isomorphism between the postulational system and the actual systems we 
observe. Reality is taken as a model of the postulational system. We can predict and 
control reality just to the extent that reality models (is isomorphic to) the system. 

Mathematical (postulational or axiomatic) probability theory deals with ideal
coins and dice, etc. To the extent that an actual coin behaves like the ideal coin, the 
mathematics of probability theory predicts its behaviour. If a coin behaves 
significantly differently3 from our predictions, it is not a "fair coin." A fair coin is one 
that behaves as our theory says an ideal coin should. It should give the same results in 
the (very) long run as the ideal coin described by the a priori notion of probability. 

So the postulational theory of probability is like the a priori notion. Its real-world 
interpretation will satisfy the relative-frequency interpretation, as long as the events 
we are dealing with are ideally random. Probabilities determined by the a priori model 
are theoretical probabilities. Relative frequencies give empirical probabilities.

Experiments
I have been using "event" and "outcome" more-or-less interchangeably. 

Probability theory defines these notions by reference to the concept of an "experi-
ment." 

3  What sort of behaviour is significantly different from random is itself a probabilistic concept. We use the 
postulational theory of probability to calculate how much difference is a significant difference. 
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An experiment is defined as any situation in which more than one possible 
outcome can occur. A random experiment4 is one in which the particular outcome 
cannot be predicted in advance, and where we can: 

1) repeat the experiment under essentially unchanged conditions; 
2) describe the set of all possible outcomes of the experiment; and 
3) see a definite pattern as the experiment is repeated many times. 

Outcomes and Sample Space 
The possible outcomes that we must be able to describe form a set of outcomes. 

The set of all possible outcomes of an experiment is called the sample space
for the experiment. 

Each possible outcome is a member of the sample space. Each outcome is also 
said to be an element or a sample point in the sample space. 

The possible outcomes of the experiment of rolling a die once are that the die 
comes to rest with the one on top, or the two, or the three, or the four, or the five, or 
the six. The sample space is the set {1, 2, 3, 4, 5, 6}. It contains six sample points. If 
the experiment is flipping a coin once, the sample space is {H, T} (heads or tails). 

If we flip a coin three times the sample space is {HHH, HHT, HTH, HTT, THH, 
THT, TTH, TTT}. You might want to list the outcomes as {three heads, two heads, one 
head, three tails}. However, HHT is a different outcome from HTH and from THH. We 
may not care about the order of the heads' and tails' occurrence, but they are distinct.  

If an experiment involves flipping a coin once and throwing a die once, then for 
each possible outcome of the coin flip there are six possible outcomes of the die roll. 
If we represent flipping heads and rolling a 4 as H4, and tails and a 6 as T6, the sample 
space is: {H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}. Notice that: 

The size (cardinality) of the sample space can be found using the funda-
mental counting principle. If an experiment consists of several procedures (in 

this case, flipping a coin and tossing a die) and if the procedures are independent
of each other (i.e., the possible outcomes from the second procedure are not 

affected by the outcome of the first procedure), then the number of sample points in 
the sample space is equal to the number of outcomes of the first procedure times
the number of outcomes of the second times the number of outcomes of the third 

… (and so on).

4  Since probability theory concerns only random experiments, we can just refer to them as "experiments." 
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Example: In the case of flipping a coin three times (or flipping three coins), each 
flip is a procedure. There are two possible outcomes of the first procedure (flip): the 
coin can come up heads or tails. For each of these outcomes, there are two possible 
outcomes of the second procedure. This gives us four possible outcomes of the first 
two flips. For each of those four, there are two possible outcomes of the third 
procedure, giving a total of eight possible outcomes resulting from three flips. A tree 
diagram of possible outcomes (like the tree diagram in the discussion of the 
fundamental counting principle) may make this clearer. Draw one. 

Exercise on the Size of the Sample Space 
1. How big is the sample space of an experiment where a coin is flipped 10 times? 
2. How big is the sample space of the experiment of throwing three dice? 
3. How big is the sample space of the experiment of dealing five cards from a 

shuffled 52-card deck?5

4. A license plate uses three letters and three denary digits. If any combination of 
letters and digits is permitted, what is the cardinality of the sample space of 
making license plate registrations by random selection of letters and numbers? 

Events

An event is a non-empty subset of the sample space of an experiment. Thus, an 
event is a set of possible outcomes. 

In the experiment where we flip three coins, getting exactly two heads is an event. 
This event is the subset {HHT, HTH, THH} of the sample space. The event of getting at
least two heads is the subset {HHH, HHT, HTH, THH}. The event of getting no heads is 
{TTT}. When rolling a die, throwing an odd number is the event {1, 3, 5}.

The empty set is a subset of the sample space, but it is not an event. The power set 
contains the empty set. So the cardinality of the set of all possible events in the sample 
space is one less than the cardinality of the power set of the sample space.

If the experiment is throwing one die once, the sample space, as we saw above, is 
the set A  {1, 2, 3, 4, 5, 6}. How many events can one distinguish in this sample 
space? The number of subsets of A is the size of the power set of A, or #(( (A)). The 
cardinality of the power set of a six-element set is 26  64. But one of these subsets is 
the empty set – the "non-event." So the number of subsets of A is 26 1  63.

5  This is tricky, as discussed below. 
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Exercise on Random Events 
1. How many events can one distinguish in the experiment of flipping a coin three 

times? 
2. How many events can one distinguish in the experiment of flipping a coin once 

and throwing a die once? 
3. How many events can one distinguish in the experiment of flipping a coin ten 

times? 

Permutations and Combinations 
In the Exercise on the Size of the Sample Space, above, the third question asked 

the size of the sample space of the experiment of drawing five cards from a shuffled 
52-card deck. You can consider this experiment as consisting of five procedures. The 
first procedure (drawing the first card) will give you any one of the 52 cards. There are 
52 possible outcomes of this procedure. The second procedure can have any of 51 
possible outcomes (there are only 51 cards left). The third has 50 possible outcomes, 
the fourth has 49, and the fifth procedure has 48. By the fundamental counting 
principle, there are 52 51 50 49 48 possible outcomes of the experiment. 

One possible outcome is a hand consisting of K , 4 , 7 , 2 , and 9 . Another 
is 4 , 2 , K , 9 , and 7 . For a card-player, these are the same hand. They are just 
the same five cards in different orders. 

If the deck contained only those five cards, what is the sample space for the 
experiment of drawing five cards? We could get any of the cards as our first card, so 
there are 5 possible outcomes of the first draw, 4 possible outcomes of the second 
draw, and so on. The sample space consists of 5 4 3 2 1  120 possible outcomes. 
But every one of them results in the same five cards. They're "all the same." We're 
counting the number of different permutations of five cards. 

Conjecture: The number of permutations of n distinct things is n!.

Proof: The first element in a permutation of n distinct things can be selected in 
any of n ways (i.e., any of the things can be first in a permutation). For each of these n
beginnings, one can select a second element in (n 1) ways.6 So, (by the fundamental 

6 (n-1) because one element has already been used as the first element. This is called drawing without 
replacement. When a particular card (say 4 ) is drawn or dealt from a deck, there is no chance of getting 
another 4 . On the other hand, when we select numbers and letters for a license plate, we can get an A and 
then another A. The description of the distinction ("drawing with replacement" and "drawing without 
replacement") comes from experiments like drawing coloured balls from a jar. If you throw each ball back in 
(replace it) before you draw the next ball, the draws will be independent of each other. If you keep balls out 
after you've drawn them (drawing without replacement), then the proportions of different colours in the jar 
may be changed, so that the probabilities for the next drawing change. 
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counting principle) there are n (n 1) ways to choose the first two elements. There
will be (n 2) possibilities for each of the n (n 1) ways of choosing two elements, 
resulting in n (n 1) (n 2) ways of choosing three, and so on. There will only be one 
way to choose the last component (all the other things being already used). There will 
be n (n 1) (n 2) … 2 1 possible permutations of n things. But this is just n!. So 
there are n! ways to permute n things.

52 51 50 49 48  311875200 is the number of all the permutations of all the 
possible sets of five cards that could be drawn. Many of these permutations were just 
the same set of five cards drawn in different orders. Each set of five cards could be 
drawn in 5! (120) different ways. So the number of different sets (hands) of five cards, 
if we ignore the order in which they are drawn, is only 311875200/120, or 2,598,960. 

To develop the general mathematical principles for dealing with all this, start by 
looking at a case where we do care about order. Suppose that there are 12 boats in a 
regatta, and that any boat is equally likely to win. How many different possible ways 
can we get a first-, second-, and third-place finisher? Any boat might be first, so there 
are 12 possible first-place outcomes. For each of these possibilities, there are 11 boats 
that could come in second, so there are 12 11 first- and second-place possibilities or 
outcomes. For each of these, there are 10 boats that could place third. By the 
fundamental counting principle, the size of the sample space for this experiment is 
12 11 10 possibilities. Since we care about the difference between first, second, and 
third, all of these outcomes are distinct. 

In mathematics, this problem is described (somewhat confusingly) as finding the 
number of permutations of 12 things taken 3 at a time. In general, we calculate the 
number of permutations of n things taken r at a time, where r is less than or equal to n.

The number of permutations of n distinct objects taken r at a time, where 

r  n, is denoted by nPr or Pn,r and is given by Pn,r
n!

(n r)!.

Going back to the 3-finishers-out-of-12-boats experiment, you can see that 

12 11 10 12 11 10 (9!)
9! , and that 12 11 10 (9!)  12!, so 12 11 10 12!

(12 3)!
n!

(n r)! where n  12 and r  3, confirming the formula in the box, above. 

We proved that the number of permutations of n things taken n at a time (the 

number of permutations of n things) is n!. According to the rule above it is n!
(n n)!.

These two claims are consistent only if (n n)! is equal to 1. That requires that we 
define 0!  1. So that is how we define it. 

How many distinct permutations of the letters of the word "black" are there? 
There are five distinct letters in "black," so there are 5!  120 possible permutations. 
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How many distinct permutations of the letters in "daddy" are there? The difference is 
that three of the letters in "daddy" are not distinct. We can distinguish them by capital-
izing the first "d" and italicizing the third, giving "Daddy," and then there would again 
be 5! permutations. "Daddy," "Daddy," "daDdy," "dadDy," "daDdy," and "dadDy"
would be distinct permutations. But if we ignore the different typography, they are all 
just "daddy." There are six typographical variants because there are 3! or 6 ways of 

permuting the three "d"s. Of the 5! permutations of "daddy," there are only 5!
3!

120
6

20 distinguishably different permutations. The rule can be stated generally as: 

If n objects are made up of n1 of one kind, n2 of a second kind, … nk of a kth kind, 
such that n1 n2 … nk  n, then the number of distinguishable permutations of 

these n objects is given by n!
n1! n2! … nk!.

Example: How many ways can you get exactly three heads in ten flips of a fair 
coin? The answer is the number of permutations of three (indistinguishable) heads and 

seven (indistinguishable) tails, or 10!
3! 7!

10 9 8 7 6 5 4 3 2 1
3 2 1 7 6 5 4 3 2 1 120 ways. The 

sample space for the experiment of ten flips contains 210  1024 outcomes. We could 
guess that the a priori probability of throwing exactly three heads in ten tosses is 
120/1024 (about 0.117 or 11.7%). We'd be right, as we shall see. 

The selection of r objects out of n objects without regard to order is called a 
combination of n objects taken r at a time, and is denoted by nCr or Cn,r or, usually, 

by n
r  (pronounced "n choose r").

When we found the number of permutations of n objects taken r at a time, 
above, we noted that this number includes all the permutations of each set of r objects. 
There are r! permutations of r objects. To find the number of combinations of n
objects taken r at a time, we had to divide the number of permutations by r!. That's 
what we did when we divided the number of ways of getting 5 cards from a 52-card 
deck by the number of permutations (120) of the five cards, above. 

The number of combinations of n distinct objects taken r at a time, where r  n, is 

denoted by n
r  and is given by n

r
nPr
r!

n!
(n r)!

r!
n!

r! (n r)!.

Example: How many different poker hands can be dealt from a 52-card deck? 

The answer is 52
5 , the number of combinations of 52 things taken 5 at a time, and we 
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calculate it as: 52!
5! (52 5)!

52!
5! 47!. 52! and 47! are huge numbers.7 It's easier to 

calculate if you remember how we figured out the formula for Pn,r. 52! 
52 51 50 49 48 47!, so we can cancel 47! from the top and bottom of the previous 

fraction, giving 52 51 50 49 48
5!

52 51 50 49 48
5 4 3 2 1 2598960 possible poker 

hands in a 52-card deck. This is the answer we got on page 174, above. 

Example: How many heart flushes are possible? Here the answer is the number 

of combinations of the 13 hearts in the deck taken 5 at a time, or 13
5

13!
5! (13 5)!

13!
5! 8! 1287 possible heart flushes. By similar calculations, there are 1,287 spade, 

club, and diamond flushes. So the number of possible flushes that can be dealt is 
4 1287, or 5,148. The a priori probability of being dealt a flush is 5148/2598960
0.00198, or about 0.2%. A flush should be dealt about once in 500 hands of poker. 

Example: How many ways can one get a full house? A full house is three cards 
of one rank and two of another (e.g., three Jacks and two sevens). First, calculate the 
number of ways of getting three of some particular rank (e.g., three Jacks). This is the 

number of combinations of four things (Jacks) taken three at a time, which is 4
3

4!
3! (4 3)!

4!
3! 1!

24
6 4. There are thirteen ranks, and we don't care whether the 

three cards are Jacks or some other rank. There are 13 4  52 ways of getting three of 

the four cards of any rank. We can get two (of the four) sevens in 4
2

4!
2! (4 2)!

4!
2! 2!

24
4 6 ways. Since there are 12 ranks remaining after we have our three-of-a-

kind, there are 12 6  72 ways of getting a pair to go with it. By the fundamental 
counting principle, there are 52 72  3744 ways of getting three cards of one rank 
and a pair of another rank. The a priori probability of being dealt a full house is 
3744/2598960  0.00144, or about 0.14%.

Exercise on Permutations and Combinations 
1. In the experiment of picking 4 letters from the English alphabet at random 

without replacement and lining them up in the order in which they were picked,
how many different 4-letter "words" are possible? (This is the number of 
permutations of 26 things taken 4 at a time.) 

7 52! is 80,658,175,170,943,878,571,660,636,856,403,766,975,289,505,440,883,277,824, 000,000,000,000, or 
about 8.0658 1067.
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2. If order doesn't matter in question 1, how many different 4-letter combinations are 
possible? What is the probability that the first 4 letters you pick will (after 
suitable rearrangement) spell either "LOVE" or "HATE" or "MATH"? 

3. How many ways can 3 girls and 4 boys sit in a row if the girls and boys must 
alternate?

4. Calculate the number of distinguishable permutations of the letters in 
"MISSISSIPPI."

5. Three couples have six seats in a row at a ball game. 
(a) In how many ways can the six people be seated in the six seats? 
(b) In how many ways can they be seated if the couples sit together? 
(c) In how many ways can they be seated if all the men are to sit together? 

6. A family of 5 has tickets to a show. (a) In how many different ways can they be 
seated in their 5 reserved seats? (b) In how many ways can they be seated if the 
father has to be in the middle seat? 

7. A student has to write reviews of five books from a reading list of twelve books. 
Calculate the number of ways she can select five books. 

8. A carton of a dozen eggs contains two that are bad. In how many ways can one 
choose three eggs so that 
(a) None of the bad eggs is selected? 
(b) Exactly one bad egg is selected? 

9. The table of numbers below is the beginning of Pascal's triangle. The actual 
table is only the boldface numbers. The italic numbers down the left side just 
number the rows. 

Row 0 1

Row 1 1 1 

2 1 2 1 

3 1 3 3 1 

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

Row 10 1 10 45 120 210 252 210 45 45 10 1

 Each row begins with a 1 and ends with a 1. Every other entry is the sum of the 
nearest two numbers in the previous row. Construct one of your own to see how 
this works. The second number in each row (except row 0) is the row number of 
that row. This triangle of numbers has many curious properties, and there are 
whole books written about it. The interesting thing for us now is this. If we call 
the first entry in a row entry 0 of that row and use the row numbers indicated 
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above, the value of n
r  can be found by looking at entry r of row n. Thus (looking 

at row 4), we see that 4
2  6 and 4

3  4. Going to row 8, we see that 8
2  28,

8
3  56, and 8

4  70. Notice that the triangle is symmetrical, so that 8
3

8
5

and so on. That makes sense, since the number of ways to choose 3 things out of 8 
is the same as the number of ways to choose the 5 that are left out. 

 Use Pascal's triangle (extending it if necessary) to solve the following problems: 
 (a) How many ways can you get 3 heads in 7 tosses of a fair coin? 

(b) A student committee must have three first-year and four second-year 
students. Nine first-year and seven second-year students volunteer. In how many 
ways can the members of the committee be selected from among the volunteers? 

Postulates of Probability Theory 

P1: The probability of any event must be a number between 0 and 1, where 0
indicates impossibility and 1 indicates certainty. 

P2: If we assign a probability to every possible outcome of a random experiment, 
the sum of these probabilities must be 1.

P3: If all outcomes of an experiment have equal probability, then the 
probability of an event E, symbolized by P(E), can be calculated as: 
P(E) (number of outcomes favorable to E) (total number of possible 
outcomes). Since the total number of possible outcomes is the size (cardinality) 
of the sample space S, and that the number of outcomes favourable to E is the 
size of a set of outcomes which is a subset of the sample space, this formula 
becomes: P(E)  #(E)/#(S).

From P1, P2 and P3 we can deduce that the probability that an event E will not
occur (symbolized by P(E )) is given by P(E )  1 P(E).

If the probability of throwing three heads in three flips of a coin is 0.125, then the 
probability of not throwing three heads is 1  0.125  0.875. If A and B are events in 
(i.e., subsets of) a sample space S, then A  B is the event that A or B or both occur, 
and A  B is the event that both A and B occur. We saw in Chapter 7, 
#(A  B)  #(A) #(B) #(A  B). It follows that:

P(A  B) #(A  B)
#(S)

#(A) #(B) #(A  B)
#(S)

#(A)
#(S)

#(B)
#(S)

#(A  B)
#(S)

P(A)  P(B)  P(A  B). This leads us to the addition rule for probabilities.
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P4: (The addition rule for probabilities). If A and B are events8 in a sample 
space S, then P(A  B)  P(A)  P(B)  P(A  B).

Example: Find the probability of throwing at least one head in three flips of a fair 
coin. "Throwing at least one head" means throwing one head or two heads or three 
heads. There are three ways to throw one head (HTT, THT, or TTH), so the probability 
of one head P(1)  3/8  0.375. There are three ways to throw two heads, so P(2)
3/8  0.375. There is only one way to throw three heads, so P(3)  1/8 = 0.125. There 
is no way to throw one and two heads or one and three heads, so P(1  2  3)  0.
So P(1 2 3) P(1) P(2) P(3) 0 0.375 0.375 0.125 0 0.875.

Example: Another way to solve the previous example is to notice that the 
probability of not throwing at least one head is the probability of throwing three tails. 
The probability of three tails is 1/8  0.125. The probability of throwing at least one 
head is 1  0.125  0.875 (using P(E )  1  P(E)).

We didn't need to calculate the number of combinations in the previous examples. 
We just wrote out all the combinations. Consider an example where it would be too 
tedious to write out all the ways of getting r heads in n flips.

Example: Find the probability of throwing 4, 5, or 6 heads in 10 flips of a fair 

coin. There are 10
4

10!
4! 6!

10 9 8 7 6 5 4 3 2 1
4 3 2 1 6 5 4 3 2 1 210 ways to get 4 heads, 

and 10
5

10!
5! 5!

10 9 8 7 6 5 4 3 2 1
 5 4 3 2 1 5 4 3 2 1 252 ways to get 5 heads, and 10

6
10!

6! 4!  210 ways to get 6 heads. P(4  5  6) 0 so, by the addition rule, the 

number of ways of getting 4 or 5 or 6 heads is 210 252 210 0  672. The size of 
the sample space is 210  1024, so the probability of getting 4 or 5 or 6 heads is 
672/1024  0.65625 or about 65.6%.

Example: Find the probability that we get an even number or a number greater 
than 2 in one throw of a fair die. The event of throwing an even number is the set E
2, 4, 6  and the event of throwing a number greater than 2 is A 3, 4, 5, 6 . The 

probability P(E) of throwing an even number is 3/6, and the probability P(A) of
throwing a number greater than 2 is 4/6. If we just added these probabilities, we'd get 
an answer of 7/6. Probabilities must be between 0 and 1 (inclusive), so 7/6 must be 
wrong. Notice that the set E  A is not empty. E  A 4, 6 , and its probability (the 
probability of throwing a number which is both even and greater than 2) is 2/6.
Correct use of the addition rule gives the probability that we get an even number or a 
number greater than 2 (or both) in one throw of a fair die as 3/6 4/6 2/6  5/6. Of 
course, the probability of throwing a number which is not either even or greater than 2 

8 Events, not outcomes! 
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is just the probability of throwing a 1, which is 1/6, so the probability of an even 
number or a number greater than 2 is 1 1/6  5/6.

P5: (The multiplication rule for probabilities) If A and B are independent events,
then the probability that both A and B occur P(A  B)  P(A) P(B).

This postulate of probability theory introduces the concept of independent
events. This concept is fundamental to the notion of conditional probability, which 
causes a lot of confusion. 

The idea of two events being independent is that the occurrence of one of them 
does not alter the probability of the other occurring. Flipping a coin and getting heads 
does not affect the probability of getting heads on the next flip of the same coin. So 
(by Postulate P5) the probability of flipping two heads in a row is the product of the 
probability of flipping a head times the probability of flipping a head, or 0.5 0.5
0.25. This agrees with what we find if we use the cardinality of the event of getting 
two heads divided by the cardinality of the sample space of flipping a coin twice. 

On the other hand, drawing cards from a deck9 does change the probabilities for 
the next card drawn. Once you draw the King of clubs, for example, the probability 
that the next card will be the King of clubs is 0 (won't happen). The probability that 
the next card will be a King is only 3/51, whereas the probability of getting a King as 
the first card is 4/52. The probability that the next card will be a club is 12/51,
whereas if you had not already drawn a club, the probability that the next card will be 
a club is 13/51. Successive draws (without replacement) are not independent. 

The multiplication rule for probabilities is useful for two purposes. If we know (or 
have good reason to believe) that two events are independent, we can use it to 
calculate the probability that both events will happen. On the other hand, we can use 
the multiplication rule to decide whether two events are independent. This second 
use of the rule is important when we are dealing with empirical probabilities (i.e., 
when we use observed relative frequencies to decide on probabilities). 

An example can be taken from the last Quebec sovereignty referendum. About 
50% of the voting population voted "yes" and about 50% voted "no." (The relative 
frequency of "no" is about 0.5.) If we randomly selected a Quebec voter, the 
probability that he or she is a supporter of the "no" would be about 50%. Let's say that 
about 1/7 of Quebec voters are non-francophone. Then the probability that a randomly 
selected voter is non-francophone is about 1/7 (i.e., non-francophones occur in the 
voting population with a relative frequency of about 0.14). What is the probability that 
a randomly selected Quebec voter is non-francophone and supported the "no"? If these 

9  We are assuming drawing without replacement in this example. 
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two events (being non-francophone and voting "no") are independent, the probability 
(by the multiplication rule) is 0.5 times 0.14, or about 0.07.

Now suppose that we conducted a survey of 1,000 Quebec voters selected by 
some random process (so that there was an equal chance of any 1,000 voters being 
chosen). Let's say that we found that 148 of the thousand were non-francophone 
(about what we'd expect from the probabilities), and that 503 of the thousand voted 
"no" (again, just about what we'd expect). But then we found that 132 of the 148 non-
francophones voted "no." That would indicate that voting "no" was not independent of 
whether a voter is francophone. The calculated probabilities (above) would lead us to 
expect only about 70 of the non-francophones to vote "no." Based on relative 
frequencies in our survey, we'd estimate the probability of being non-francophone and 
voting "no" to be about 0.132, almost twice as high as the calculated 0.07. Here we 
used the multiplication rule to show that two events are not independent. The way a 
person voted is (at least partly) dependent on whether or not the person is 
francophone.

Exercise on Probabilities 
1. The experiment is tossing 4 coins. Use the fundamental counting principle to find 

the number of points in the sample space. List the sample space (set). For the 
events: (a) exactly 3 heads come up; (b) 3 or more heads come up, define the 
event-set and calculate the probability of the event. 

2. The last 20 birds that fed at my feeder were 15 sparrows, 3 blue jays, and 2 red-
breasted nuthatches. Use this information to determine the empirical probability 
that the next bird to feed at the feeder will be (a) a sparrow; (b) a blue jay; (c) a 
nuthatch; (d) a falcon. 

3. You find an irregularly shaped rock with 5 flat faces and label the faces with 
numbers from 1 through 5. You toss the rock 100 times and get the following 
frequencies: 1 - 32 times; 2 - 18 times; 3 - 15 times; 4 - 13 times; 5 - 22 times. 
Find the empirical probability that the next toss of the rock will be: (a) 4; (b) 2; 
(c) anything but a 1. 

4. One card is selected at random from a normal deck of 52 playing cards. What is 
the a priori probability that the card will be: (a) a 3; (b) a spade; (c) not a 3; (d) a 
spade and a diamond; (e) a Jack or a Queen or a King; (f) a card greater than 5 
and less than 10. 

5. On a multiple-choice test with four possible answers for each question, what is 
the probability that a random guess will be the right answer to one particular 
question? 

6. A traffic light is red for 30 sec., yellow for 5 sec., and green for 40 sec. What is 
the probability that the light will be green when you reach it? 

7. There are seven coloured balls in a jar – 4 red, 2 white, and 1 blue. (a) Use the 
fundamental counting principle to determine the number of sample points in the 
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sample space for the experiment of drawing two balls at random from the jar with 
replacement (meaning that you put the ball back before drawing the next one). (b) 
List the outcomes in the sample space as a set. (c) Find the probability that 2 red 
balls are selected. (d) Find the probability that 1 red and 1 blue ball are selected. 
(e) Find the probability that 2 blue balls are selected. 

8. Repeat Ex. 8 without replacement (i.e., you draw a ball and keep it out while you 
draw the next one). 

9. (a) Use the fundamental counting principle to determine the number of sample 
points in the sample space for the experiment of throwing two dice. (b) Give the 
denotative definition of the sample space. For each of the events (c) a pair; (d) a 
7, (e) a 12, give the denotative definition of the event-set and calculate the 
probability of the event. 

10. A student who knows absolutely nothing about the subject being tested takes a 
true-false quiz of 10 questions. What is the probability that the student (a) 
answers every question correctly? (b) answers exactly 1 question correctly? 

11. 3 girls and 4 boys are placed randomly in a row of 7 seats. What is the probability 
that (a) the girls and boys sit in alternate seats? (b) the 3 girls sit together? 

12. Given that P(A)  2/5, P(A  B)  3/4, and P(A  B)  1/10, find P(B).
13. Of 10 balls in a jar, 3 are red. You select 3 balls at random, without replacement. 

What is the probability of getting (a) 3 red balls? (b) at most 1 red ball? 
14. The experiment is flipping a coin and then drawing 1 card at random from a 

shuffled deck. What is the probability of (a) getting either a head or a red card? 
(b) getting both a head and a diamond? 

15. What is the probability of getting 4 Queens in a randomly dealt 5-card hand? 

Conditional Probability 
When two events A and B are dependent we have to consider conditional

probabilities. Suppose the probability that it will snow on any randomly chosen day 
of the year is 10%. Clearly, the probability that it will snow on a randomly selected 
day will be lower, given that the day is in August, than if the day happened to be 
February. The probability that it will snow is conditional on the season. 

Here is an example involving empirical probabilities. Imagine that we conduct a 
survey of 1000 auto mechanics in our area. We check whether they are factory-trained 
or not, and give them a specially prepared test car to diagnose and repair. Those who 
spot the actual problem and fix it get a pass, and those who don't, fail. We describe our 
findings in a table, as: 

Pass Fail Total 
 Factory-trained 322 107 429 

Not factory-trained 161 410 571
Total 483 517 1000
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If you chose a mechanic at random, the empirical probability (rounded to two 
figures) that she would have passed the test is P(G)  483/1000  48% or 0.48. The 
probability that she was factory-trained is P(F)  429/1000  43% or 0.43. Your 
chance of getting a good10 mechanic purely at random is less than 50%. But if you 
limit your choices to just factory-trained mechanics, you improve your chances. The 
probability that a factory-trained mechanic would pass the test is 322/429 = 75%. That 
is, the probability of getting a good mechanic, given that it is a factory-trained 
mechanic, is 75%. This is conditional probability. The probability of getting a good 
mechanic is conditional on whether the mechanic is factory-trained or not. 

Going back to the card-dealing experiment, above, we can ask "What is the 
probability that the first two cards dealt will be Kings?" The probability that the first 
card dealt is a King is 1/13. If the second card being a King were independent of 
whether or not the first one was, the probability of the second card being a King is, 
again, 1/13. But it is not. If the first card dealt is a King, then the probability that the 
second one will be a King is only 3/51 or 1/17. If the first card is not a King, the 
probability that the second one will be a King is 4/51. So the probability of the second 
card being a King is dependent, or conditional on whether the first was a King. 

We need a formula to calculate the probability that an event B occurs, given that 
some other event A occurs. We start with this definition: 

The probability of event B occurring, given that an event A has happened or will 
happen (the time relationship does not matter) is called the conditional probability 

of B given A and is written P(B A).11

The number of ways of getting two cards from a 52-card deck is 52
2  1326.

The number of ways of getting 2 Kings is 4
2  6. So the probability of being dealt 2 

Kings in 2 cards is 6/1326. If A is the event where the first card dealt is a King and B
is the event that the second card dealt is a King, then P(A  B)  0.00452. As we saw, 
above, P(A) is 1/13 and the probability that the next card dealt is a King, given that I 
already have a King is P(B A)  1/17. Do the math to see that: 

The probability of B given A is equal to the probability that both A and B occur 

P(A  B) divided by the probability that A occurs P(A), or P(B A) P(A B)
P(A) .

10  If we define "good" as "likely to pass the test." 
11  I know that we used "|" to represent "divides," earlier. In probability theory, it is common to use it to 

symbolize conditional probability, while in number theory it is the conventional symbol for "divides." Sorry 
about that. 



12-18 12 PROBABILITY THEORY 

Example : Use the rule above to calculate the probability that a mechanic is good 
given that she is factory-trained (i.e., calculate P(G F)). P(F  G)  322/1000 (that is 
the probability that the mechanic both passed the test and was factory-trained – the 
top-left entry in our table). P(F)  429/1000 as we saw. So P(G F)  0.322/0.429 
75%. Test your understanding by calculating the probability that a mechanic is 
factory-trained given that she passed the test, and the probability that she passed the 
test given that she was not factory-trained.

Example: Calculate the probability that a single fair die comes up 2, given that 
the result is an even number. The probability that the die shows both an even number 
and 2 is just the probability that it shows a 2, which is 1/6. The probability that the 
result is an even number is 1/2. So the probability that the result is a 2 given that it is 
even is (1/6)/(1/2) or 1/3.

Example: Assume that the probability that a baby will be a girl is 0.50. In a 
family with two children, find the probability that the family has (a) two girls; (b) two 
girls, given that at least one of the children is a girl; (c) two girls, given that the older
child is a girl. Answers: (a) The sample space of two children is BB, BG, GB, GG
(where B is a boy and G is a girl). Since there are four equiprobable possibilities, only 
one of which is two girls, the probability that a two-child family has two girls is 1/4,
or 0.25. (b) When one of the children is a girl, the sample space is just BG, GB, GG .
One of the three possibilities is two girls, so the probability of two girls is 1/3 or 0.33.
(c) If the older child is a girl, the sample space reduces to GB, GG , and the 
probability that the family has two girls is 1/2 or 0.50.

This example relates to one in Paulos' Beyond Numeracy12:
It's known that in a certain curiously "normal" 1950s neighborhood every home houses a 
family of four—mother, father, and two children. One picks a house at random, rings the 
bell, and is greeted by a girl. (We assume that in the 1950s a girl, if there is at least one, will 
always answer the door.) Given these assumptions, what is the conditional probability that 
this family has both a son and a daughter? The perhaps surprising answer is not 1/2, but 2/3. 
There are three equally likely possibilities—older boy, younger girl; older girl, younger boy; 
older girl, younger girl—and in two of them the family has a son. The fourth possibility—
older boy, younger boy—is ruled out by the fact that a girl answered the door. 

Example: Suppose there is a disease that affects 0.1% of the population. A blood 
test is discovered which is 99% accurate. That means that the test will be wrong 1% of 
the time – either giving a false negative (a person tests negative even though she has 
the disease) or a false positive (a person tests positive even though he does not have 
the disease). Imagine you test positive for the disease. How much should you worry? 

If 100,000 people take the test, about 100 of them will have the disease, and about 
99 of those will test positive. Of the 99,900 people who don't have the disease, about 

12  John Allen Paulos, Beyond Numeracy: Confessions of a Numbers Man (New York: Alfred A. Knopf, 1991), 
p. 190. 
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999 of them will test positive (false positives). So, out of a total of 1098 positive tests, 
most (999) are false positives. Thus the conditional probability of having the disease, 
given that one tests positive, is only 99/1098, a bit over 9%! The fact that the test is 
99% reliable does not mean that there is a 99% chance that you have the disease. 

Exercise on Conditional Probability 
1. Suppose E is the event that a job-applicant has experience, C is the event that she 

has a car, and G is the event that she is a college graduate. State in words what 
probabilities are expressed by: 
(a) P(C G) (b) P(E C ) (c) P(C E)
(d) P(G C ) (e) P(C (E  G)) (f) P((E  C ) G).

2. A single card is drawn from a deck. (a) What is the probability that it is a club, 
given that it is black? (b) What is the probability that it is black, given that it is a 
club? 

3. One hundred people are surveyed to find which TV news channel they watch. The 
results are: 
 CBC CTV CNN Other Total 
Men 30 20 40 25 115 
Women 50 10 20 15  95 
Total 80 30 60 40 210 
If one of these people is selected at random, what is the probability he or she 
watches:
(a) CBC or CTV 
(b) CBC given that the individual is a woman 
(c) CBC or CTV given that the individual is a man 
(d) A station other than CNN given the individual is a woman 
(e) CBC, CTV, or CNN, given that the individual is a man 
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Empirical Probability 
The relative frequency interpretation of probability defines probability in terms of 

relative frequencies. 

The empirical probability of an outcome or event is defined as the relative 
frequency of that outcome or event in many repetitions of a random experiment. 

If the experiment is truly random, there will be a pattern in the outcomes (and 
thus in the events) over the long run. As the number of repetitions gets bigger and 
bigger, the relative frequency of any event will get closer and closer to some particular 
number. How many repetitions are "a long run"? Since it is always possible that some 
unusual sequence can occur the number will have to be very large. 

Some of the factors involved in determining the sex of a baby have only been 
discovered in the last century. Yet people have known for millennia that the probabil-
ity that a human child will be male is just slightly more than 50%. 

It may be impossible to predict with accuracy that any particular 21-year-old man 
will die this year, but many years of mortality figures tell us that about 0.18% of all 
the 21-year-olds in America die each year. 

We discover empirical probabilities by tallying frequencies of events over a long 
sequence of repetitions. We take the observed relative frequency of an event as an 
approximation to the probability that the event will happen. We can then use the 
mathematics of probability theory to arrive at interesting conclusions. 

Simulation
The mathematics of probability becomes formidable when we deal with complex 

phenomena involving many possible outcomes and a lot of interlocking dependencies. 
We can avoid some of the difficult math by simulating the experiment we are 
interested in. A simulation is like a model of some part of the real world. Events in the 
model are easily repeatable, and the model omits many of the complexities of the real 
world. We try to design our model world to reflect the real phenomena we are trying 
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to simulate. The test that a model is correct is whether its behaviour adequately 
resembles the behaviour of the phenomenon in the real world. 

Most simulations use random numbers as the basis of the simulation. There are 
books containing tables of random digits. Every individual digit should occur in the 
table about 10% of the time. Every pair (from 00 to 99) should occur about 1% of the 
time. Every possible triple of digits (from 000 to 999) should occur with a relative 
frequency of about 0.1%. And so on. Yet it should not be possible to predict what the 
next digit will be. 

Probability Model 
The first step in simulation is to build a probability model of the phenomenon we 

are interested in. 

A probability model is a list of all of the possible outcomes of an experiment, 
where every outcome is assigned a number, which represents its probability. 

Any legitimate probability model must satisfy postulates P1 and P2 of probability 
theory. That is: 

P1: The probability of any event must be a number between 0 and 1, where 0
indicates impossibility and 1 indicates certainty. 

P2: We assign a probability to every possible outcome of a random experiment, 
and the sum of these probabilities must be 1.

Probability Distributions 
The description of a probability model is called a probability distribution.

I asked 61 students how much change they were carrying. 8 students had that 
none. Two students each had $0.02, $0.04, $0.05, $0.10, $0.40, $0.75, $1.00, $1.50 or 
$1.70. Three each had $0.40, $0.65, or $2.50. The rest had different amounts. The 
most any student had was $10.72. A bar chart where each bar was an amount between 
$0.00 and $10.72 would have 1073 bars. Most would have a height of 0 (no student 
was carrying that amount) and most of the others would show 1. 

A better way to graph our results is to consolidate the data. We establish how 
many vertical bars we want to use to represent the data. We might choose, say, 11 
bars. The first bar would represent an amount of money between $0.00 and $0.99. We 
describe this as "0.00  amount  1.00," which means "amounts greater than or equal 
to 0.00 and less than 1.00." We are dividing the range of data (from 0.00 to 10.72) into 
classes of equal width. We then count how many students are in each class. We have 
to be sure that our classes are defined so that every amount fits into one and only one 
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class. There must be no ambiguity. Our classes and their frequencies (numbers of 
students) would be: 

Class Freq Class Freq
0.00 amount  1.00 34 6.00 amount  7.00 0
1.00 amount  2.00 14 7.00 amount  8.00 1
2.00 amount  3.00 6 8.00 amount  9.00 1
3.00 amount  4.00 1 9.00 amount  10.00 0
4.00 amount  5.00 2 10.00 amount  11.00 1
5.00 amount  6.00 1

We graph these data with a frequency histogram. In a frequency histogram
(unlike a bar chart) the bars touch each other. The width of a bar represents the size of
a range of values. The height of the bar represents the number (frequency) of instances 
of values in that range. The bars in a frequency histogram should have equal widths if 
the classes cover equal ranges of values. We label the edges of the bars (the limits of 
the classes), whereas in a bar chart we label the bar.

34

14

6
1 2 1 0 1 1 0 1

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 10.009.00 11.00

A relative frequency histogram looks just like a frequency histogram, except 
that the heights of the bars depend on the relative frequency, rather than on the 
absolute frequency. In a relative frequency histogram of the above data, the first bar 
would be 34/61 units high. 

Since empirical probabilities are the same thing as relative frequencies,1 a 
probability distribution histogram is identical to a relative frequency histogram.

1 Remember this!
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Exercise on Probability Models 
1. A package of 72 coloured candies contains 21 brown, 15 red, 17 yellow, 8 green, 

7 orange, and the rest are blue. How many are blue? What is the relative 
frequency of each colour? Draw the probability distribution histogram. 

2. If the manufacturer of the candies makes 30% brown candies, 20% red, 20% 
yellow, 10% green, 10% orange, and the rest blue, what percentage of the candies 
produced are blue? 

3. In the long run the relative frequencies of candies in the boxes will approach the 
relative frequencies of the various colours manufactured. Using the proportions 
indicated in question 2, build a probability model for the experiment of taking one 
candy at random from any box. 

4. Suppose that Canadian census data on all Canadian women between 20 and 29 
years old indicates that 28.8% of them are single, 0.3% are widowed, 7.6% are 
divorced, and the rest are married. Construct a probability model for the 
experiment of selecting a Canadian woman at random where the outcome is her 
marital status. Draw the histogram showing the probability distribution. 

Simulation in General 

To find the probability of an event by simulation, you: 

1. Build a probability model for the random experiment. Assign probabilities to 
individual outcomes (assuming independence where appropriate). 

2. Decide how to simulate the basic outcomes of the experiment. You might 
decide to use dice, coins, random digits, etc. Decide how your simulation will 
represent each outcome of the real-world experiment. 

3. Decide how to simulate an event in the experiment by combining simulations of 
basic outcomes from step 2. 

4. Estimate the probability of an event by the relative frequency of the event in 
many repetitions of the simulation. 

Imagine a community where women are highly valued. Every family decides to 
keep having babies until a girl child is born. What might this do to the population 
growth rate? How would you figure out what the likely family size will be if every 
family keeps having kids until a girl is born, and then stops? Is it possible that there 
may be too many women in the resulting population? 

Birth records show that, of 1210 babies born in that community, 590 were boys. 
The ratio of boy and girl birth rates in that sample is 48.8% boys to 51.2% girls. 
Assume that the ratio in the long run will be about 50-50, so the probability of having 
a boy baby is 0.5, and the probability of a girl is 0.5. Assume that the sex of a baby is 
independent of the sex of the previous babies born to the same family. 
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Using this probability model, we have to simulate the experiment of one family 
having babies until they stop. The basic outcomes are (1) having a girl baby and (2) 
having a boy baby. An event will be a finished family of b boys and g girls (where b
and g are natural numbers). We simulate an event by getting random digits until an 
even digit (which represents having a girl baby) comes up. We can decide that any 
even digit (0, 2, 4, 6, or 8) will represent a girl baby. Odd digits will represent a boy. 

A table of random digits consists of many numbered lines. Before looking at the 
digits on any particular line, I decide that I will start at line number 110. Line 110 
looks like this: 
110 38448 48789 18338 24697 39364 42006 76688 08708 
The first digit (3) represents a boy baby. Since it was not a girl, the family has another 
kid. The next digit (8) represents a girl, so the family stops having kids. The event is a 
boy and a girl, or BG. The proportion of boys to girls is 1-1, and the family has only 
two kids, so the population is not growing. 

Probabilities are relative frequencies in a large number of repetitions of an 
experiment. We have to simulate many repetitions. Continuing with the next random 
digits, we find that a second family has a girl (4) right away. So do the third (4) and 
the fourth (8) and the fifth (4) and the sixth (8). At this point our "families" have had 1 
boy and 6 girls. It looks bad for population balance! The seventh family has a boy (7) 
and then a girl (8). The eighth has two boys (9 and 1) and then a girl (8). The ninth has 
two boys and a girl. The next three (families 10, 11, and 12) have one girl each and 
stop. Then comes a family that has (9,7,3,9,3,6) five boys before stopping with a girl. 

The events we observed in the simulation were G (8 times), BG (twice), BBG
(twice) and BBBBBG (once). Out of 13 simulated "families" we have: 
 Number of kids 1 2 3 4 5 6 
 Frequency 8 2 2 0 0 1 
 Relative frequency 0.62 0.15 0.15 0 0 0.08 
We might infer that there is about a 77% (62%+15%) probability that families will 
have two kids or less. There appears to be only about a 23% probability that a family 
will have more than two kids (causing population growth). If our probability estimates 
from this simulation were reliable, we should expect that out of 100 couples, 62 of 
them would have one kid, 15 would have two, 15 would have three, and 8 would have 
six. That means that we would expect 100 couples to have a total of 62 1 15 2
15 3 8 6  185 children. If 200 parents have only 185 kids, the population will 
decrease.

As to the sex ratio, our probability estimates suggest that 62% of families will 
have one girl and no boys, 15% will have one and one, 15% will have one girl and two 
boys, and 8% will have five boys and a girl. Out of 100 families, this would mean 
there were 100 girls and 15 30 40  85 boys. It looks like there will be too many 
women. 
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However, our simulation was very small. We only repeated the random 
phenomenon 13 times. This is hardly a "long run" from which to obtain relative 
frequencies that are reliable indications of probabilities. We should try the simulated 
experiment hundreds or even thousands of times. 

In this (relatively simple) case, we can use a priori methods to calculate the 
result. We don't have to do a simulation. But the calculations are too difficult for this 
course.2 In reality the probability that parents will try for another kid depends on the 
number of kids they already have. This would not be too difficult to simulate, but 
much more difficult to calculate a priori.

Computer Simulation 
Picking random numbers out of a table and counting the number of times a 

simulated event occurs can get very tedious. Humans also miscount in ways that can 
seriously affect results. Computers reduce the tedium, improve accuracy, and permit 
us to make really large numbers of repetitions. 

In a computer program, we specify the probabilities of a number of simple 
outcomes or events. We then have the program generate "events" whose probability 
depends on the probabilities of the simple outcomes. The program can repeat an 
operation thousands or even millions of times at high speed. 

Our computer program uses a procedure called a "Random Number Generator" or 
"RNG." A RNG is a sub-program designed to generate "pseudo-random numbers." 
The program is deterministic; the numbers are predictable if we know the computer's 
starting number and know the algorithm by which it makes each new number from the 
previous one. However, a well-designed RNG generates numbers that can pass almost 
any test of randomness. 

The following table gives relative frequencies from two runs of a simulation of 
the family-planning probability model, above. Two runs of 100 families were 
simulated. 
Kids 1 2 3 4 5 6 7 8 9 >9 
Run A 0.48 0.29 0.13 0.06 0.02 0.02 0 0 0 0
Run B 0.43 0.25 0.14 0.11 0.03 0.03 0 0 0 0.01
Theory 0.50 0.25 0.13 0.06 0.03 0.02 0.01 0 0 0

Many of the estimates were not too bad, but some (e.g., 0.43 for the probability of 
one child and 0.11 for the probability of four children in Run B) were pretty far off. 
When I ran the same program to simulate 10,000 families (a much longer run), I got 
better results, as: 

2  The analytical calculation shows that there will be an average of two kids per family and exactly half of them 
will be girls if our probability model is correct. 
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Kids 1 2 3 4 5 6 7 8 9 >9
Run A 0.4946 0.2471 0.1291 0.0608 0.0294 0.0141 0.0070 0.0041 0.0020 0.0018
Run B 0.4958 0.2550 0.1265 0.0637 0.0293 0.0145 0.0086 0.0032 0.0012 0.0022
Theory 0.5000 0.2500 0.1250 0.0625 0.0313 0.0156 0.0078 0.0039 0.0020 0.0019

When I tried a run involving 100,000 simulated families, the estimates improved 
slightly. There's a kind of "law of diminishing returns" in longer runs. 
Kids 1 2 3 4 5 6 7 8 9 >9
Run A 0.5011 0.2491 0.1249 0.0634 0.0303 0.0158 0.0082 0.0037 0.0018 0.0017
Run B 0.4986 0.2496 0.1260 0.0639 0.0303 0.0156 0.0082 0.0039 0.0020 0.0019
Theory 0.5000 0.2500 0.1250 0.0625 0.0313 0.0156 0.0078 0.0039 0.0020 0.0019

Suppose the computer program's RNG gives numbers between 0.0000… and 
0.9999…. Any number less than 0.5000… can indicate a girl baby and any number 
between 0.5000… and 0.9999… (inclusive) can indicate a boy baby. A good RNG 
will provide about equal numbers of boys and girls in the (very) long run. 

If we want to simulate something whose probability is other than 50%, we just 
pick a different subrange of the numbers that the RNG can develop. Suppose a 
basketball player regularly makes 70% of her free throws. What is the probability that 
she will miss three out of five free throws? That she will hit nine out of ten? 

Let a random number less than 0.7000… represent a hit and any other number 
stand for a miss. We try a few thousand runs consisting of five "shots" each and count 
how many times there were three or more misses. I tried 10,000 sequences of five free 
throws. The computer missed three out of five shots in 1598 sequences, or about 16% 
of the time. There is about one chance in six that a steady 70% shooter will shoot as 
poorly as 40%. I tried 10,000 sequences of ten free throws. The computer got nine or 
ten hits (out of ten tries) about 15% of the time. One would expect a 70% shooter to 
get nine or ten out of ten about 1/7 of the time. 

Exercise on Simulation 
1. Sociologists have studied how children do or do not move out of their parents' 

occupational class. The overall result can be expressed in terms of probabilities 
based on relative frequencies. The relative frequencies of the occupational classes 
of adult sons of white-collar fathers are: 20% professional; 50% white collar; 20% 
blue collar; 10% no steady job. 
(a) Explain in detail how to simulate the occupational class of a randomly 
selected son of a white-collar father. 
(b) How would you use your simulation to answer the question "Given five 
randomly-selected sons of white-collar fathers, what is the probability that at least 
two of them will wind up in the professional class?" 

2. Explain in detail how to simulate the birthday probability. The birthday probabil-
ity refers to the fact that out of any randomly selected group of 23 or more people, 
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there is a better-than-even chance that at least two of them celebrate their birthday 
on the same day. 

Probability and Odds 
The chance of an event is often stated in terms of odds, rather than probability. 

We can translate a statement about the odds of some event happening to a statement of 
the probability of the event, and vice versa.

The odds that an event will occur are given by the probability that the event will 
occur divided by the probability that the event will not occur. Therefore the odds in 
favour of an event E are calculated as P(E)/P(E ). Since P(E )  1 P(E), the odds in 
favour of E are P(E)/(1 P(E)).

We express the odds in terms of integers, saying things like "the odds are 2 to 1 
against" or "the odds are 1 to 6 in favour." In the expression "the odds are A to B in 
favour of event E" we calculate A as P(E) and B as 1 P(E) and multiply both 
probabilities by a number that will turn them both into integers. For example, in 
throwing a die, the probability of getting a 6 is 1/6, so the odds against getting a 6 are 
5/6 to 1/6, or 5 to 1 against. If the relative frequency of an event F is 2/3, then we 
would say P(F)  2/3 and P(F )  1/3, so the odds that F will happen are 2 to 1.

To say that the odds against some event A are a to b is to say that the probability of 
that event is P(A)  b/(a b).

Thus, if the odds against a horse in a race are 3 to 2, the probability that the horse 
will win is 2/(3 2) or 2/5 (40%). 

To convert from the probability of an event A to odds against the event, you first 
convert the probability P(A) to a fraction (rational number), say a/b. Then the odds 

against the event are (b a) to a.

Exercise on Odds 
1. In the example of the change in students' pockets, what are the odds that a student 

will have more than $4.00 in change? 
2. If the odds are 5 to 3 that an event H will not occur, and 2 to 1 that event J will

occur, and 3 to 1 that they will not both occur, are these two events independent?
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Expected Value 
Expected value is the term used to describe the probable winnings from a contest 

or a game or the payout on insurance policies. More generally: 

The expected value of a variable in a random experiment is the average value of 
that variable in a long run of repetitions of the experiment.

One can imagine a (boring) game one could play with a single die. If the die 
comes up 1, 2, or 3, there is no payoff. If the die comes up 4 or 5, the payoff is $2. If it 
comes up 6, the payoff is $5. In this game, how much should a player expect to win? 
Another way to phrase this question is "What is the expected value of this game?" 

There are three events that matter. The first (E1) is the event where you throw a 1, 
2, or 3. The probability is P(E1)  1/2. The second event (E2) is where you throw a 4 
or a 5. P(E2)  1/3. The third event (E3) is the event of rolling a 6. P(E3)  1/6. If you 
played this game 10,000 times, you would expect that you would probably win 
nothing in 5,000 games, and $2 each on 3,333 games, and $5 each on 1,667 games. In 
10,000 games, you'd probably win about 5000 0 3333 2 1667 5 0 6666 8335

 15001 or $15,001,3 an average of $1.50 per game. 

We don't actually calculate it that way, however. Instead, we multiply the 
probability of each event by the value of that event, and add the results. In this case, 
the expected value of a game is 0 1/2 2 1/3 5 1/6  2/3 5/6  9/6  1.50, or 
$1.50 per game. If it cost you $1.50 per game to play, you could expect to break even 
in the long run. 

In an experiment where there are n events whose probabilities are P1, P2, P3, … , 
Pn, (where P1 is the probability of event E1, etc.) and where the payoffs are A1, A2,

A3, … , An, the expected value E is calculated by multiplying the probability of 
each event by the net amount that will be gained or lost if the event occurs, and 

summing the results. That is, E  P1A1 P2A2 P3A3 …  PnAn.

The payoff does not have to be money. On a fair multiple-choice test, a student 
who knows nothing should get a grade of 0. To discourage guessing, many teachers 
subtract marks for wrong answers. One scheme gives one point for a correct answer 
and subtracts 1/4 point for a wrong answer. If a question has four possible choices and 
you haven't the slightest clue which one is correct, should you guess? The chance that 
a random guess will be correct is 0.25. The probability that it will be wrong is 0.75. 
The expected value of a random guess is 0.25 1 0.75 ( 0.25) which works out to be 
0.0625 marks. This scheme rewards guessing. If there are five possible answers, the 
expected value of a guess is 0.20 1  0.80 ( 0.25) or 0 marks. It is rare that a student 

3  Actually, the answer is $15,000 exactly. The extra dollar was a "round-off error." 
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is so ignorant that every choice seems equally good. Usually even people who haven't 
studied the course can eliminate one or two of the choices. To discourage guessing, a 
more realistic grading scheme would be to subtract 1/2 mark for each wrong guess. If 
there are four possible answers and all seem equally likely to a totally ignorant 
student, then the expected value of a guess would be 0.25 1 0.75 ( 0.5) 0.125
marks. Blind guessing will probably lead to a loss of 1/8 mark per question. If you are 
not entirely ignorant, you can improve your odds by eliminating one of the four 
answers. Then you would have a 33% chance of guessing correctly. The expected 
value of a guess would be 0.33 1 0.67 ( 0.5)  0. If you can eliminate two possible 
answers, the probability of a correct guess goes up to 50%, and the expected value 
goes up to 0.5 1 0.5 ( 0.5) 0.25.

If a lottery sells 500 tickets at $2.00, and the prize is $1000.00, what is the 
expected value of a ticket on the lottery? Only one ticket will win, so the probability 
of a win is 1/500, or 0.2% or 0.002. The expected value of a ticket is 
0.002 998 0.998 ( 2), or 0. The reason the positive value is only $998 is because 
even the winner pays for the ticket. 

Exercise on Expected Value 
Here are a couple more lines of a table of random digits to use for simulation. 

When you use the last digit on one row, you proceed to the next row. 
110 38448 48789 18338 24697 39364 42006 76688 08708 
111 81486 69487 60513 09297 00412 71238 27649 39950 
112 59636 88804 04634 71197 19352 73089 84898 45785 
113 62568 70206 40325 03699 71080 22553 11486 11776 
114 45149 32992 75730 66280 03819 56202 02938 70915 
115 61041 77684 94322 24709 73698 14526 31893 32592 
116 14459 26056 31424 80371 65103 62253 50490 61181 
117 38167 98532 62183 70632 23417 26185 41448 75532 

1. In the gambling game of Keno, 20 numbers between 1 and 80 are chosen at 
random. Gamblers bet on what numbers will be chosen. There are many kinds of 
bets. Some of the simpler bets are: 
(a) A $1 bet on "Mark 1 number" pays $3 if the single number you mark is one of 
the 20 chosen; otherwise you lose your bet. 
(b) A $1 bet on "Mark 2 numbers" pays $12 if both your numbers are among the 
20 chosen. The probability of this is about 0.06. 
Using expected-value calculations, decide if Mark 2 is a better bet than Mark 1. 

2. Suppose the price of a stock gains or loses $1 per share per day, with the prob-
ability that it gains P(G) equal to the probability that it loses P(L). An investor 
buys shares for $10 per share. He plans to sell as soon as it goes up to $11 per 
share. After five days, he will sell anyway. He can gain $1 per share or lose $5 
per share, depending on the stock's price changes over the five-day period. 
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(a) Describe in detail how to simulate his gain or loss. 
(b) Use the random digits given above or computer-generated random numbers or 
coin flipping or dice-rolling (as described in your answer to part (a)) to simulate 
his gain or loss over at least 50 repetitions. 
(c) Based on your simulation, estimate the probability that the investor will finish 
with a gain. Estimate the expected value of his gain (take losses to be negative 
gains, so that a $2 loss is a gain of (-2)). 

3. The size of a household is the number of people sharing one dwelling, regardless 
of whether they are related to each other. Suppose the census gives relative 
frequencies of different household sizes as 
Household size 1 2 3 4 5 6 7
Rel. Frequency 0.24 0.31 0.19 0.16 0.07 0.02 0.01 
(a)  Check whether this is a legitimate assignment of relative frequencies. 
(b)  How would you figure out the probabilities of the different household sizes? 
(c)  Pretend that no household has more than 7 members. Find the expected size 
of a randomly chosen household. 

4. A couple plans to have children until they have at least one boy and at least one 
girl. What is the expected number of children they will have, assuming that 
P(B)  P(G)  0.5?
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Objectives of this Chapter 
To distinguish between data and information. To illustrate how conclusions about 

large collections of people or things can be reliably based on samples. To show how a 
few quantitative descriptions can characterize large collections. To illustrate the 
importance of the normal distribution for interpretation of appropriate kinds of data. 

Key concepts

Population: the whole collection or set of people or things that we are studying. 
Unit: any individual member of the population. 
Variable: a generic property of units. When the units are crayons colour and length 

are possible variables. 
Value (of a variable): the particular instance of a variable that is characteristic of a 

particular unit. For example, a particular crayon may have red colour and a length 
of 2 inches.

Census: measuring the value of a variable for every unit in a population. 
Sample: a subset of the population chosen to represent the whole population. 
Sampling: measuring the value of a variable for every unit in a sample. 
Sampling method: an algorithm for selecting units for a sample. 
Representative sample: a sample chosen according to a sampling method that 

ensures that the values of the variable in the sample resemble those values in the 
whole population. 

Bias (of a sampling method): A sampling method is biased when that method produces 
samples that consistently and repeatedly differ from the population in the same direc-
tion. The values of the variable in the sample differ in predictable ways from the values 
in the population. 
(of a measuring technique): A measuring technique is biased when repeated measure-
ments of the same unit using that technique give results that systematically overstate or 
understate the value being measured. 

Sampling frame: the list of units from which a sample will be taken. A subset of the 
population.

Simple random sampling: a sampling method whereby units are chosen from the 
sampling frame according to a randomizing procedure that ensures that every 
collection of n units (where n is the size of our sample) is equally likely to be 
chosen. A sample chosen by simple random sampling is called a simple random 
sample (SRS).
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Parameter: the value of a variable that is characteristic of a whole population. It 
might be an average or a relative frequency or some other way of describing the 
value of a variable. Usually symbolized as p.

Statistic (no "s"): The value of a variable that is characteristic of a sample. Usually 
symbolized as p ("p-hat"). 

Sampling variability (of a sampling method): the range or spread of values of the 
statistics obtained from repeated sampling of a population using that sampling 
method. 

Sampling distribution (of a statistic): the pattern of values one would get by repeat-
edly sampling a population using a particular sampling method and sample size. 

Measurement: any method that gives the value of some variable for one unit. 
Precision (of a sampling method): the inverse of the sampling variability; that is, a 

sampling method that has high precision has low variability. 
(of a measuring technique): repeated measurements on the same unit using that 
technique give similar results from one measurement to the next. 

Margin of error: the range of values one would get when measuring the same value 
repeatedly using the same measuring technique or sampling method. 

Centre (of a distribution): the mean (arithmetic average) or median or mode of the 
values of a variable in a sample or a population. 

Outlier: a value of a variable in a sample that is so different from other values as to 
raise doubt about its correctness or meaningfulness. 

Mean: the arithmetic average of a set of values, symbolized as x .
Median: the value such that half of a set of values is less than or equal to it, and the 

other half is greater than or equal to it. 
Mode: the most frequently occurring value in a set of values. 
Spread: the amount of variability in a set of values. 
Percentile: The cth percentile of a set of data is a value such that c percent of the 

numbers are less than it and the rest are greater. 
Quartile: The 1st quartile is the value such that 25% of all values are equal to or less 

than it; the 3rd quartile is the value such that 25% of all values are equal to or 
greater than it. The 2nd quartile is the median. 

Five-number summary: a summary of a distribution which states the minimum, 
maximum, and median values and the first and third quartiles. 

Variance: the mean of the squares of the deviations of the data from the mean, 
symbolized as s2.

Standard deviation: the square root of the variance, represented by s (for a sample) 
or  (for a population). 

Coefficient of variation: the standard deviation expressed as a percentage or fraction 
of the mean. 

Standard score or Z-score: the number of standard deviations above (when positive) 
or below (when negative) the mean. 
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Statistics in Liberal Arts 
Data only become information when they are interpreted – when someone 

makes sense of the data. Statistics is the systematic study of empirical facts. It 
includes techniques to quantify the data (express the data numerically) and to provide 
insight into the meaning of the data using mathematical tools. 

Descriptive statistics consists of concepts and methods used to collect, organize, 
analyze, and present data. The goal of descriptive statistics is to collect empirical data 
in numerical form and assemble and summarize and depict those data so as to reveal 
patterns. Significant information can be extracted when we discover the patterns and 
relationships among the data. Inferential statistics consists of concepts and methods 
for making generalizations or predictions from data collected and organized using the 
methods of descriptive statistics. 

In the formal sciences, we work with precise and knowable data. In "the real 
world" where most data are empirical, we have to cope with variability and 
uncertainty. Individual people and things are similar to each other in many ways, but 
there are important differences. To know reality, we need methods to deal with 
variability and uncertainty. 

Collecting Data 
Studies in the social sciences have shown that the concepts with which you think 

depend on the vocabulary you have to express those concepts. You can think more 
clearly about anything if you master the vocabulary. A lot of technical vocabulary is 
used in statistical discussion and reasoning. 

Statistical information is usually about some collection of people or things. The 
whole collection of people or things that we're interested in is called the population.
In statistics the word "population" does not just mean the bunch of people living in 
some geographic space (city, country, etc.). It is any collection that a researcher wants 
to find out about. It does not have to be people. A population can be all the ball 
bearings that a particular company manufactures or all the pigeons on this campus. 

Each individual thing or person in the population is called a unit.

Usually we don't want to know everything about the units in our population. We 
want to study just one or a few of the characteristics of the units in the population. A 
property that we are studying (e.g., diameter of ball bearings, make of shoes worn by 
tennis-players) is called a variable. If the variable is make-of-shoes, then the 
particular make worn by a particular tennis-player is a value of that variable. The 
diameter of a particular ball bearing is a value of the diameter variable for that unit. 
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When we want to find out something about a whole population, we can get data 
on every unit. When we find the values of some variable(s) for every unit in the 
population, statisticians call it a census. In statistics, a census is not a national or 
provincial questionnaire. Measuring the diameter of every ball bearing produced by 
one company is a census of those ball bearings. 

A census is often difficult or expensive. The data may not be important enough to 
justify the effort or expense of measuring every unit in the population. We can 
investigate a sample from the population and generalize our findings to the whole. In 
sampling, we select a sample as representative of the whole population. We find the 
value of the variable(s) for every unit in the sample. In a well-designed sampling 
method, data from the sample will allow us to draw reasonable conclusions about the 
whole population. Good methods allow us to calculate the probability that our sample 
results are representative of the values we would obtain if we conducted a census. 

Using statistical sampling techniques and probability theory, we can sample a 
fairly small number of units (say, 2,000 ball bearings out of a total production of 
millions) and make reliable statements about the whole population of ball bearings. 
Measuring 1,500 people can tell us something about 27 million Canadians. We can 
perform an experiment1 where we test a drug or food or medical procedure or 
production technique on a few units, and learn something about its usefulness or 
harmfulness in general, for large numbers of untested units. 

Sampling
The trick in sampling is to get a sample of units that is smaller than the whole 

population, but which is representative of the whole population. If you are interested 
in diameter of ball bearings, you want a sample of ball bearings whose average diame-
ter is a reliable indicator of the average diameter of all the ball bearings in the popula-
tion. You might also want a sample that shows as much variation from the desired 
diameter as there is in the whole population. If you are interested in the buying habits 
of Canadian shoppers, you want a sample consisting of a bunch of people (units) 
whose preferences are most like those of the whole population of Canadian shoppers.2

The best way to ensure that samples are representative is by random sampling.
In random sampling, we get an unbiased sample. We select a subset of the units in 
the population by using randomizing methods. In the (conceptually) simplest kind of 

1  In the more-normal sense of "experiment," where we do something to some people or things, observe the 
results, and compare the results to untreated people or things (i.e., people or things to whom or to which we 
did not "do something"). 

2  The statistical sense of the word "population" is not the ordinary use of the word. The population in this case 
just includes Canadian shoppers, not all Canadians. Infants and people in institutions might be excluded, for 
example. 
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random sampling (obtaining a simple random sample or SRS), we make sure that 
every unit has an equal probability of being included in the sample. 

A sampling method is called biased when that method produces results that 
consistently and repeatedly differ from the truth about the population in the same
direction. It does not have to be because some person has a subjective or emotional 
bias. Voluntary response techniques (where people are asked to call a special number 
to record their preferences, or to send in a card from a magazine, or to write in) are 
notoriously biased. People who volunteer (who pay to make the call or bother to write) 
are probably peculiar in a number of ways (they listen to that show, or read that paper 
or magazine, they care enough to pay or make efforts to have their opinions counted, 
etc.). The difference between the results of such a sample and the opinions of the 
population can usually be predicted – both that it will be unrepresentative and in what 
direction the results will differ from the population. Sampling techniques that select 
people by phone number will also be systematically biased. Unlisted numbers may not 
be selected, and people without telephones will not be selected. People who are not at 
home or who choose not to answer the phone will also be left out. These omissions 
will produce results that differ in predictable ways from the results of a census. 

To select a simple random sample we first decide the number of units we want to 
investigate. This is our sample size. Then we decide on our sampling frame. The 
sampling frame is the list or set of units from which the sample will be chosen. To 
sample voters, we might get the voters-list for our population. We give each unit in 
our sampling frame a number. With a voters list we might number the names in the 
order in which they appear in the list. 

Then we let a random-number-generator or table of random digits select our 
sample for us. If there were a million units in the sampling frame, we would select 
random numbers between 0 and 999,999, inclusive. No number should be any more 
likely than any other of being chosen. If we want a sample of 1,000 units, we'd pick 
1,000 distinct3 random numbers. The units that were assigned those numbers are 
selected as our sample. 

Other sampling designs are often used. Systematic random sampling selects 
only the first unit randomly. Then every nth unit after that first one would be selected. 
There are risks in this procedure. Every nth unit might differ systematically from the 
other units in the population. For example, every 100th ball bearing may have been 
produced by a particular machine that makes ball bearings that differ from those made 
by all the other machines. 

Cluster sampling divides up the whole sampling frame into blocks or clusters. 
We might divide people up into groups of 1000 depending on where they live. We 

3  It would be wrong to use the same number twice, because this would mean including the same unit twice in 
the sample. 
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might choose city blocks as clusters, when our sampling frame is the people in some 
urban area. English classes might be clusters for sampling students at this college. We 
select some clusters at random. We can either investigate all the units in the selected 
clusters, or we can take random samples from each cluster. This technique would be 
useful for ball bearings, where we could randomly select boxcars full of bearings, 
randomly select boxes of ball bearings from those boxcars, and then select bearings at 
random from those boxes. 

Stratified sampling divides the population or sampling frame into parts, called 
strata, based on differences in some characteristics called stratifying factors.
Stratifying factors can be things like sex, religion, or income. Among ball bearings, 
we might stratify our population according to the size the bearings were supposed to 
be (i.e., separate 1/8" bearings from 1/2" bearings). 

Suppose one wanted to find out how students at an engineering college rate the 
college's sexual harassment policy. The opinions of female students might differ from 
the opinions of male students. If the college has 100 female students and 900 males, a 
SRS of 100 students would probably contain about 10 females. There might be none. 
Even if we got 10 females in our sample, such a small sample is probably not 
representative of all the females. We'd get more representative results by taking an 
SRS of 30 females from the 100 and 70 males from the 900. If the average of the 
ratings given by the 30 females was 2 on a scale from 1 to 10, and the average of the 
ratings given by the 70 males was 6, we should probably report the two numbers 
separately. If we really wanted to state an overall rating as how all the 1,000 students 
rate the policy, we would say that we expect the 100 females to rate the policy at 2, 
and the 900 males to rate it at 6. The overall average rating is given by 
(100 2) (900 6)

(100 900)  5.6.

A variable is usually a numerical characteristic (average diameter, relative fre-
quency of blue eyes, relative frequency of people in particular age groups, etc.) of a 
population. When we're discussing the whole population, the value of that variable is 
called a parameter. The parameter of a population is usually symbolized as p.4 If the 
population is students at this college, a parameter might be the average number of 
hours of TV per week students watch. The parameter is some particular number. To 
know that number we might study the viewing habits of all the students in the college 
(a census) over several weeks and take the average number per student per week. But 
that would be expensive. A parameter is a characteristic of a population.

We might take a sample – select 100 students and study their TV watching over a 
single week.5 We'd calculate the average number of hours for students in the sample 

4  That's a small "p," not a capital "P." 
5  How to randomize what week? A week in the midst of mid-terms would not be representative. A week when 

a particularly attractive program-mix was offered would also be risky. 
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and take that as an estimate of the parameter. The estimate based on a sample is called 
a statistic. A statistic is a characteristic of a sample. A different sample might give a 
different value of the statistic. The statistic is symbolized as p (called p-hat). 

Exercise on Sampling 
1. Some studies attempt to decide disputes about authorship by comparing mathe-

matical properties of the texts. To compare Hemingway with Faulkner, you could 
use random numbers to pick a book from each author's corpus, and more random 
numbers to pick a page in each book. You record the lengths of each of the first 
250 words on the selected page. What is the population? What is the sampling 
frame? What is the variable? What is the parameter? What is the statistic? 

2. Imagine a sheet of paper with many non-intersecting circles of different diameters 
drawn on it. You want to know the average diameter of the circles, but you don't 
want to measure them all. Someone proposes that you select circles at random by 
closing your eyes and putting your pencil on the sheet. If the pencil lands in a 
circle, mark it as being in your sample. Repeat until you have 6 different circles 
marked. Those 6 are your sample. Is this likely to be a SRS? Why or why not? Is 
there bias in this sampling technique? What bias? What is the parameter? What is 
the statistic? Describe a better way to obtain a SRS of 6 circles, and say how you 
would estimate the average diameter of all the circles from your sample of 6. 

Sampling Variability and Sampling Distributions 
Suppose we want to know the average reading-ability level of students at this 

college. Our parameter p will be the average score of all students on a reading-ability 
test. Testing all 5,000 students would be expensive. We can get a list of student 
numbers from the registrar to use as our sampling frame and select a SRS of 200 
students. Testing these 200 students gives a statistic p.

Our sample might accidentally get the 200 best readers in the college. Or the 
worst 200. Or we might have 100 of the best and a fairly representative bunch for the 
other 100. This is called sampling variability. There is less variability among larger 
samples than smaller. Sampling variability depends on the sampling method and on 
the size of the sample. In simple random sampling, sampling variability depends
almost entirely on the size of the sample, and very little on the size of the population.
Since the methods of selecting a SRS are random, we can use the mathematics of 
probability to study sampling variability in a SRS. There will be patterns in the long 
run of getting statistics from many random samples. The pattern of values one would 
get by repeatedly sampling a population is called the sampling distribution of the 
statistic obtained by that sampling method and sample size. 

Imagine a large box containing many beads. The beads are exactly alike except 
that some proportion of them are red and the others are white. The whole box of beads 
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is the population. The parameter is the percentage of red beads in the box. We take a 
random sample of beads from the box and calculate the percentage of red beads in the 
sample. The percentage in our sample is the statistic.

To select a random sample, we mix the beads really well and plunge a "paddle" 
in. The paddle has 25 bead-shaped indentations on it, so when we withdraw it exactly 
25 beads will be caught in the indentations. The statistic is the relative frequency of 
red beads in the paddle. If there are 4 red beads among the 25, the statistic p  4/25 
16%. We estimate that the parameter p is 16%. 

In a second sample, the paddle contains 7 red beads. p  7/25  28%. Another try 
gives 4 again. And so on. Over many tries, we get quite a few samples containing 4, 5, 
or 6 red beads, some with none, some with more than 10, and so on. This variation 
from sample to sample is sampling variability.

This is a random experiment. The outcome is the percentage (relative frequency) 
of red beads in the paddle. We can repeat the experiment many times, or we can 
simulate many repetitions with a computer program. After many repetitions of the 
experiment, we can summarize our findings in a table or histogram. 

A simulation of 1,000 samples gave the results shown in the following table. The 
upper row gives the values of p that we got, and the lower row is the number of times 
(frequency) that each value of p came up. 

value of p 0.0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44

frequency 6 16 60 124 172 221 196 106 55 29 11 4
The value of p in this experiment was actually 0.20 (i.e., 20% of the beads in the box 
were red). We had quite a lot of sampling variability because 25 is a small sample. 
Our samples gave results ranging from 0 (no red beads in the paddle) to 0.44 (11 out 
of 25 beads were red). The sampling distribution table shows that 221 out of our 1000 
samples (22.1%) were excellent samples, giving a statistic that was exactly equal to 
the parameter. Almost 60% (589) of our samples had between 4 and 6 red beads, so 
they were quite representative of the population of beads. They gave statistics that 
were between 16% and 24% (within 4% of the parameter). Although it was possible to 
get a random sample (paddle) that contained no white beads, none of our samples had 
more than 11 (44%) red beads. 

We can simulate a situation where we take larger samples, even though a larger 
real paddle might be unworkable. As long as the total number of beads in the box is 
much larger than the number in a sample, the samples are still random. Simulating a 
100-bead paddle, the worst p was 31% (in three of 1000 samples). In 985 samples 
(i.e., 98.5% of the time), the results were between 11% and 29%. 94.4% of the 
samples gave a p between 13% and 27%. 
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Measurement
The words "measure" and "measurement" are used in a somewhat unusual sense 

in statistics. Any method that finds the value of a variable is called "measurement."
For example, if the variable is eye-colour, one could "measure" it by asking a subject 
(unit) what colour her eyes are, or by looking at her eyes, or whatever gets the value of 
that variable for that subject. 

Some variables have values that are not numeric. If the variable we are interested 
in is non-numeric, we can assign a numerical value by using numbers as labels. For 
example, we can say that owning a Ford is a 7, or that having blue eyes is a 3, etc. 

If the values of our variable are numeric, then the measurement of the values is 
probabilistic. We can only measure to within the limits of precision of our 
instruments. Some variables (like height) vary from one measurement to the next. 
Measurements only make sense within the limits of normal variability of the variable 
itself. For example, saying that someone is exactly 183.2 cm. tall is silly; a person's 
height varies by a cm. or more in the course of a normal day. Measuring a person's 
height to the nearest half-centimeter is spurious precision.

Most numerical measurements measure a continuous quantity. That is, lengths, 
weights and so on are real numbers, with infinite decimal representations. Most instru-
ments can only measure to within a certain margin of error. The margin of error of a 
measuring technique is the range of values one would get when measuring the same 
value repeatedly. There is always a margin of error in the measurement of continuous 
or near-continuous quantities. When we are being very precise, we should specify 
values of such variables as "7.016±0.002," which says that the measurement could be 
as much as 0.002 off in repeated re-measurements of the same value. 

Measuring such values is like taking a sample, and the same kinds of considera-
tion of variability apply. 

A measuring technique is biased if repeated measurements of the same value give 
results that systematically overstate or understate the value. By "systematically" we 
mean that measurements made by that technique are typically too high, for example. A 
technique is precise if repeated measurements of the same value give results that are 
close to each other. Notice that a measuring technique can be both precise and biased 
(repeated measurements are close to each other but all too high, say), or imprecise and 
unbiased (repeated measurements show large variability, but they are not 
systematically too high or too low), or any combination of precision and bias. 
Obviously the goal is to get unbiased measurements that are as precise as possible. 
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Descriptive Statistics 

Numerical Descriptions 
Once we obtain values for the variables we are interested in, we have to describe 

what we have discovered. We need to transform the data into information by summa-
rizing and extracting the most important features from collections of numbers. Graphs 
and charts appeal to our visual pattern-recognition skills. The goal of graphs and 
charts should be to clarify the information. The danger in such presentations is that 
they can accidentally or deliberately misrepresent the meaning of the data. Numerical 
summaries can also distort the meaning of data. This is why some people are so 
suspicious of statistical reasoning. They cannot recognize distortion, but they know 
that it can occur. 

One way to clarify the meaning of data is to sort and list the numbers. We can 
summarize the data by creating ranges of values and say how many or what percent-
age of the values in our census or sample were in each of the ranges (as in making a 
frequency or relative frequency histogram or table). 

Before they look for information in a set of values, statisticians take a quick 
overview of the data to see if there are any values that don't seem to "belong. 
Sometimes a value is so hugely different from all the other values that it is reasonable 
to doubt its reality. Perhaps the number was entered incorrectly, or the value came 
from a unit that should never have been included in the sample. Such out-of-pattern 
values are called outliers, and are usually excluded from the data-set. When 
exclusions are made, careful researchers will note the exclusion(s) so that others who 
read their conclusions can be aware that some values were not included when 
conclusions were drawn. 

It is useful to specify the centre and spread of the data. 

Centre of a Distribution 
Centre is the average value or the most common value or the middle value of the 

variable in our population or sample. 

"Average" is ambiguous. It can mean the mean or the median or the mode of our 
values. The mean of a set of values is their arithmetic average. We add up all the 
values and divide by the number of values to get the mean. Statisticians usually use 
the symbol x  (pronounced "x-bar") to represent the mean of a bunch of values of a 

variable called x. The mathematical formula for the mean is: x
i=1

n

 xi

n . The numerator 
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of the fraction 
i=1

n

xi means the sum of all the n values of x (called x1, x2, x3, …, xn).

The whole formula says to calculate that sum and divide by n. The mean of the values 
3, 3, 7, 9, 10 is (3+3+7+9+10)/5, or 6.4. The mean value is usually not one of the 
values among the data. The data can be something like counts, which can only have 
whole-number values, while the mean can be a rational-number value. 

The median of a set of values is the middle value. Half of the values in the set are 
smaller and half are larger than the median. To find the median (unless we have a 
computer or calculator that can do it) we list all the values in order, from the smallest 
to the largest. If there is an odd number of values n, the middle number is the 
(n 1)/2th value in the list. We count down the list to that value, and that's the median. 
The median of the values 3, 3, 7, 9, 10 is the third ((5 1)/2  3) value, which is 7. If 
there is an even number of values, then (n 1)/2 will be a number with a fractional part 
(e.g., 11.5). The median will be the 11.5th value, the mean of the 11th and 12th values. 

The mode is the most common value among the data. The mode of the values 3, 
3, 7, 9, 10 is 3, because there are more 3's than any other value. Sometimes a distribu-
tion (a collection of values of a variable) has no mode, because no one value predomi-
nates. Sometimes we speak of a bi-modal distribution, where there are two clear peaks 
in the distribution histogram. 

Averages are not always meaningful. If the data are ordinal numbers (like birth 
dates or house-numbers), then taking the mean of the values makes no sense. To 
summarize values of an ordinal variable, it might be meaningful to find the frequency 
distribution of ranges of the value (how many people have birthdays in January, etc.), 
but the "average birthday" is nonsense. If the data are "nominal numbers" (i.e., 
numbers used merely to name values, as saying that owning a Ford or having blue 
eyes is a 3), then neither mean nor median is meaningful.  

Exercise on Measures of Centre 
1. Students often want to know the class average on a project or final grade. In what 

circumstances would the mean grade seem the most informative average? For 
what purposes would the median grade be the most revealing? When would the 
mode be most significant? 

2. When would each of the three measures of centre be most appropriate for 
discussing the average income of some group? 

Spread of a Distribution 
Knowing the centre (mean, median, or mode) of a bunch of data tells only part of 

the story. We also need to describe the spread or dispersion of the data. The spread 
of the data is the amount of variability in the data. If everybody in one company 
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makes $1,000, then the mean income in that company (no matter how many people 
work there) is $1,000. If exactly half the employees earn $10 and the other half earn 
$1,990, mean income is also $1,000. The means (and medians) are the same, but it is 
important to know that the values of the variable "income" have a much larger spread
in the second company. If 1,000 employees make $10 and one employee makes 
$991,000, the mean is still $1,000 (the median is now $10), but the spread is even 
larger.

A table listing ranges and the number of units whose value falls in each range 
describes the data's spread very clearly. So does a frequency or relative frequency 
histogram. Other numerical representations of spread are percentiles and standard
deviation.

When the most appropriate measure of central tendency (centre) is the median, we 
use percentiles to indicate the spread of the data. The cth percentile of a set of data is 
a value such that c percent of the numbers are less than it and the rest are 
greater. The median is the 50th percentile. 

To find the percentiles (without a computer program), we arrange the data in order from 
smallest to largest. To find the 8th percentile, we would count up the list until we had counted 
8% of the values in the list. If there is no value that is exactly 8% of the way up the list, we'd 
have to interpolate between values. The process is too complicated for this course. 

We can describe the spread of a distribution by specifying the extreme values 
(the smallest and largest values) and the median (the 50th percentile) and the other 
quartiles (the 25th and 75th percentiles). The first quartile (the value such that a 
quarter of all the values are less than or equal to it) is found by finding the median and 
then finding the median of the values below the median. The second quartile is the 
median. The third quartile (the value that is greater than or equal to three-quarters of 
the values and less than or equal to the top one-quarter) is the median of all the values 
greater than the median. 

Specifying the range of a distribution using extremes and three quartiles is called 
the "five-number summary" of the data. It is the most useful description of many 
distributions. Half of the data values are higher than the median and half are smaller. 
One quarter of the values fall between the low extreme and the first quartile, a quarter 
between the first quartile and the median, a quarter between the median and the third 
quartile, and a quarter between the third quartile and the high value. Half of the data 
values are between the first and third quartiles. 

Example of the five-number summary: Mrs. Fredkin's class of 22 students 
raised money for a charity. The amounts (in dollars) collected by each student are 
listed in the following table. 

29 16 47 196 31 42 56 231 38 24 26
22 27 31 29 33 41 23 32 19 28 40
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The total is $1061. The mean is 1061/22  48.23. Because of the two unusually high 
values, it is misleading to call $48.23 the "centre" of the data. It is higher than all but 
three of the values. A better description of these data is the five-number summary. We 
arrange the data in order from smallest to largest, as: 

16 19 22 23 24 26 27 28 29 29 31
31 32 33 38 40 41 42 47 56 196 231

The median value is the (22 1)/2  11.5th value. The mean of the eleventh and 
twelfth values is (31 31)/2  31. The median amount is $31. The first quartile is the 
median of the values below the 11.5th value, or the median of the first 11 values. 
(11 1)/2  6, so the first quartile (the median of the first 11 values) is the sixth value 
– $26. The third quartile is the median of the values above the median, which is the 
sixth value above the median – $41. The low extreme is $16, and the high extreme is 
$231. The five-number summary is 16, 26, 31, 41, 231. 

Standard Deviation and Coefficient of Variation 
Often we describe collections of data using the mean as the measure of centre, 

and standard deviation to describe the spread of a distribution. Standard deviation 
measures how much the data differ from the mean. Mean and standard deviation are 
most informative if the data are approximately normally distributed (if the distribution 
is a normal distribution). A normal distribution is one whose graph looks like the 
familiar "bell-curve." If the distribution is very asymmetrical or otherwise does 
not resemble the bell-curve, you should not use the mean as a measure of centre, 
and you should not use the standard deviation as a measure of spread. If you have 
good reason to believe that the distribution is approximately normal and 
approximately symmetric (either because the data is the kind that is usually normally-
distributed (like people's heights or I.Q. scores) or because you drew the histogram, 
for example), then you can (and should) use mean and standard deviation to 
summarize the data. 

Fancy calculators and "spreadsheets" or other mathematical computer programs 
will calculate mean and standard deviation. Still, you should understand the 
calculations to know what "standard deviation" means. 

If all of the values are the same, then there is no spread in the data. Usually each 
value deviates more or less from the mean value. In the simple distribution given 
above (3, 3, 7, 9, 10), the mean x  was 6.4. To find the deviation of a value, subtract 
the mean from the value. The first two values deviate from the mean by 3.4. The 
deviation of the next value (7) is 0.6. The other values show a deviation of 2.6 and 3.6. 
If we add up these five deviations, as ( 3.4) ( 3.4) 0.6 2.6 3.6, we get 0. The 
mean of the deviations is 0/5  0. This tells us nothing about the spread of the values. 
If we calculate the mean of the absolute values of the deviations, we get 
(3.4 3.4 0.6 2.6  3.6)/5  2.72. The average distance of any unit from the mean is 
2.72. This is more meaningful, but it is not the measure of deviation that is most 
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frequently used. Instead we calculate a number called the variance, and from it we 
calculate the standard deviation.

The variance is the mean of the squares of the deviations of the data from the 

mean, and is symbolized as s2. In symbols, s2
i=1

n

 (xi-x )2

n . The standard

deviation is the positive square root of the variance and is represented by s (for a 
sample) or the Greek letter  (for the population). 

In our simple example, we calculate the deviation x x  for each value, as we did 
above (getting positive and negative answers). We then square each deviation. We get 
( 3.4)2  11.56 (twice), 0.62  0.36, 2.62  6.76, and 3.62  12.96. We then add 

these five numbers and divide by 5, getting 11.56 11.56 0.36 6.76 12.96
5 8.64.

This is the mean of the squares of the deviations from the mean – the variance.
Standard deviation is the square root of the variance, or 8.64 2.94.

Standard deviation is always zero or positive. If it is zero, it means that every 
value xi is exactly the same as the mean x . There is no spread. Larger standard 
deviation means a larger spread of values. 

To calculate the standard deviation for a whole population, or the sample
standard deviation for a large sample, we get the variance by adding the deviations 
and dividing by n, as above. If the n is small enough6 that it makes a difference, we 
divide by (n 1) rather than by n. Many calculators have two keys, one for computing 
the sample standard deviation and the other for calculating the population standard 
deviation. The reason for using (n 1) for smallish samples is because the sample's 
spread might accidentally miss some of the more extreme values that could occur in 
the population). Dividing by (n 1) (which is a smaller number than n) gives a larger 
standard deviation. 

In the example above the sample variance is 10.8 instead of 8.64 (because we 
divide by n 1  4 instead of by 5), and the sample standard deviation is 10.8
3.29 instead of 2.94.

The standard deviation has the same kind of units as the variable. If the variable is 
measured in dollars, then the standard deviation is in dollars. If the variable is in 
grams, the standard deviation is in grams. 

It is often more informative to get a kind of "relative" standard deviation. If our 
variable is in dollars, and the mean value of the variable is, say 200 billion dollars, a 

6  That is, the sample is not a sufficiently large sample, or the population is too small. 
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standard deviation of a million dollars would be small. But if the variable is the 
amount of change a unit (person) is carrying, the mean might be only $3.00, and a 
standard deviation of $1.00 would be quite large. 

To allow more meaningful comparisons of the variability (spread) of different 
distributions, we use the coefficient of variation. This is just the standard 

deviation expressed as a percentage or fraction of the mean. In symbols, CV  s 
 x .

A standard deviation of a million dollars in a distribution with a mean of 200 
billion dollars would give a coefficient of variation of 0.00005 (very small). A 
standard deviation of $1.00 in a distribution with a mean of only $3.00 gives a 
coefficient of variation of 0.33 (rather large). The relative spread is more informative 
than the spread. 

Exercise on Spread 
1. Calculate the mean, the variance, the standard deviation, and the coefficient of 

variation of each of the following sets of numbers: 
(a) 24, 0, 6, 24, 18, 36 
(b) 25, 15, 5, 15, 20, 10 
Which set has greater spread? 

2. Wechsler IQ test scores have mean of 110 and standard deviation of 25. What is 
the coefficient of variation of the IQ scores? 

3. Suppose scores on the Scholastic Aptitude Test in a particular year have a mean 
of 500. If the coefficient of variation is 0.20, what is the standard deviation? 
Which are more variable – SAT scores or Wechsler scores? 

4. Two teachers teach the same English course to Liberal Arts students at the same 
college. Grades in teacher A's last five classes have x  72, s  12. Teacher B's 
last five classes have x  77, s  6. If students in all classes were similar, what 
can you infer about the teachers' grading methods? Which English teacher's 
grading method do you think is more objective? Why? 

The Normal Distribution 
If we take a frequency histogram and draw lines from the middle of the top of 

each bar to the middle of the top of the next bar, we get a frequency polygon.

For example, starting with the frequency histogram below, 
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If you imagine a very large number of values divided into a very large number of 
ranges, you can see that the frequency histogram will have very narrow bars, and the 
resulting frequency polygon will look almost like a smooth curve. There are very 
powerful mathematical techniques that work with smooth curves, so we approximate
distributions by using such curves. The distribution shown above can be approximated
with the normal curve.

The normal curve is symmetric, so the mean and the median and the mode lie 
together in the centre of the curve. The centre of the curve is also the highest point on 
the curve – the mode.

One of the great virtues of the normal curve is that it gives a clear graphical 
meaning to the standard deviation. If we look at a normal curve, as 
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we see that the vertical lines cut the curve at the points where the curve changes 
direction. That is, as we go up the curve from the left end, the curve is getting steeper 
and steeper until it crosses the vertical line. After the vertical line, the curve slopes 
less. As we pass the peak of the curve, the slope becomes negative. It becomes 
increasingly negative until we get to the second vertical line, where the slope stops 
increasing and the curve becomes less and less steep. At the extremes, the curve is 
almost horizontal. 

The points where the curve changes direction (marked by the vertical lines) are 
exactly one standard deviation away from the centre of the curve. Thus, the distance 
between the two vertical lines is two standard deviations. If the curve shows I.Q. 
scores on the Stanford-Binet test (mean of 100, standard deviation of 15), the left 
vertical line would be at a score of 85, the peak at 100, and the right vertical at 115. 

More importantly, the areas under the curve are proportional to the number of 
values in the data. 68% of all the values will occur between the two vertical lines. That 
is, if our data are normally distributed, then 34% of the units will have values between 
one standard deviation below the mean and the mean, and 34% will be between the 
mean and one standard deviation above the mean. If Stanford-Binet I.Q. scores have a 
normal distribution (and they do), then 68% of all the units (people) we test will have 
an I.Q. between 85 and 115. The mathematics of the normal curve also tell us that 
95% of all values will be within two standard deviations of the mean. Using the I.Q. 
example again, we can predict that 95% of people will score between 70 and 130 on 
the Stanford-Binet test. Finally, 99.7% of all normally distributed values will be 
within three standard deviations of the mean. Only 0.3% (three in a thousand) will 
score lower than 55 or higher than 145 on that test. Since the normal curve is 
symmetrical, only 3 in two thousand (0.15%) will score above 145. These special facts 
about the normal distribution are called the 68-95-99.7 rule.

All of this says that if our data are normally distributed, the standard deviation 
tells us a great deal about the distribution of the data. 

People's heights are approximately normally distributed. If the mean height of 
Canadian women is 163 cm. and the standard deviation is 6.5 cm., we can easily 
estimate what percentage of Canadian women is over 176 cm. tall. 176 cm. is two 
standard deviations greater than the mean. 95% of all Canadian women will be within 
two standard deviations of the mean, so the other 5% will be taller or shorter. By 
symmetry, about 2.5% will be taller than 176 cm. 

The number of standard deviations above or below the mean is often more 
meaningful than the actual value of the variable. Knowing how many standard 
deviations away from the mean a value is tells us how "normal" or how unusual it is. 
For this reason, we have a special name for the number that represents how many 
standard deviations above or below the mean a value is. We call it a standard score
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or Z-score. The standard score is calculated as Z x x
s . Subtract the mean from the 

value of the variable for a unit and divide the result by the standard deviation. This 
gives the number (positive for values above the mean, negative for values below the 
mean) of standard deviations between that value and the mean. A woman whose 
standard score for height is 1 is pretty tall (one standard deviation taller than the 
average, or taller than 84% of women. A woman whose standard score for height is 2 
is very tall – taller than 97.5% of women. Only 2.5% of women are taller than she. If 
she has a Z-score of 3, only 0.15% of women are taller. This tells us much more than 
just noting that she is 183 cm. tall. 

We saw that the coefficient of variation was a more meaningful measure of the 
variability of data than just the standard deviation. Here we see that the variation of an 
individual from the norm is more meaningfully expressed in relative terms, i.e., 
relative to the standard deviation from the norm. 

What about fractional Z-scores (e.g., 1.35 standard deviations above the mean)? 
There are tables that give the relationship between percentiles and standard scores. 
Using the tables or a computer (or some very complicated math), we can find what 
percentile some value is in by calculating its standard score and looking it up. 

Exercise on the Normal Distribution 
1. Heights of 18- to 24-year-old men are approximately normally distributed with 

mean 180 cm. and standard deviation 8 cm. What percentage of men in this age 
group are taller than 188 cm.? What percentage are shorter than 164 cm.? What 
percentage are taller than 196 cm.? What percentage are taller than 204 cm.? 

2. Wechsler Adult Intelligence test scores for 20- to 34-year-olds are approximately 
normally distributed with mean 110 and standard deviation 25. Wechsler scores 
for 60- to 64-year-olds are approximately normally distributed with mean 90 and 
standard deviation 25. You and your 62-year-old grandma take the tests. You 
score 148, and Granny gets 135. Whose score is higher relative to his/her age 
group? Defend your answer. 

3. In a simulation using a 100-bead paddle to draw beads from a box, the beads in 
the box (the population) had a parameter value of 0.20. It has been calculated that 
very large numbers of such samples will be approximately normally distributed 
with mean  0.20 and standard deviation 0.04. What is the probability that a 
sample could have 32 or more red beads? 

4. A large company has a clerical staff of which 20% are males. Of the last 100 
clerical workers chosen for promotion, 32 were males. What is the probability 
that 32 or more males would be chosen if the selection were random? 


