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1 What did Gödel prove?

Gödel proved that first-order arithmetic1 cannot be completely axiomatised. More exactly, no finitely-
specifiable axiom system for first-order arithmetic can be both sound and complete.

Note that if we had a sound and complete axiomatisation for first-order arithmetic, then we could
mechanically churn out all the first-order truths of arithmetic, which would therefore be at least a semi-
decidable theory. The set of true formulae of first-order arithmetic would be recursively enumerable.
Gödel’s result is thus tantamount to showing that the set of truths of first-order arithmetic is not recur-
sively enumerable. This means that there is no effective procedure for generating all and only the true
formulae of first-order arithmetic. In effect, it means that arithmetic cannot be completely mechanised;
there is always room for ingenuity or creativity in devising new methods of proof.

2 How did he prove it?

Suppose that we have a formal systemS which is rich enough to be used to state and prove formulae
of the first-order arithmetic of the natural numbers. We must show thatS cannot be both sound and
complete.

• Each formulaφ in S has astandard interpretationwhich is a propositionpφ of arithmetic.

• We writeS ` φ to mean thatS provides a proof forφ.

• We sayS is soundif every formula it provides a proof for is true under the standard interpretation
(i.e.,S ` φ impliespφ).

• We sayS is completeif S provides a proof for every formula which is true under the standard
interpretation (i.e.,pφ impliesS ` φ).

In addition to the standard interpretation, Gödel showed how to construct, for certain formulaeφ, an
alternative interpretation, which is a statementqφ about the systemS, such thatqφ is true if and only if
pφ is true. We shall call this alternative interpretation theGödelian interpretation.

Gödel’s achievement was to set up the Gödelian interpretation in such a way that there is a formulaγ
in S whose G̈odelian interpretationqγ is the statement “γ is not provable inS”. The formulaγ is known
as the G̈odel formula for the systemS.2 Like all formulae inS, it also has a standard interpretationpγ ,
which is an arithmetical statement which may or may not be true. Supposepγ is true. Thenqγ must

1I.e., the system described in§5 of Some Computational Aspects of Logic.
2A system does not have a unique Gödel formula: which formulae of a system can function as Gödel formulae for that

system depends sensitively on the way in which the Gödelian interpretation is defined—for more details, see below. What is
important, though, is that one can always construct a Gödel formula for any system powerful enough to express and prove
statements of first-order arithmetic.
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be true also, which means thatγ is not provable inS. Hence there is a formula that is true under the
standard interpretation but which is not provable inS, which means thatS is not complete. Suppose on
the other hand thatpγ is false. Thenqγ must be false also, which means thatγ is provable inS. Hence
there is a formula that is provable inS but which is not true under the standard interpretation, which
means thatS is not sound. Sincepγ must be either true or false, it follows thatS is either incomplete or
unsound. In any case, it cannot be both sound and complete.

3 What is the Gödelian interpretation?

To quote from G̈odel himself3,

The formulas of a formal system (we restrict ourselves here to the systemPM ) in outward
appearance are finite sequences of primitive signs . . . , and it is easy to state with complete precision
which sequences of primitive signs are meaningful formulas and which are not. Similarly, proofs,
from a formal point of view, are nothing but finite sequences of formulas (with certain specifiable
properties). Of course, for metamathematical considerations it does not matter what objects are
chosen as primitive signs, and we shall assign natural numbers to this use. Consequently, a formula
will be a finite sequence of natural numbers, and a proof array a finite sequence of finite sequences of
natural numbers. The metamathematical notions (propositions) thus become notions (propositions)
about natural numbers or sequences of them; therefore they can (at least in part) be expressed by the
symbols of the systemPM itself. In particular, it can be shown that the notions “formula”, “proof
array”, and “provable formula” can be defined in the systemPM ; that is, we can, for example, find
a formulaF (v) of PM such thatF (v), interpreted according to the meaning of the terms ofPM ,
says:v is a provable formula. We now construct an undecidable proposition of the systemPM , that
is, a propositionA for which neitherA nornot-A is provable, in the following manner.

A formula of PM with exactly one free variable, that variable being of the type of the natural
numbers . . . , will be called aclass sign. We assume that the class signs have been arranged in a
sequence in some way, we denote thenth one byR(n), and we observe that the notion “class sign”,
as well as the ordering relationR, can be defined in the systemPM . Let α be any class sign; by
[α;n] we denote the formula that results from the class signα when the free variable is replaced by
the sign denoting the natural numbern. The ternary relationx = [y; z], too, is seen to be definable
in PM . We now define a classK of natural numbers in the following way:

n ∈ K ≡ Bew[R(n);n] (1)

(whereBew x means:x is a provable formula)4. Since the notions that occur in the definiens can all
be defined inPM , so can the notionK formed from them; that is, there is a class signS such that
the formula[S;n], interpreted according to the meaning of the terms ofPM , states that the natural
numbern belongs toK. SinceS is a class sign, it is identical with someR(q); that is, we have

S = R(q)

for a certain natural numberq. We now show that the proposition[R(q); q] is indecidable in PM. For
let us suppose that the proposition[R(q); q] were provable; then it would also be true. But in that
case, according to the definitions given above,q would belong toK, that is, by (1),Bew[R(q); q]
would hold, which contradicts the assumption. If, on the other hand, the negation of[R(q); q] were
provable, thenq ∈ K, that is,Bew[R(q); q], would hold. But then[R(q); q], as well as its negation,
would be provable, which again is impossible.

This occurs in§1 of the paper;§2 begins “We now proceed to carry out with full precision the proof
sketched above”.

3This is from the seminal paper, published in 1931, in which Gödel announced his result, “On Formally Undecidable
Propositions ofPrincipia Mathematicaand Related Systems”. It is reprinted in Jean van Heijenoort (ed.),From Frege to G̈odel,
a Source Book in Mathematical Logic, 1879–1931, Harvard University Press, 1967, and also in M. Davis,The Undecidable,
Raven Press, New York, 1965, and in S. G. Shanker,Gödel’s Theorem in Focus, Routledge 1989.

4The bar denotes negation.
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A couple of observations about the above passage.

• PM is the system presented in thePrincipia Mathematicaof Bertrand Russell and A. N. White-
head (1910), a monumental, but ultimately unsuccessful, attempt to derive the whole of mathe-
matics from pure logic. Although G̈odel’s explicit construction works with this system, he shows
that the same thing can be done withanysystem powerful enough to express the first-order truths
of arithmetic. (This does not include pure first-order logic, which Gödel himself proved was com-
plete; but it does include pure second-order logic, in which the arithmetical notions of “natural
number”, “successor”, “addition” and “multiplication” can be defined.)

• Why Bew? Gödel was writing in German, in which the word for “provable” isBeweisbar.

4 Gödel Numbering

As the passage above explains, Gödel defined the alternative, “G̈odelian” interpretation of arithmetical
expressions byencodingall such expressions as numbers. In that way, a formula which ascribes a certain
arithmetical property to some number might also, in certain cases, be interpretable as a ascribing some
logical property to the formula encoded by that number. Gödel’s scheme of encoding relies on what
is known as theFundamental Theorem of Arithmetic, which states that every positive integer can be
expressed as the product of primes in one and only one way (e.g.,1446480 = 24 × 32 × 5 × 72 × 41).
Gödel first assigned an odd number to each of the primitive symbols of the system. To illustrate, we
shall use a somewhat different notation from Gödel’s; our language will have thirteen primitive symbols
to which we assign odd numbers as follows:

0 s = ¬ ∨ ∀ ( ) + × x ′

1 3 5 7 9 11 13 15 17 19 21 23

Heres is for suc, and we can form an unlimited number of variables asx, x′, x′′, x′′′, . . . . The symbols
“∧”, “→”, “↔”, and “∃” can be defined in terms of “¬”, “∨”, and “∀”. In this pared-down language, the
formula∃x(x + x = suc(x)) would be expressed as “¬∀x¬x + x = sx”. The number assigned to this
formula is computed by taking the first prime, 2, and raising it to the power given by the first symbol
in the expression, multiplying by the second prime, 3, raised to the power corresponding to the second
symbol, and so on, giving us the (enormous!) number

27 × 311 × 521 × 77 × 1121 × 1317 × 1721 × 195 × 233 × 2921.

Since this number canonly be factorised in this way, one can uniquely retrieve the formula if given the
number. We call it theGödel numberof the formula. For a formulaφ, we shall writeg(φ) to denote its
Gödel number. Note that not all numbers are the Gödel numbers of formulae. For example, the Gödel
number of any formula must be even: this is because it is divisible by2n, wheren is the number assigned
to the first symbol in the formula.

Gödel next assigns numbers tosequencesof formulae (such as one finds, for example, in proofs).
The G̈odel number assigned to a sequenceφ1, φ2, φ3, . . . , φn of formulae, is

2g(φ1) × 3g(φ2) × · · · × pg(φn)
n .

Notice that since each of the theg(φi) is even, this number is a perfect square, whereas the Gödel
number of a formula is never a square (since each of its prime factors occurs with odd multiplicity).
Thus formulae can always be distinguished from sequences of formulae by their Gödel numbers.

Moreover, somelogical properties of a formula or sequence of formulae in the systemS correspond
to arithmeticalproperties of its G̈odel number. For example, a formula is a universal generalisation if
and only if its G̈odel number is divisible by211 but by no higher power of2. Gödel’s tour de forcewas
to show how even quite complex logical properties such as
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“x is a well-formed formula”,
“x is a substitution instance of one of the axioms ofS”,
“x is a sequence of formulae which constitutes a correct proof inS”,
“formula x is provable from the axioms ofS”,

correspond precisely, under his encoding scheme, to arithmetical properties of the Gödel numbers, prop-
erties which, moreover, can be expressed in the formal language ofS. In this way, the logical systemS,
which was set up in order to talk about arithmetic, is co-opted into talking about itself, and it is because
of this reflexiveness that it is possible to construct a formula which cannot be either proved or disproved
within S.

5 Construction of the Gödel Formula

Here, in outline, is what G̈odel did. He first showed how to construct a formulaPf(x, y) (with free
variablesx andy), which says that (i)x is the G̈odel number of a formulaφ(z) containing one free
variable, and (ii)y is the G̈odel number of a proof of the formulaφ(x) obtained by substituting for the
free variablez in φ(z) the G̈odel numberx of that very formulaφ(z). (A proof of a formulaφ consists
of a sequence of formulae, each of which is either an axiom ofS or is derived from one or more earlier
formulae in the sequence using a rule of inference ofS, and such that the last formula in the sequence is
φ itself.)

The next step is to consider the formula∀y¬Pf(x, y). Note that this formula has one free variable
x; let us abbreviate itβ(x), and let its G̈odel number beg. The formulaβ(x) says that for anyy, it is not
the case thaty is the G̈odel number of a proof inS of the formulaφ(x), wherex is the G̈odel number of
the open formulaφ(z): in short, the formulaφ(x) cannot be proved in the system.

Consider now the formulaβ(g), i.e., ∀y¬Pf(g, y), which is obtained by substituting forx in the
formulaβ(x) the G̈odel number of that very formula (i.e., the symbolic representation of that number in
the formal language). This formula says

(1) For eachy, it is not the case thatg is the G̈odel number of a formulaφ(x) containing one free
variable, such thaty is the G̈odel number of a proof, inS, of the formulaφ(g).

Now we know thatg is the G̈odel number ofβ(x), so we can simplify our statement (1) of whatβ(g)
says as follows:

(1’) For eachy, it is not the case thaty is the G̈odel number of a proof, inS, of the formulaβ(g).

More simply still,β(g) says that

(1”) β(g) cannot be proved in S.

Thus the formulaβ(g) asserts its own unprovability inS; it is therefore a G̈odel formula for the formal
systemS.

Having constructed the G̈odel formula forS, we can then argue exactly as in§2 above to establish
thatS cannot be both sound and complete.

6 Digression: Penrose’s attack on ‘strong’ AI.

Gödel’s theorem says that if we are given a sound formal proof system for arithmetic, then we can
construct a statement of arithmetic (the Gödel formula of the system) which, though true, is not a theorem
of the system.

Penrose deduces from this that
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“Human mathematicians are not using a knowably sound algorithm in order to ascertain
mathematical truth.” (Shadows of the Mind, §2.5)

More exactly, we can prove the following theorem:

Theorem. It is not the case that I can correctly know, of some sound formal proof system whose details
are known to me, that it constitutes the totality of processes by which I can come to accept arithmetical
statements as true.
Proof. For any given sound formal proof systemS whose details I know, I can construct its Gödel
formulaG(S), whose truth I thereby come to accept. SinceG(S) is not a theorem ofS, the theorems of
S do not exhaust the totality of arithmetical statements I can come to accept as true. �

So far, there is nothing to quarrel with here. But now Penrose further infers that the principles underlying
the human mind are not computational in nature; and since they are presumed to be physical, the laws
of physics must include some as yet unknown non-computational component.

What does Penrose mean by ‘use’? Sometimes he refers to explicit procedures used by mathemati-
cians, sometimes to low-level mechanisms in the brain. It seems obvious that the explicit procedures
cannot exhaust the processes by which I come to believe arithmetical statements; while there is no rea-
son to believe that the lower-level processes (which must include influences on the brain from outside)
are, in detail, knowable to us.

Suppose that, against Penrose, we believe that all physical processes are computational in the sense
that they can be simulated to an arbitrary degree of precision by means of digital computation (and hence
expressible by means of a formal system of the kind to which Gödel’s theorem applies). If in addition we
believe with Penrose that all mental processes are, at some level of description, physical processes, then
what we can actually deduce from Gödel’s theorem is thatthe totality of processes by which I can come
to accept arithmetical statements as true is either unknowable to me, or unsound. Penrose’s argument
depends on his finding this statement incredible; whereas to me it seems quite plausible. Deadlock!

Of course, Penrose’s real target, which is Strong AI, doesn’t come out of this too well either. We can
hardly simulate what is unknowable to us!

7 Postscript on the Arithmetic of the Real Numbers

The set of real numbersR consists of all numbers expressible by means of finite or infinite decimal
expansions. It includes the integersZ and the rational numbersQ and a whole lot else besides.

Many problems areeasierto solve for this larger set than for the integers; indeed they can become
trivial. Consider for example the following problem (a special case of Fermat’s Last Theorem):

Do there exist numbersx, y, z such thatx7 + y7 = z7?

If x, y, andz are required to be positive integers, this is quite a hard problem, and the answer turns
out to be negative: there do not exist integers with this property. If, on the other hand,x, y, andz are
allowed to be any real numbers, the problem is quite trivial. I can choose, sayx = y = 2, and then
put z =7

√
256, and I have a solution. Existence problems are easier to solve for real numbers than for

integers because there are manymorereal numbers than integers. It is easier to see whether or not there
is a real number with a specified property.

The first-order theory of the real numbers has the following non-logical vocabulary (with the usual
interpretations):

Constants:0, 1
Unary functions:−, −1

Binary function:+, ∗
Binary predicate:≤
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The Polish logician Alfred Tarski (1902–1983) proved that this is a decidable theory. The following
axioms are complete for this theory:

1. x + (y + z) = (x + y) + z
2. x + y = y + x
3. x + 0 = x
4. x + (−x) = 0
5. x ∗ (y ∗ z) = (x ∗ y) ∗ z
6. x ∗ y = y ∗ x
7. x ∗ 1 = x
8. x 6= 0 → x ∗ x−1 = 1
9. x ∗ (y + z) = (x ∗ y) + (x ∗ z)
10. 0 6= 1
11. 0−1 = 0
12. 0 ≤ x ∨ 0 ≤ (−x)
13. 0 ≤ x ∧ 0 ≤ (−x) → x = 0
14. 0 ≤ x ∧ 0 ≤ y → 0 ≤ x + y
15. 0 ≤ x ∧ 0 ≤ y → 0 ≤ x ∗ y
16. x ≤ y ↔ 0 ≤ y + (−x)
17. ∃xΦ(x) ∧ ∃y∀x(Φ(x) → x ≤ y) → ∃z∀y(∀x(Φ(x) → x ≤ y) ↔ z ≤ y)

Note that all function symbols have to be defined as total, and therefore0−1 has to be assigned a meaning
even though in reality the number0 has no reciprocal; axioms 8 and 11 in effect definex−1 as the
reciprocal ofx whenx 6= 0, and0 otherwise. This does not interfere with the correct functioning of the
system.

Axiom 17 (which is actually an axiom schema) expresses the least upper bound property of the
real numbers: if a set of real numbers has an upper bound, then it has a least upper bound. As stated,
the axiom does not cover all possible sets, sinceΦ can only be instantiated to first-order predicates
constructible in the language; but since we are only considering the first-order theory of the reals, it does
not matter that sets only expressible in higher-order logic are not handled.
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