There can never be surprises in logic. —Lupwic WITTGENSTEIN

Do I contradict myself?
Very well then I contradict myself.
(I am large, I contain multitudes.) —WALT WHITMAN

Thus, be it understood, to demonstrate a theorem, it is neither necessary
nor even advantageous to know what it means. The geometer might be
replaced by the “logic piano” imagined by Stanley Jevons; or, if you choose,
a machine might be imagined where the assumptions were put in at one
end, while the theorems came out at the other, like the legendary Chicago
machine where the pigs go in alive and come out transformed into hams
and sausages. No more than these machines need the mathematician know
what he does. —HENRI POINCARE

4 Goedel’s Proof

By ERNEST NAGEL and
JAMES R. NEWMAN

IN 1931 there appeared in a German scientific periodical an exceptionally
difficult and brilliant paper entitled “Ueber formal unentscheidbare Saetze
der Principia Mathematica und verwandter Systeme” (*On Formally Un-
decidable Propositions of Principia Mathematica and Related Systems™).
The author of the paper was Kurt Goedel, then a young mathematician of
25 at the University of Vienna, now a member of the Institute for Ad-
vanced Study at Princeton. When at a convocation in 1952 Harvard
University awarded Goedel an honorary degree, the citation described his
achievement as the most important advance in mathematical logic in a
quarter century.

“On Formally Undecidable Propositions of Principia Mathematica and
Related Systems” is a milestone in the history of modern logic and
mathematics, yet probably neither its title nor its contents were at the
time of its appearance intelligible to the great majority of professional
mathematicians. This is not surprising. The term “undecidable proposi-
tions” may for the moment be briefly identified as the name of proposi-
tions which can be neither proved nor disproved within a given system;
the Principia Mathematica, to which the paper referred, is the monu-
mental three-volume treatise by Alfred North Whitehead and Bertrand
Russell on mathematical logic and the foundations of mathematics. Now
familiarity with the thesis and the techniques of the Principia, let alone
with some of the questions it raised, was not in 1931 (and is not now) a
prerequisite to successful research in most branches of mathematics.
There were, to be sure, a number of mathematicians, chiefly under the
influence of the outstanding German mathematician David Hilbert, who
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were profoundly interested in these matters; but the group was small.
Logico-mathematical problems have never attracted a wide audience even
among those who are partial to abstract reasoning. On the other hand,
to those who were able to read Goedel's paper with understanding, its
conclusions came as an astounding and a melancholy revelation. For the
central theorems which it demonstrated challenged deeply rooted precon-
ceptions concerning mathematical method, and put an end to one great
hope that motivated decades of research on the foundations of mathe-
matics. Goedel showed that the axiomatic method, which mathematicians
had been exploiting with increasing power and rigor since the days of
Euclid, possesses certain inherent limitations when it is applied to suf-
ficiently complex systems—indeed, when it is applied even to relatively
simple systems such as the familiar arithmetic of cardinal numbers. He
also proved, in effect, that it is impossible to demonstrate the internal con-
sistency (non-contradictoriness) of such systems, except by employing
principles of inference so complex that their internal consistency is as
open to doubt as that of the systems themselves. Goedel's paper was not,
however, exclusively negative in import. It introduced a novel technique
of analysis into the foundations of mathematics that is comparable in
fertility with the power of the algebraic method which Descartes intro-
duced into the study of geometry. It suggested and initiated new problems
and branches of logico-mathematical research. It provoked a critical re-
appraisal, not yet completed, of widely held philosophies of knowledge in
general, and of philosophies of mathematics in particular.

Despite the novelty of the techniques Goedel introduced, and the com-
plexity of the details in his demonstrations, the major conclusions of his
epoch-making paper can be made intelligible to readers with even limited
mathematical preparation. The aim of the present article is to make the
substance of Goedel's findings generally understandable. This aim will
perhaps be most easily achieved if the reader is first briefly reminded of
certain relevant developments in the history of mathematics and modern
formal logic.

The nineteenth century witnessed a tremendous expansion and intensi-
fication of mathematical research. Many fundamental problems that had
long withstood the best efforts of earlier thinkers received definitive solu-
tions; new areas of mathematical study were created; and the foundations
for various branches of the discipline were either newly laid, or were
recast with the help of more rigorous techniques of analysis. In particular,
the development of the non-Euclidean geometries stimulated the revision
and completion of the axiomatic basis for many mathematical systems;

i



1670 Ernest Nagel and James R. Newman

and axiomatic foundations were supplied for fields of inquiry which
hitherto had been cultivated in a more or less intuitive manner. One im-
portant conclusion that emerged from this critical examination of the
foundations of mathematics was that the traditional conception of mathe-
matics as the “science of quantity” is both inadequate and misleading. For
it became evident that mathematics is the discipline par excellence which
draws necessary conclusions from any given set of axioms (or postulates),
and that the validity of the inferences drawn does not depend upon any
particular interpretation which may be assigned to the postulates. Mathe-
matics was thus recognized to be much more “abstract” and “formal”
than had been traditionally supposed. The postulates of any branch of
demonstrative mathematics are not inherently “‘about™ space, quantity, or
anything else; and any special meaning which may be associated with the
“descriptive” terms (or predicates) in the postulates plays no essential
role in the process of deriving theorems. The sole question which con-
fronts the pure mathematician (as distinct from the scientist who employs
mathematics in investigating a special subject matter) is not whether the
postulates he assumes or the conclusions he deduces from them are true,
but only whether the alleged conclusions are in fact the necessary logical
consequences of the initial assumptions. For example, among the unde-
fined terms employed by Hilbert in his famous axiomatization of geom-
etry are the following: “point,” “line,” “plane,” “lies on,” and “between.”
The customary meanings attributed to these (predicate) expressions un-
doubtedly promote the cause of discovery and learning. That is, because
of the very familiarity of these notions, they not only motivate and facili-
tate the formulation of axioms, but they also suggest the goals of inquiry,
i.e., the statements one wishes to establish as theorems. Nevertheless, as
Hilbert states explicitly, for mathematical purposes familiar connotations
are to be banished and the “meanings” of the expressions are to be taken
as completely described by the axioms into which they enter. In more
technical language the expressions are “implicitly defined” by the axioms
and whatever is not embraced by the implicit definitions is irrelevant to
the demonstration of theorems. The procedure recalls Russell's famous
epigram: pure mathematics is the subject in which we do not know what
we are talking about, nor whether what we are saying is true.

This land of rigorous abstraction, empty of all familiar landmarks, was
certainly not easy to get around in. But it offered compensations in the
form of a new freedom of movement and fresh vistas. The intensified
formalization of mathematics emancipated men’s minds from the restric-
tions which the standard interpretation of expressions placed on the con-
struction of novel systems of postulates. As the meaning of certain terms
became more general, less explicit, their use became broader, the infer-
ences to be drawn from them less confined. Formalization led in fact to
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a great variety of axiomatized deductive systems of considerable mathe-
matical interest and value. Some of these systems, it must be admitted,
did not lend themselves to an intuitively obvious interpretation, but this
fact caused no alarm. Intuition, for one thing, is an elastic faculty; our
children will have nc difficulty in accepting as intuitively cciomm the
paradoxes of relativity, just as we do not boggle at ideas which were re-
garded as wholly unintuitive a couple of gencrations ago. Moreover, intu-
ition, as we all know, is not a dependable guide: it cannot be used safely
as a criterion of either truth or fruitfulness in scientific explorations.

A more serious problem, however, was raised by the increased abstract-
ness of mathematics. This turned on the question whether a given set of
postulates underlying a new system was internally consistent, so that no
mutually contradictory theorems could be deduced from the set. The
problem does not seem pressing when a set of axioms is taken to be
“about” a definite and familiar domain of objects; for then it is not only
significant to ask, but it may be possible to ascertain, whether the axioms
are indeed true of these objects. Thus, since the Euclidean axioms were
generally supposed to be true statements about space (or objects in space),
apparently no mathematician prior to the nineteenth century ever enter-
tained the question whether a pair of contradictory theorems might not
some day be deduced from the axioms. The basis for this confidence in
the consistency of Euclidean geometry was the sound principle that logi-
cally incompatible statements cannot be simultaneously true; accordingly,
if a set of statements are true (and this was generally assumed to be the
case for the Euclidean axioms), they are also mutually consistent.

. But the non-Euclidean geometrics were clearly in a different case. For
since their axioms were initially regarded as being plainly false of space
and, for that matter, doubtfully true of anything, the problem of mm:._u“
lishing the internal consistency of non-Euclidean systems was recognized
to be both substantial and serious. In Riemannian geometry, for example
the ?.Bc:w parallel postulate of Euclid (which is equivalent to the mu..
sumption that through a given point in a plane just one parallel can be
drawn to a given line in the plane) is replaced by the assumption that
w:_.ocm_. a given point in a plane no parallel can be drawn to a given line
in the plane. Now suppose the question: is the Riemannian set of postu-
lates mo_._mmm_mz_..u They are evidently not true of the ordinary space of our
Q:uo:m._._nm. How then is their consistency to be tested? How can one prove
they will not lead to contradictory theorems? _

.> mn:nqw_ method was devised for solving this problem. The under-
”ﬂ_mz_mnwannrm _u.momnm__uhwn_m“_ _..MH_..NMM_:Q?_, m=,~m6q2m:o=v for the postulates so
e e ,. ed Into a true statement about the model.
nary o.nm.MM. ﬂ”/_oic“””“mh_w.mwﬂahw“w. as we have seen, the model was ordi-

s extended to find other models, the ele-
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ments of which could be used as crutches for the abstractions of m_._n
postulates. The procedure goes something like this. Suppose the ao__os__w_m
set of postulates is given concerning two classes K and .r. whose special
nature is left undetermined except as “implicitly” defined in the postulates:

(1) Any two members of K are contained in just one member of L.

(2) No member of K is contained in more than two members of L.

(3) The members of K are not all contained in a single member of L.

(4) Any two members of L contain just one member of K.

(5) No member of L contains more than two members of K.

From this little set, using customary rules of inference, theorems can
be derived. For example, it can be shown that K contains just three .:._m_._._-
bers. But is the set a consistent one, so that mutually contradictory
theorems can never be derived from it? The fact that no one has as yet
deduced such theorems does not settle the question, because this does not
prove that contradictory theorems may not eventually be ana.:nna. The
question is readily resolved, however, with the help of the following model.
Let K be the class of points constituting the vertices of a triangle, and L
the class of lines constituting its sides; and let us understand the phrase “a
member of K is contained in a member of L” to mean that a point which
is a vertex lies on a line which is a side. Each of the five abstract postu-
lates is then converted into a true statement—for example, the first asserts
that any two points which are vertices of the triangle lie on just one line
which is a side. Thereby the set is proved to be consistent.

In a similar fashion the consistency of plane Riemannian geometry can
be established. Let us interpret the expression “plane” in the Riemannian
postulates to signify the surface of a Euclidean sphere, the .nx_unm.mmc”
“point” to signify a point on this surface, the expression “straight __.._.o
to signify an arc of a great circle on this surface, and so on. Each Rie-
mannian postulate is then converted into a truth of Euclid. For example,
on this interpretation the Riemannian parallel postulate reads as follows:
Through a point on the surface of a sphere, no arc of a great circle can
be drawn parallel to a given arc of a great circle.

All this is very tidy, no doubt, but we must not become complacent.
For as any sharp eye will have seen by now we are not so much answering
the problem as removing it to familiar ground. We seek to settle the
question of Riemannian consistency by appealing, in effect, ﬂ.o En. au-
thority of Euclid. But what about his system of geometry—are its axioms
consistent? To say that they are “self-evidently true,” and therefore con-
sistent, is today no longer regarded as an acceptable reply. To describe
the axioms as inductive generalizations from experience would be to claim
for them only some degree of probable truth. A great mass of evidence

might be adduced to support them, yet a single contrary item would
destroy their title of universality. Induction therefore will not suffice to
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establish the consistency of Euclid’s geometry as logically certain. A dif-
ferent approach was tried by David Hilbert. He undertook to interpret the
Euclidean postulates in a manner made familiar by Cartesian co-ordinate
geometry, so that they are transformed into algebraic truths. Thus, in the
axioms for plane geometry, construe the expression “point” to signify a
pair of real numbers, the expression “straight line” to signify the relation
between real numbers which is expressed by a first degree equation with
two unknowns, the expression “circle” to signify the relation between
numbers expressed by a quadratic equation of a certain form, and so on.
The geometric statement that two distinct points uniquely determine a
straight line is then transformed into the algebraic truth that two pairs
of real numbers uniquely determine a linear form; the geometric theorem
that a straight line intersects a circle in at most two points, is transformed
into the algebraic theorem that a linear form and a quadratic form of a
certain type determine at most two pairs of real numbers; and so on. In
brief, the consistency of the Euclidean postulates is established by showing
that they are satisfied by an algebraic model.

This method for establishing consistency is powerful and effective. Yet
it too remains vulnerable to the objections set forth above. In other
words the problem has again been solved in one domain only by trans-
ferring it to another. Hilbert’s proof of the consistency of his postulates
simply shows that if algebra is consistent, then so is his geometric system.
The proof is merely relative to the assumed consistency of some other
system and is not an “absolute” proof.

In attempting to solve the problem of consistency one notices a re-
current source of difficulty. It is encountered whenever a non-finite model
is invoked for purposes of interpretation. It is evident that in making
generalizations about space only a very limited portion—that which is
accessible to our senses—serves as the basis of grand inferences; we ex-
trapolate from the small to the universal. But where the model has a
finite number of elements the difficulty is minimized, if it does not com-
pletely vanish. The vertex-triangle model used above to show the con-
sistency of the five abstract K and L class postulates is finite; it was
therefore comparatively simple to determine by actual inspection whether
all the elements in the model actually satisfied the postulates. If this con-
dition is fulfilled they are “true” and hence consistent. To illustrate: by
examining in turn all the vertices of the model triangle one can learn
whether any two of them lie on one side—so that the first postulate is
established as true. Unfortunately, however, most of the postulate systems
that constitute the foundations of important branches of mathematics can-
not be mirrored in finite models and can be satisfied only by non-finite
ones. One of the postulates, for example, in a well known axiomatization
of elementary arithmetic asserts that every integer has an immediate suc-
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cessor which differs from any integer preceding it in the vam_.n‘mao:. It is
evident that the set of postulates containing this one nm::& be 5.2..@_.2.2_
by means of a finite model; the model itself will have to mirror .:n. infinity
of elements postulated by the axioms. The truth (and so the nc:m_mﬂnsmwv
of the set cannot therefore be established by inspection and enumeration.
Apparently then we have reached an impasse. Finite models suffice to es-
tablish the consistency of certain sets of postulates, but these .m:m of lesser
importance. Non-finite models, necessary for the interpretation of most
postulate systems, can be described only in general terms, m:.n_ ,.,_.n are not
warranted in concluding as a matter of course that the descriptions them-
selves are free from a concealed contradiction.

It may be tempting to suggest at this point that we can be mmmz_‘.nn_ of
the consistency of descriptions which postulate non-finite models, ”.m the
basic notions employed in such descriptions are transparently “‘clear” and
“certain.” But the history of thought has not dealt kindly with the ao"u.
trine of intuitive knowledge which is implicit in the suggestion. In certain
areas of mathematical research, in which assumptions about infinite do-
mains play central roles, radical contradictions (or :mnz.aoa.._nm.;. have
turned up, despite the “intuitive” clarity of the notions involved :._ the
assumptions, and despite the seemingly consistent character of :.n. intel-
lectual constructions performed. Such antinomies have emerged in .:._n
theory of transfinite numbers developed by Georg Cantor in the _.:nw-
teenth century; and the occurrence of these contradictions has made plain
that the apparent clarity of even such an elementary notion mm.:._ﬁ of
class, does not guarantee the consistency of the system built on _.-. Now
the theory of classes (or aggregates) is often made the foundation .no_.
other branches of mathematics, and in particular for elementary arith-
metic. It is therefore pertinent to ask whether antinomies similar to those
encountered in the theory of transfinite numbers may not infect other
parts of mathematics. .

In point of fact, Russell constructed a contradiction within the D.m:..-n-
work of elementary logic itself, a contradiction which is the precise
analogue of the antinomy first developed in the Cantorian theory of trans-
finite numbers. Russell's antinomy can be stated as follows: Classes may
be divided in two groups: those which do not, and those which do noﬂmmw_
themselves as members. A class will be called “normal” if, and only if, it
does not contain itself as a member. Otherwise it is “non-normal.” An
example of a normal class is the class of mathematicians, for um.n_._:.% the
class itself is not a mathematician and is therefore not a member of itself.
An example of a non-normal class is the class of all thinkable things; for
the class of all thinkable things is itself a thinkable thing and is therefore
a member of itself. Now let “N” by definition stand for the class of all
normal classes. We ask whether N itself is a normal class. If N is normal,
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it is a member of itself for, by definition of “N,” N is to include all normal
classes; but in that case also N is non-normal because by definition of
“non-normal,” non-normal classes are those which contain themselves as
members. On the other hand, if N is non-normal, then again it is a mem-
ber of itself by definition of “non-normal,” but then also it is normal be-
cause it belongs to N which is defined as normal. N, in other words, is
normal if and only if N is non-normal. It follows that the statement “N is
normal” is both true and false. This fatal contradiction results from an
uncritical use of the apparently pellucid notion of class.

Moreover, additional antinomies were found subsequently, each of them
constructed by means of familiar and seemingly cogent modes of reason-
ing. But the intellectual construction and formulation of non-finite models
generally involves the use of possibly inconsistent sets of postulates. Ac-
cordingly, although the classical method for establishing the consistency
of axioms continues to be an invaluable mathematical tool, that method
does not supply a final answer to the problem it was designed to resolve,

n

The inadequacies of the model method of demonstrating consistency,
and the growing apprehension, based on the discovery of the antinomies,
that established mathematical Systems were infected by contradictions, led
to new attacks upon the problem. An alternative to relative proofs of con-
sistency was proposed by Hilbert. He sought to construct so-called “abso-
lute” proofs of freedom from contradiction. These we must explain briefly
as a further preparation for discussing Goedel’s proof.

The first requirement of an absolute proof as Hilbert conceived it is
the complete formalization of the system. This, the reader will recall,
means draining the expressions occurring within the system of any mean-
ing whatever; they are to be regarded simply as empty, formal signs. How
these signs are to be manipulated is then to be set forth explicitly in a set
of rules. The purpose of this procedure is to construct a calculus which
conceals nothing, which has in it only that which we intended to put in it.
When theorems of this calculus are derived from the postulates by
the combination and transformation of its meaningless signs in accord
with precisely stated rules of operation, the danger is eliminated of the
use of any unavowed principles of reasoning. Formalization is a difficult
and tricky business, but it serves a valuable purpose. It reveals structure
and function in naked clarity as does a cut-away working model of a
machine, When a system has been formalized the logical relations between
mathematical propositions are exposed to view; one is able to see the

Structures of configurations of certain “strings” (or sequences) of “mean-

ingless” signs, how they hang together, are syntactically combined, nest in
one another and so on,
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A page covered with the “meaningless” marks of such a ?..Bw:uon
mathematics does not assert anything—it is simply an abstract design or
mosaic possessing a determinate structure. But mcv_uo.mn we as observers
wish to make statements about a given configuration in the nm_nc_p._m. .mo._.
¢xample, that one “string” is longer than another or that o:o‘:m:._:m is
made up of three others. Such statements are evidently meaningful, and
are expressed in a language belonging not to the calculus (cr to mathe-
matics) but to what Hilbert called “meta-mathematics” (or the language
about mathematics). Meta-mathematical statements are statements about
the signs in a calculus. They describe the kinds and .m:.msmn:dniw of such
signs when they are combined to form longer strings of marks called
“formulas,” and the relations between formulas in consequence of m:n
rules of manipulation that have been specified for them. ._,_..n. mw__os,._sw
table illustrates some of the differences between expressions within arith-
metic (mathematics) and statements about such expressions (meta-
mathematics).

Mathematics Meta-mathematics

For every x, if x is a prime  ‘x’ is a numerical variable.
and x > 2, then x isodd. ‘2’ is a numerical constant.
‘prime’ is a predicate expression.

>’ is a binary predicate.

= f the sign ‘=" occurs in an expression which
2+3=5 ! is a mw_._.::_m of arithmetic, the sign must
be flanked on both its left and right sides
by numerical expressions.
‘243 =25"is a formula.

The formula ‘0 = 0’ is derivable from the

mmm formula ‘x =x’ by substituting the nu-
B meral ‘0’ for the numerical variable ‘x’.
0+#0 ‘0 # 0’ is not a theorem.

Arithmetic is consistent—that is, it is not
possible to derive from the axioms of
arithmetic both the formula ‘0 =0 and
the formula ‘0 s 0.

It is worth observing that, despite appearances to the contrary, the Boﬂ.u-
mathematical statements in the right-hand column do not actually contain
any of the mathematical expressions listed in the left-hand nOE:.:... H:n
right-hand column contains only the names of some of the arithmetical
expressions in the left-hand column. This is so, because Em.:.__nm of m_..w‘
lish grammar require that no English sentence shall contain the _o.?.mn:
to which it refers, but only their names. The rule is enforced 5. :...n
above table through the convention of enclosing an expression .i:—::
single quotation marks in order to obtain a name for that nxﬂ._d,q..m_o:.. In
consonance with this convention, it is correct to say that 2 + 3 is identical
with 5, but it is false to say that ‘2 + 3’ is identical with ‘5"

Goedel's Proof (i

The importance of the division between the mathematical and the meta-
mathematical language cannot be overemphasized. By erecting a separate,
formal calculus whose symbols are free of all hidden assumptions and
intuitive associations, and each of whose operations are precisely and
rigidly defined, we have an instrument which exposes to plain view the
nature of mathematical reasoning. But as human beings who wish to
analyze this stark mw_«.co_mma and to communicate our findings, we must
construct another language which will enable us to describe, discuss,
explain and theorize about the more formal system. Thus we separate the
theory of the thing from the thing itself and devise the discourse of
meta-mathematics.

It was by the application of this meta-mathematical language that
Hilbert hoped to prove the consistency of the formalized calculus itself.
Specifically, he sought to develop a theory of proof (Beweistheorie) that
would yield demonstrations of consistency by an analysis of the purely
structural features of expressions in uninterpreted calculi. Such an analysis
consists exclusively of noting the kinds and arrangements of signs in
formulas, and of showing whether a given combination of signs can be
obtained from others in accordance with the explicitly stated rules of
operation. An essential requirement for demonstrations of consistency,
as propounded in the original version of Hilbert's program, is that they
employ only finitary notions, and make no reference either to an infinite
number of formulas or to an infinite number of operations upon them. A
proof of the consistency of a set of postulates which conforms to these
requirements is called “absolute.” Such a proof achieves its objective by
means of a bare minimum of inferential principles, without assuming the
consistency of some other set of axioms. An absolute proof of the consist-
ency of arithmetic, if one could be devised, would afford a demonstration,
by finitary meta-mathematical means, that two “contradictory” formulas,
such as ‘(0 =0)" and ‘~ (0 = 0)'—where the sign ‘~', called a tilde,
signifies negation—are not both derivable from the axioms or initial
formulas of the system, when the derivations conform to the stated rules
of inference.

It may be useful, by way of illustration, to compare meta-mathematics
as a theory of proof with the theory of some game, such as chess. Chess
is a game played with 32 pieces of specified design on a square board
containing 64 square subdivisions, where the pieces may be moved in
accordance with fixed rules. The game can obviously be played without
assigning any “interpretation” to the pieces or to their various positions on
the board, although it is clear that such interpretations could be supplied
if desired. There is thus an analogy between the game and a formalized
mathematical calculus. The pieces and the squares of the board corre-
spond to the elementary signs of the calculus; the permitted configurations
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of pieces on the board correspond to the formulas of .rn‘ nw_ncr._m“ .~._..n
initial positions of pieces on the board correspond to the E:om:m or initial
formulas of the calculus; the subsequent configurations of pieces on the
board correspond to formulas derived from the axioms (i.e., ‘.o .__._n
theorems); and the rules of the game correspond to the rules of derivation
for the calculus. Again, although configurations of pieces on the board,
like the formulas of the calculus, are ‘“meaningless,” statements about
these configurations, like meta-mathematical statements about formulas,
are quite meaningful. A meta-chess statement may assert, wo.q example,
that there are 20 possible opening moves for White, or that, given a nnq-
tain configuration of pieces on the board with White to move, Black is
mate in three moves. It is pertinent to note, moreover, that general :._n.B..
chess theorems can be established, whose proof involves the consideration
of only a finite number of permissible configurations on _._..n board. The
meta-chess theorem about the number of possible opening moves for
White can be established in this way; and so can the meta-chess ..:noﬂ.m_.:
that if White has only two Knights and the King, and Black only his King,
it is impossible for White to force a mate against Black. These and oﬁ.rma
meta-chess theorems can thus be proved by finitary methods of reasoning,
consisting in the examination in turn of each of a finite _.JE.:_UE. o._" noJ-
figurations that can occur under stated conditions. The E:.,. of Hilbert’s
theory of proof, similarly, was to demonstrate by such finitary methods
the impossibility of deriving certain formulas in a calculus.

m

There are two more bridges to cross before entering upon Goedel’s
proof itself. Something needs be said about how and why the mwmanmn-.n
Mathematica came into being; also we must give a short illustration of
the formalization of a deductive system—we shall take a fragment of
Principia—and how its consistency can be established.

Ordinarily, even when mathematical proofs conform to mnnwvﬂ.ma stand-
ards of professional rigor, they suffer from one important E:..m.m_o:. They
employ principles (or rules) of inference which are not explicitly formu-
lated, and of which mathematicians are frequently unaware. ,_..m_ﬂw m.m
example Euclid’s proof that there is no greatest prime number. This is
cast in the form of a reductio ad absurdum argument and runs as follows.
Suppose there is a greatest prime x. Then:

(1) x is the greatest prime number.

(2) Form the product of all primes less than or equal to x and add 1
to the product. This yields a new number y, where y = (2 X 3 X 5 X7
..o Xx)+ 1. . .

(3) Now if y is itself a prime, then x is not the greatest prime, for y is
greater than x.
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" (4) But suppose y is composite, i.e., not a prime; then again x is not
the greatest prime. For if y is composite, it must have a prime divisor z,
which is different from each of the primes 2, 3, 5, 7 . . . x; hence z
itself is a prime greater than x.

(5) But y is either prime or composite, and in either case r is not the
greatest prime.

(6) Hence, since x is not the greatest prime, and x can be any prime
number, there is no greatest prime.

We have shown the essential steps of this proof, and we could show
also—though we cannot here take the time—that a number of elementary
rules of inference are essential to its development, (e.g., the “Rule of
Substitution,” the “Rule of Detachment”) and even rules and theorems
belonging to more advanced parts of logical theory (e.g., the theory of
“quantification,” having to do with the proper use of expressions such as
“all,” “every,” “some” and their synonyms). It has been pointed out that
the use of these rules and theorems is an all but unconscious process;
however, even more noteworthy is the fact that the analysis of Euclid's
proof which uncovers the use of these logical props depends upon ad-
vances in the theory of logic which have occurred only within the past
century. Like Moliére’s M. Jourdain, who spoke prose without knowing
it, mathematicians have been reasoning without knowing their reasons.
Modern students have had to show them the real nature of the tools of
their craft.

For almost 2,000 years Aristotle’s codification of valid forms of deduc-
tion was widely regarded as complete and as incapable of essential im-
provement. As late as 1787, the German philosopher Immanuel Kant
was able to say that since Aristotle, formal logic “has not been able to
advance a single step, and is to all appearances a closed and completed
body of doctrine.” But the fact is that the traditional logic is seriously
incomplete and fails to give an account of many principles of inference
employed in even quite elementary mathematical reasoning, such as the
above proof of Euclid. In any event, a renaissance of logical studies in
modern times began with the publication in 1847 of George Boole's The
Mathematical Analysis of Logic. The primary concern of Boole and his
immediate successors was to develop a non-numerical algebra of logic,
which would provide a precise algorithm for handling more general and
more varied types of deductions than were covered by traditional logical
principles.

Another line of inquiry, intimately related to the work of 19th-
century mathematicians on the foundations of analysis, became associated
eventually with the Boolean program. This new development sought to
exhibit all of pure mathematics as simply a chapter of formal logic; and
it received its classical embodiment in the Principia Mathematica of
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Whitehead and Russell in 1910. Mathematicians of the 19th century
succeeded in “arithmetizing” algebra and the so-called “infinitesimal
calculus,” by showing that the various notions employed in mathematical
analysis are definable exclusively in arithmetical terms (i.e., in terms of
the integers and the arithmetical operations upon them). What Russell
(and, before him, the German mathematician Gottlob Frege) sought to
show was that all arithmetical notions are in turn definable in terms of
purely logical ideas, and that, furthermore, the axioms of arithmetic are
all deducible from a small number of basic propositions certifiable as
purely logical truths. For instance, the notion of class belongs to general
logic. Two classes are defined to be “similar,” if there is a one-to-one
correspondence between their members, the notion of such a correspond-
ence being specifiable in terms of other logical ideas. A class which has
no members (e.g., the class of satellites of the planet Venus) is said to
be “empty.” Then the cardinal number 0 can be defined as the class of all
classes which are similar to an empty class. Again, a class which has a
single member is said to be a “unit” class (e.g., the class of satellites of
the planet Earth); and the cardinal number 1 can be defined as the class
of all classes similar to a unit class. Analogous definitions can be given of
the other cardinal numbers, and the various arithmetical operations can
also be defined in terms of the notions of formal logic. An arithmetical
statement, e.g,, 1+ 1 =2, can then be exhibited as a condensed tran-
scription of a statement containing only expressions belonging to general
logic; and such purely logical statements can be shown to be deducible
from certain logical axioms, some of which will be mentioned presently.

Principia Mathematica thus appeared to advance the final solution of
the problem of consistency of mathematical systems, and of arithmetic
in particular, by reducing that problem to the question of the consistency
of formal logic. For if the axioms of arithmetic are simply transcriptions
of theorems in logic, then the question whether these axioms are consist-
ent is immediately transposed into the problem whether the fundamental
axioms of logic are consistent.

The Frege-Russell thesis that mathematics is but a chapter of logic has
not won universal acceptance from mathematicians, for various reasons
of detail. Moreover, as we pointed out earlier, the antinomies of the
Cantorian theory of transfinite numbers can be duplicated within logic
itself, unless special measures are taken to prevent such an outcome.
But are the measures adopted in Principia Mathematica to outflank these
antinomies sufficient to exclude all forms of self-contradictory construc-
tions? This cannot be asserted as a matter of course. It follows that
the Frege-Russell reduction of arithmetic to logic does not provide a
final answer to the consistency problem—indeed, the problem simply
emerges in a more general form. On the other hand, irrespective of the
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validity of the Frege-Russell thesis, two features of Principia have proved
to be of inestimable value for the further study of the problem. Principia
supplies an inclusive system of notation, with the help of which all state-
ments of pure mathematics can be codified in a standard manner; and
Principia makes explicit most of the rules of formal inference (eventually
these rules were made more precise and complete) which are employed
in mathematical demonstrations. In short, Principia provides the essential
instrument for investigating the entire system of formal logic as an
uninterpreted calculus, whose formulas are combined and transformed
in accordance with explicitly stated rules of operation.

We turn now to the formalization of a small portion of Principia,
namely, the elementary logic of propositions. The task is to convert this
fragment into a “meaningless” calculus of uninterpreted signs and to show
how its freedom from contradiction can be proved.

Four steps are involved. First a complete catalogue is presented of the
signs to be employed in the calculus. These are its vocabulary. Second,
the “Formation Rules” are laid down. These indicate the permissible
combinations of the elementary signs which are acceptable as formulas
(or sentences). The rules may be said to constitute the grammar of the
system. Third, the “Transformation Rules" are specified. They describe
the precise structure of formulas from which some other formula is
derivable. Finally, certain formulas are selected as axioms (or as “primi-
tive formulas”), They serve as foundation for the entire system. By the
expression “theorems of the system” we denote all the formulas, including
the axioms, which can be derived from the axioms by successively apply-
ing the Transformation Rules. By “proof” we mean a finite sequence of
legitimate formulas, each of which is either an axiom or is derivable from
preceding formulas in the sequence by the Transformation Rules.

For the elementary logic of propositions (often also called the “senten-
tial calculus”) the vocabulary is extremely simple. It consists of sentential
variables (which stand for sentences) and are written

P, 'q,'r, etc.,

of sentential connectives

‘~" is short for ‘not’
V" is short for ‘or’
‘D’is short for ‘if . . . then’

“."is short for ‘and’

and of parentheses, used as signs of punctuation. It is convenient to define
the last two connectives in terms of the first two, so that expressions
Containing ‘3’ or *.’ can be replaced by expressions containing only ‘v’
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and ‘~'. For example ‘p D ¢’ is defined as being simply shorthand for
the slightly longer expression ‘~ p v g'.!

The Formation Rules are so laid down that combinations of the ele-
mentary signs which would normally be called “sentences” are designated
as “formulas.” Accordingly, each sentential variable will count as a
formula. Moreover, if S is a formula, so is its negation ~ (S); and if S,
and S, are formulas, so is (S;) v (S,), with similar conventions for the
other mo_._znn.?nm. Two Transformation Rules are adopted. One of them,
the Rule of Substitution, says that if a sentence containing sentential vari-
ables has been accepted as logically true, any formulas may be uniformly
substituted for these variables, whereupon the new sentence will also be
logically true. The other rule, that of Detachment, simply says that if we
have two logically true sentences of the form S,, and S, D S,, we may
also accept as logically true the sentence S,.

The axioms of the calculus (essentially those of Principia) are the
following:

1. (pvp)Dp

2.pD(pvy)

3. (pvq) D (qvp)

4. (p2q)D[(rvp) 2 (rvg)l

Their meaning is easily understood. The second, for instance, says that
a proposition (or sentence) implies that either it or some other proposi-
tion (or sentence) is true. . .

Our purpose is to show that this set of axioms is not contradictory; in
other words that, by using the stated Transformation Rules, it is impos-
sible to derive from the axioms any formula S together with its negation
~ S.

Now it happens that ‘p D (~ p D g)’ is a theorem in the calculus. (We
shall simply accept this as a fact without exhibiting the derivation.) Sup-
pose, then, that some formula S, as well as ~ S were deducible from the
axioms. (The reader will recognize the reductio ad absurdum approach of
Euclid's proof.) By substituting S for ‘p’ in the theorem (as permitted by
the Rule of Substitution), and applying the Rule of Detachment twice,
the formula ‘" would be deducible. But this immediately has the conse-
quence that by substituting any formula whatsoever for ‘¢’, any formula
whatsoever would be deducible from the axioms. It is thus clear that if
both some formula S and its contradictory ~ S were deducible from the
axioms, then any formula would be deducible. In short, if the calculus is

! That is, “if p then ¢” is defined as short for “either not-p or q." In in___". .oq .ﬂ._:a
definition, the statement “If Galileo played the lute then Galileo was a musician™ is
simply a slightly more compact way of rendering what _m,nmunmwﬁq by the statement
“Either Galileo did not play the lute or Galileo was a musician.
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not consistent, every formula is a theorem. And likewise, if not every
formula is a theorem (i.e., if there is at least one formula which is not
derivable from the axioms), then the calculus is consistent. The task,
therefore, is to exhibit some formula which cannot be derived from the
axioms.

The way this is done is to employ meta-mathematical reasoning upon
the system to be tested. We place ourselves, so to speak, outside the cal-
culus and consider how theorems are generated within it. The actual
procedure is pretty. (1) We try to find a characteristic common to all four
axioms; (2) we try to show that this characteristic is “hereditary” under
the Transformation Rules—i.e., that if all the axioms have this charac-
teristic, any formula derived from them by the rules (which is to say,
any theorem) also has it: (3) we try to exhibit a formula that does not
have this characteristic. If we succeed in this triple task, we will have an
absolute proof of consistency. For if the common characteristic exists and
is hereditary, so that it is transmitted to all properly derived formulas,
then any array of symbols which satisfies the requirements for being a
formula but nevertheless does not possess the characteristic in question
cannot be a theorem. That is to say, structurally it may be a formula, yet
not one which could have been derived from the axioms; or to put it yet
another way, since the suspected offspring (formula) lacks an invariably
inherited trait of the forebears (axioms) it cannot in fact be their de-
scendant (theorem). Furthermore, if we can find such a formula we will
have established the consistency of the calculus; because, as we noted a
moment ago, if the calculus were not consistent, every formula could be
derived from the axioms, i.c., every formula would possess the charac-
teristic and therefore be a theorem.

Let us specify a common characteristic. The trait we have in mind is
that of being a tautology. In common parlance rautology is defined as the
saying of a thing twice over in different words, e.g., “John is the father of
Charles and Charles is the son of John." In logic, however, a tautology is
defined as a statement that excludes no logical possibilities, e.g., "Either it
is raining or it is not raining.” The essence of a tautology is that it is “true
in all possible worlds,” whence it is a truth of logic. Now it can be shown
(though we shall not turn aside to give the demonstration) with the aid of
an ingenious device known as a “truth-table,” that each of the four axioms
of our little set is a tautology. That is to say, if each axiom is regarded
as a formula made up of simpler formulas (e.g., the compound formula
or sentence p O (p v q) is constituted of the simple formulas ‘p’ and ‘q’),
it must be accepted as true irrespective of the truth or falsity of its ele-
mentary constituents. Even the skeptical reader will have no difficulty
accepting the fact, for example, that axiom 1|: (pvp) Dpis “true in all
possible worlds,” if he substitutes the elementary sentence 2 is a prime
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number” for the sentential variable p and derives the sentence “If 2 is a
prime number or 2 is a prime number, then 2 is a prime .:E.:unq.: .

It is also possible to show that the characteristic of being a _E_.E_oww is
hereditary under the Transformation Rules. In sum, if the axioms are
tautologous, so are all the formulas derivable from them. ‘

Having performed these two steps, we are ready for the third. We B.H,m.
look for a formula which from the standpoint of its vocabulary (sentential
variables) and structure (the use of the connectives) belongs to our sys-
tem; yet, because it does not possess the characteristic of _un:...m a tautol-
ogy, cannot be a theorem (i.e., be derivable from the axioms) and
therefore cannot belong to the system. We do not have to look very hard;
it is easy to exhibit such a formula. For example ‘p v q’ fits -m..a require-
ments. It purports to be a gosling but is in fact a duckling; it does not
belong to the family; it is a formula but it is not a theorem. There can _u.m
no doubt that it is not a tautology. Any correct interpretation shows this
at once. As an illustration, we obtain by substitution for the variables in

. ]

Pvg
the sentence
“Either John is a philosopher or Charles reads Scientific American.”

Clearly this is not a truth of logic; which is to say, it is not mum:-.n:nn that
is true irrespective of the truth or falsity of its elementary constituents.

We have, therefore, achieved our goal. At least one formula has been
found which is not a theorem. It follows, for reasons already explained,
that it is not possible to derive from the axioms of the sentential calculus
both a formula and its negation. We have constructed an absolute proof
of the consistency of the system.

One final point must be mentioned. It has been shown that every
theorem of the sentential calculus is a tautology, a truth of logic. It is
natural to ask whether, conversely, every logical truth which is expressible
in the vocabulary of the calculus (i.e., every tautology) is also a theorem.
The answer is yes, though the proof is too long to be shown here. Since
the axioms of the calculus are sufficient for generating all logical truths
expressible in the system, the axioms are said to be :noav_ﬂo”: It is fre-
quently of paramount interest to determine whether an axiomatized system
is complete. Indeed, a powerful motive for axiomatizing various _uqm.:n._._.nw
of mathematics has been the desire to specify a sufficient set of initial
assumptions from which all the true statements in some field of analysis
are deducible. Thus, when Euclid axiomatized elementary geometry, he
apparently selected his axioms so as to make it possible to deduce from
them all geometric truths which were already established, as well as
those still to be discovered. (Euclid’s inclusion of his famous parallel postu-
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late in his list of axioms showed remarkable insight. For as was subse-
quently proved, this postulate is not derivable from the others of the set,
so that without the parallel postulate the remaining axioms are surely in-
complete.) A similar objective controlled the axiomatization of elementary
arithmetic toward the close of the nineteenth century. Until recently, it
was assumed as a matter of course that a complete set of axioms for any
given branch of mathematics could always be specified. In particular, it
seems to have been generally believed that the axioms proposed for arith-
metic by nineteenth-century mathematicians were in fact complete, or at
worst could be made complete by the addition of a finite number of further
axioms. The discovery that this is not so, is one of Goedel’s achievements.

v

The sentential calculus is an example of a mathematical system for
which the objectives of Hilbert's theory of proof are fully realized. As we
have pointed out, however, this calculus codifies only a fragment of for-
mal logic, and its vocabulary and formal apparatus do not suffice to de-
velop within its framework even elementary arithmetic. On the other hand,
Hilbert's program has been successfully carried out for more inclusive
systems, which have been shown to be both consistent and complete by
meta-mathematical reasoning. For example, an absolute proof of con-
sistency has been given for a system of arithmetic which allows for the
addition, though not for the multiplication, of cardinal numbers. But can
a system such as Principia, in which the whole and not merely a fragment
of arithmetic is expressible, be proved consistent in the sense of Hilbert’s
program? Repeated attempts at constructing such a proof were unsuccess-
ful; and the publication of Goedel's paper in 1931 showed, finally, that
all such efforts are doomed to failure:

What did Goedel establish, and how did he prove his results? His main
conclusions are two-fold. In the first place, he showed that no meta-
mathematical proof is possible for the formal consistency of a system
comprehensive enough to contain the whole of arithmetic; unless, that is,
the meta-mathematical proof employs rules of inference whose consistency
is as doubtful as is the consistency of the Transformation Rules used in
deriving theorems within the system. But thus one dragon is slain only to
create another.

Goedel’s second main conclusion is even more surprising and revolu-
tionary in its import, for it makes evident a fundamental limitation in
the power of the axiomatic method. Goedel showed that Principia, or any
other system within which arithmetic can be developed, is essentially in-
complete. In other words, given any consistent set of arithmetical axioms,
there are true arithmetical statements which are not derivable from the
set. This essential point deserves illustration. Mathematics abounds in state-
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ments which seem self-evident, to which no exceptions have been found,
which nevertheless have thwarted all attempts at proof. A simple example
is Goldbach’s “theorem” which states that every even number is the sum of
two primes; yet no one has succeeded in finding a proof valid for all even
numbers. Goldbach’s conjecture presents us with a statement that may be
true, but may not be derivable from the axioms of arithmetic. Now it may
be suggested that the axioms should be modified or augmented to take care
of this and related theorems by making them derivable. But Goedel has
shown that this approach promises no final cure. That is, even if the given
set of axioms is augmented by the addition of any finite number of arith-
metical postulates, there will always be further arithmetic truths which are
not formally derivable from the augmented set. Such further truths may,
to be sure, be established by some form of meta-mathematical reasoning
about an arithmetical system; but this procedure does not fit the require-
ment that the calculus must so to speak be self-contained, that the logical
truths in question must be exhibited as the formal consequences of the spec-
ified axioms within the system. There is, it seems, an inherent limitation
in the axiomatic method as a way of systematizing the whole of arithmetic.
How did Goedel prove his conclusions? Up to a point, the structure of
his demonstration is modeled, as he himself noted, on the reasoning in-
volved in one of the logical antinomies known as the “Richard Paradox,”
first propounded by the French mathematician, Jules Richard, in 1905.
The paradox can be stated as follows. Assume some definite language
(e.g., English) in which the various purely arithmetical properties of the
integers can be expressed; and consider the definitions of these properties
which can be formulated in the notation of that language. Thus, the prop-
erty of being a prime number may be defined by: “not divisible by any
integer other than one and itself”; the property of being a perfect square
may be defined by: “being equal to the product of some integer by that
integer”; and so on. It is easily seen that each such definition will contain
a finite number of words and therefore a finite number of letters of the
alphabet. This being so, the definitions can be placed in serial order, ac-
cording to the number of letters they contain (definitions with the same
number of letters can be arranged alphabetically under their serial tag).
To each definition there will then correspond a unique integer—for ex-
ample, the definition with the smallest number of letters will correspond
to the number 1, the next definition in the ordered series will correspond
to 2, and so on. We come now to an odd little point. Since each definition
has an integer attached to it, it may happen in certain cases that an
integer possesses the very property designated by the definition to which
the integer is serially attached. (This is the same sort of thing that would
happen if we prefixed to each of a list of English words the descriptive
tags “short” or “long,” and the word “short” itself appeared in the list.
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“Short” itself would of course have the tag “short” attached to it.) Sup-
pose, for instance, the defining expression “not divisible by any integer
other than one and itself” happens to be correlated with the number 17;
then 17 has the property designated by that expression. On the other hand,
suppose that the defining expression “being equal to the product of some
integer by that integer” turns out to be correlated with the number 20;
then 20 does not have the property designated by that expression. We
shall now say that (in the second example) the number 20 has the prop-
erty of being “Richardian,” while (in the first example) the number 17
does not have the property of being “Richardian.” More generally, we
define the property of being Richardian as follows: “not having the prop-
erty designated by the defining expression with which an integer is corre-
lated in the serially ordered set of definitions.” But observe that this last
expression itself defines a numerical property, so that this expression also
must belong to the above series of definitions. This being so, it must cor-
respond to some number, say n, giving its position in the series. The ques-
tion may then be posed, reminiscent of Russell’s antinomy, whether the
number 7 itself is Richardian. Almost at once we can see the fatal con-
tradiction looming. For n is Richardian if, and only if, it does not possess
the property designated by the definition with which n is correlated; and
it is easy to see that therefore n is Richardian if and only if n is not
Richardian. Accordingly, the statement “n is Richardian” is both true and
false.

The contradiction can be avoided if we notice that in constructing it
,46 have not played the game quite fairly. Pursuant to our initial stipula-
tions, we were invited to consider the definitions expressible in a language
about numbers and their arithmetical properties. However, it was not in-
tended to consider definitions involving reference to the notation used in
.we__...:ia:.n.n numerical properties. In other words, the series of definitions
in the above construction was supposed to include only expressions which
refer exclusively to such notions as arithmetical addition, multiplication
and the like. Accordingly, the definition of being Richardian does :om
belong to this series, for this definition makes reference to such meta-
mathematical notions as the number of letters occurring in expressions
The Richard Paradox can therefore be outflanked by distinguishing nm:.m“
fully between statements within arithmetic (which make no reference to
any system of notation : i i i
e ) and statements about the language in which arith-
. The reasoning in the Richard Paradox is evidently fallacious. Its construc-
tion nevertheless suggests that it might be possible to “map” (or “mirror”)
Meta-mathematical statements abour a sufficiently comprehensive formal
System into the system itself, If this were possible, then meta-mathematical
Statements about a system would be represented by statements within the
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system. Thereby one could achieve the desirable end of getting the formal
system to speak about itself—a most valuable form of self-consciousness.
The idea of such mapping is a familiar one in mathematics. It is employed
in coordinate geometry, which translates geometric statements into alge-
braic ones, so that geometric relations are mapped onto algebraic ones.
The idea is manifestly used in the construction of ordinary maps, since
the construction consists in projecting configurations on the surface of
a sphere onto a plane, so that relations between plane figures can mirror
the relations between the spherical ones. The idea also plays a role in
mathematical physics when, for example, relations between properties of
electric currents are represented in the language of hydrodynamics. The
basic fact which underlies all these mapping procedures is that an abstract
structure of relations embodied in one domain of “objects” is exhibited
to hold between “objects” in some other domain. In consequence, deduc-
tive relations between statements about the first domain can be established
by exploring (often more conveniently and easily) the deductive relations
between statements about their counterparts. For example, complicated
geometrical relations between surfaces in space are usually more readily
studied by way of the algebraic formulas for such surfaces. Similarly,
questions about complicated logical relations between assertions may be
more readily handled via the arithmetical representatives of those as-
sertions.

In any event, the exploitation of this notion of mapping is the key to
the argument in Goedel’s revolutionary paper. In a manner suggested by
the Richard Paradox, but without falling victim to the fallacy involved in
its construction, Goedel showed that meta-mathematical statements about
a formalized arithmetical calculus can indeed be represented within that
calculus. In fact, he found a method of representation such that neither
the arithmetical formula corresponding to a certain true reta-mathemati-
cal statement about the formula, nor the arithmetical formula correspond-
ing to the denial of the statement, is demonstrable within the calculus.
Since one of these arithmetical formulas must codify an arithmetical truth,
but neither is derivable from the axioms, the axioms are incomplete. As
we shall see, this incompleteness is incurable. Moreover, Goedel indicated
how to construct an arithmetical formula to represent the meta-mathemati-
cal statement “The calculus is consistent,” and he showed that this formula
is not demonstrable within the calculus. Accordingly, the consistency of
arithmetic cannot be established except by using rules of inference whose
consistency is at least as doubtful as is the consistency of arithmetic itself.

Goedel's paper, as we said at the outset, is difficult. Forty-six prelimi-
nary definitions together with several important lemmas must be mastered
before the main results are reached. We shall take a much easier road;
nevertheless we hope at least to offer glimpses of the argument.

Goedel's Proof 1689

"Goedel first showed that a formalized system of arithmetic can be set
up in which it is possible to associate with each elementary sign, each
formula (or sequence of signs) and each proof (that is, each finite se-
quence of formulas) a unique integer. This integer, a distinctive label, is
called the “Goedel number” of the sign, formula or proof. .

As an illustration take the following correspondence. The top row lists
part of the basic vocabulary with the help of which the whole of arith-
metic can be formulated. The second row lists under each of these basic
signs its corresponding Goedel number.

‘-t v o ‘A’ (a qualifying symbol meaning “‘there
| 2 3 4 is” or “there are,” so that “(ax)”
means “There is an x" or “For
every x')
= ‘0’ ‘s’ (for representing the immediate suc-
5 . 6 7 cessor of a number)
‘(" left-hand ‘)" right-hand %" (the comma)

8 parenthesis) 9 parenthesis) 10

In addition to these basic signs we also require sentential variables
(‘P’, 'q’, etc.) for which sentences may be substituted, individual variables
X', 'y, etc.) for which numerals and numerical expressions may be sub-
stituted, and predicate variables (‘P', '@, etc.) for which predicates may
be substituted. These are assigned Goedel numbers in accordance with the
following rules.

Associate with each sentential variable an integer greater than 10 but
divisible by 3; with each individual variable, an integer greater than 10
which leaves a remainder of | on division by 3; and with each predicate
variable, an integer greater than 10 which leaves a remainder of 2 on divi-
sion by 3. This done, each elementary sign of the system is now asso-
ciated with a unique number.

Consider next a formula of the system, for example, *(3x)(x = sy)’
(when literally translated, it reads: ‘There is an x, such that x is the imme-
diate successor of y,” and in effect says that every number has an im-
mediate successor). The numbers associated with its ten constituent
elementary signs are, respectively, 8, 4, 13, 9, 8, i3, 5, 7, 16, 9. We now
agree to associate with the formula itself the number which is the product
of the first ten primes in order of magnitude, each prime being raised to
a power equal to the Goedel number of the corresponding elementary
sign. By this convention the formula is associated with the number 2% x
XS X T X 1% X 1318 x 175 x 197 X 2318 X 29%; let us refer to the
number as m. In a similar fashion, every formula can be made to corre-
spond to a unique number.

Consider, finally, a sequence of formulas as may occur in some proof,
for example, the sequence:
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(3x) (x =sy)

(dx) (x =s0)
This second formula when translated reads ‘0 has an immediate successor’;
it is derivable from the first formula by substituting ‘0’ for the “free” vari-
able ‘y’. (A variable is said to be “free” in a formula if it is not preceded
in that formula by a quantifier containing this variable. Thus, the variable
‘x" is not free in either of these formulas.) We have already determined
the Goedel number of the first formula: it is m; and suppose that n is the
Goedel number of the second formula. We now agree to associate with
the sequence of two formulas the number which is the product of the
first two primes in order of magnitude, each prime being raised to a power
equal to the Goedel number of the corresponding formula in the se-
quence. The above sequence is accordingly associated with the number
k =2m X 37 In like manner, a number is associated with each sequence
of formulas. It is easy to see that following this procedure, every expres-
sion in the system can be tagged with a unique Goedel number.

What has been done so far is to establish a method for completely arith-
metizing a formal system. The method is essentially a set of &En:csm. for
establishing a correspondence between certain integers and the 3..:.Em
elements or combinations of elements of the system. Once an expression
is given, it can be uniquely numbered. But more than that, once a Goedel
number is given, the expression it represents can be exactly analyzed or
“retrieved,” since the number itself, having been arrived at as a product
of prime numbers, can be factored into these primes (as we know from a
classic theorem of arithmetic) in only one way. In other words, we can
take the number apart like a machine, see how it was constructed and
what went into it; which is to say we can dissect an expression, a proof, in
the same way.

This leads to the next step. We have already spoken of “mapping.” Now
we can extend the process with the help of the Goedel numbers so that
meta-mathematical statements can be completely mirrored within the cal-
culus; so that meta-mathematics itself becomes completely “arithmetized.”
In particular, every meta-mathematical characterization of the structu qm. of
expressions in the system, everything we say about them, is mapped into
an arithmetical function of integers; and every meta-mathematical state-
ment about relations between formulas is mapped into an arithmetical
relation between integers. (By an arithmetical function is meant an expres-
sion such as 2+ 3, (7 X 5) + 8, and so on: that is, a function of an
integer in itself an integer. By an arithmetical relation is meant a proposi-
tion—which may be true or false—such as 5 =3, 7 > 4, and so on.) The
importance of this arithmetization of meta-mathematics stems from the
fact that, since each of its statements can be uniquely represented in the
formal system by an expression tagged with a Goedel number, relations
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of logical dependence between meta-mathematical statements can be ex-
plored by examining relations between integers and their factors. To take a
trivial analogue: if customers in a supermarket are given tickets with num-
bers determining the order in which they are to be waited on when buying
meat, it is a simple matter, merely by scrutinizing the numbers them-
selves to discover (a) how many persons have been served, (b) how many
are waiting, (¢) who precedes whom and by how many customers, etc.

Consider the meta-mathematical statement: ‘The sequence of formulas
whose Goedel number is x is a demonstration for the formula whose
Goedel number is z." This statement is represented (mirrored) by a definite
formula in the arithmetical calculus, a formula which expresses a purely
arithmetical relation between x and z. (In the above example of assigning
the Goedel number k to a demonstration, we found that k = 2™ x 3; and
a little reflection shows that there is a definite though complex arithmetical
relation between k, the Goedel number of the proof, and n, the Goedel
number of the conclusion.) We write this arithmetical relation between x
and z as the formula ‘Dem (x,2)’, to remind ourselves of the meta-mathe-
matical statement to which it corresponds. Similarly, the meta-mathemati-
cal statement: “The sequence of formulas with Goedel number x is not
a demonstration for the formula with the Goedel number z,” is also repre-
sented by a definite formula in the arithmetical formalism. This formula
we shall write as ‘~ Dem (x,z)".

We shall need one additional bit of special notation for stating the crux
of Goedel’s argument. Begin with an example. The formula *(gx) (x = sy)’
has the Goedel number m, and the variable ‘y’ has the Goedel number 16.
Substitute in this formula for the variable with Goedel number 16 (i.e.,
for 'y’) the numeral for m. We then obtain the formula (Ax)(x =sm)".
This latter formula obviously also has a Goedel number—a number which
can be actually calculated, and which, in fact, is a certain complex arith-
metical function of the two numbers m and 16. However, instead of calcu-
lating this Goedel number, we can give an unambiguous meta-mathematical
characterization for it: it is the Goedel number of the formula which is
obtained from the formula with Goedel number m, by substituting for the
variable with Goedel number 16 the numeral for m. Accordingly, this
meta-mathematical characterization corresponds to a definite arithmetical
function of the numbers m and 16, a function which can be expressed
within the arithmetical calculus. We shall write this function as ‘sub (m,
16, m)’, to remind ourselves of the meta-mathematical description which
it represents. More generally, the expression ‘sub (y, 16, y)' is the mirror-
image within the arithmetical formalism of the meta-mathematical char-
acterization: “the Goedel number of the formula which is obtained from
the formula with Goedel number ¥, by substituting for the variable with
Goedel number 16 the numeral for y.” It should be noted that, when a defi-
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nite numeral is substituted for ‘y’ in ‘sub (y, 16, y)’, sub (y, 16, y) is'a
definite integer which is the Goedel number of a certain formula.

We are now equipped to follow in outline Goedel's argument. Consider
the formula ‘(x) ~ Dem (x,z)". This represents, in the arithmetical cal-
culus, the meta-mathematical statement “For every x, where x is the
Goedel number of a demonstration, x is not the number of a demonstra-
tion for the formula whose Goedel number is z.” This formula may there-
fore be regarded as a formal paraphrase of the statement “The formula
with Goedel number z is not demonstrable.” What Goedel was able to
show was that a certain special case of this formula itself is in fact not
formally demonstrable. To construct this special case we 'start with a
formula which we shall display as line (1):

(1) (x) ~ Dem (x,sub (y, 16,y))

It corresponds to the meta-mathematical statement that the formula with
the Goedel number sub (y, 16, y) is not demonstrable. Moreover, since
line (1) is a formula within the arithmetical calculus, it has its own Goedel
number, say n. Let us now obtain another formula from the one on line
(1) by substituting the numeral for n for the variable with Goedel number
16 (i.e., for 'y’). We thus arrive at the special case we wished to construct,
and display it as line (2):

(2) (x) ~ Dem (x, sub (n, 16, n))

Since this last formula occurs within the arithmetical calculus, it must
have a Goedel number. What is its Goedel number? A little reflection
shows that it is sub (n, 16, n). To see this, we must recall that sub (n, 16,
n) is the Goedel number of the formula which is obtained from the
formula with Goedel number n, by substituting for the variable with
Goedel number 16 (i.e., for ‘y’) the numeral for n. But the formula (2)
has indeed been obtained from the formula with Goedel number n (i.e.,
from the formula on line (1)) by substituting for the variable ‘y’ the nu-
meral for n. Let us also remind ourselves, however, that the formula
‘(x) ~ Dem (x,sub (n, 16,n))’ is the mirror-image within the arithmeti-
cal calculus of the meta-mathematical statement: “The formula whose
Goedel number is sub (n, 16, n) is not demonstrable.” It follows that the
arithmetical formula ‘(x) ~ Dem (x, sub (n, 16, n))’ represents the meta-
mathematical statement: “The formula ‘(x) ~ Dem (x, sub (n, 16, n))’ is
not demonstrable.” In a sense, therefore, this arithmetical formula can be
construed as saying that it itself is not demonstrable.

Goedel is now able to show, in a manner reminiscent of the Richard
Paradox, but free from the fallacious reasoning involved in that puzzle,
that this arithmetical formula is indeed not demonstrable. The argument
from this point on is relatively simple and straightforward. He shows that
if the formula were demonstrable, then its formal contradictory (i.e.,
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‘~ (x) ~ Dem (x, sub (n, 16, n))’, which in effect says that the formula
is in fact demonstrable) would also be demonstrable; and conversely, if
the formal contradictory of the formula were demonstrable, the formula
itself would also be demonstrable. But as was noted earlier, if a formula
as well as its contradictory can both be derived from a set of axioms, the
axioms are not consistent. Accordingly, if the axioms are consistent,
neither the formula nor its contradictory is demonstrable. In short, if the
axioms are consistent, the formula is “undecidable”—neither the formula
nor its contradictory can be formally deduced from the axioms.

Very well. Yet there is a surprise coming. For although the formula is
undecidable if the axioms are consistent, it can nevertheless be shown by
meta-mathematical reasoning to be true. That is to say, the formula is a
true arithmetical statement which expresses a complex but definite numeri-
cal property of integers—ijust as the formula "(x) ~ (x4 3 =2) (in words,
“There is no positive integer which when added to 3 will equal 2") ex-
presses another but much simpler property of integers. The reasoning that
shows the truth of the undecidable formula is rather simple. In the first
place, on the assumption that arithmetic is consistent, we have already
established the meta-mathematical statement: “The formula ‘(x) ~ Dem
(x,sub (n,16,n))’ is not demonstrable.” It must be accepted, then, that
this meta-mathematical statement is true. Secondly, the statement is repre-
sented within arithmetic by that very formula itself. Third, we recall
that meta-mathematical statements have been mapped upon the arith-
metical formalism in such a way that true-mathematical statements always
correspond to true arithmetical formulas. (Indeed, this is the whole point
of the mapping procedure—just as in analytic geometry, geometric state-
ments are mapped onto algebra in such a way that true geometric
statements always correspond to true algebraic ones.) Accordingly, the
formula in question must be true. We have thus established an arithmetical
truth, not by deducing it formally from the axioms of arithmetic, but by
a meta-mathematical argument.

When we were discussing the sentential calculus, we explained that the
axioms of that system are “complete,” since all the logical truths expres-
sible in the system are formally derivable from the axioms. More gen-
erally, we can say that the axioms of any formalized system are “complete”
if every true statement expressible in the system is formally deducible
from the axioms. A set of axioms is therefore “incomplete” if not every
true statement expressible in the system is formally derivable from them.
It follows, since we have now established as true an arithmetical formula
which is not derivable from the axioms of arithmetic, the system is incom-
plete. Moreover, the system is essentially incomplete, which means that
even if we added this true but undemonstrable formula to the axioms as
a further axiom, the augmented system would still not suffice to yield
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formally all arithmetical truths: another true arithmetical formula could
be constructed, such that neither the formula nor its contradictory would
be demonstrable within the enlarged system. This remarkable conclusion
would hold, no matter how often we enlarged the system by adding further
axioms to it.

We come then to the coda of Goedel's amazing and profound intellec-
tual symphony. It can be shown that the meta-mathematical statement just
established, namely, “If arithmetic is consistent, then it is incomplete,”
itself corresponds to a demonstrable formula in the arithmetical system.
But the antecedent clause of this formula (the one corresponding to the
meta-mathematical statement “arithmetic is consistent”) is not demon-
strable within the system. For if it were, the consequent clause of the
formula (the one corresponding to the statement “arithmetic is incom-
plete,” and which in fact turns out to be our old friend ‘(x) ~ Dem (x, sub
'(n, 16,n))’) would also be demonstrable. This conclusion would, how-
ever, be incompatible with the previously obtained result that the latter
formula is not demonstrable. The grand final step is now before us: we
must conclude that the consistency of arithmetic cannot be established by
any meta-mathematical reasoning which can be represented within the
formalism of arithmetic!

A meta-mathematical proof of the consistency of arithmetic is not ex-
cluded by this capital result of Goedel's analysis. In point of fact, meta-
mathematical proofs of the consistency of arithmetic have been con-
structed, notably by Gerhard Gentzen, a member of the Hilbert school, in
1936. But such proofs are in a sense pointless if, as can be demonstrated,
they employ rules of inference whose own internal consistency is as much
open to doubt as is the formal consistency of arithmetic itself. Thus, Gent-
zen used the so-called “principle of transfinite mathematical induction” in
his proof. But the principle in effect stipulates that a formula is derivable
from an infinite class of premises. Its use therefore requires the employ-
ment of nonfinitistic meta-mathematical notions, and so raises once more
the question which Hilbert's original program was intended to resolve.

The import of Goedel’s conclusions is far-reaching, though it has not
yet been fully fathomed. They seem to show that the hope of finding
an absolute proof of consistency for any deductive system in which the
whole of arithmetic is expressible cannot be realized, if such a proof must
satisfy the finitistic requirements of Hilbert’s original program. They also
show that there is an endless number of true arithmetical statements
which cannot be formally deduced from any specified set of axioms in
accordance with a closed set of rules of inference. It follows, therefore,
that an axiomatic approach to number theory, for example, cannot ex-
haust the domain of arithmetic truth, and that mathematical proof does
not coincide with the exploitation of a formalized axiomatic method. Just
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in what way a general notion of mathematical or logical truth is to be
defined which is adequate to the fact here stated, and whether, as Goedel
himself appears to believe, only a thoroughgoing Platonic realism can
supply such a definition, are problems still under debate and too difficult
for more than mention here.

Goedel’s conclusions also have a bearing on the question whether cal-
culating machines can be constructed which would be substitutes for a
living mathematical intelligence. Such machines, as currently constructed
and planned, operate in obedience to a fixed set of directives built in, and
they involve mechanisms which proceed in a step-by-step manner. But
in the light of Goedel's incompleteness theorem, there is an endless set
of problems in elementary number theory for which such machines are
inherently incapable of supplying answers, however complex their built-in
mechanisms may be and however rapid their operations. It may very
well be the case that the human brain is itself a “machine” with built-in
limitations of its own, and that there are mathematical problems which
it is incapable of solving. Even so, the human brain appears to embody a
structure of rules of operation which is far more powerful than the
structure of currently conceived artificial machines. There is no immediate
prospect of replacing the human mind by robots.

None of this is to be construed, however, as an invitation to despair,
or as an excuse for mystery mongering. The discovery that there are
formally indemonstrable arithmetic truths does not mean that there
are truths which are forever incapable of becoming known, or that a
mystic intuition must replace cogent proof. It does mean that the re-
sources of the human intellect have not been, and cannot be, fully formal-
ized, and that new principles of demonstration forever await invention
and discovery. We have seen that mathematical propositions which can-
not be established by formal deduction from a given set of axioms, may
nevertheless be established by “informal” meta-mathematical reasoning.
It would be an altogether irresponsible claim to maintain that the formally
indemonstrable truths Goedel established by meta-mathematical argu-
ments are asserted in the absence of any proof or by appeals simply to an
uncontrolled intuition. Nor do the inherent limitations of calculating ma-
chines constitute a basis for valid inferences concerning the impossibility
of physico-chemical explanations of living matter and human reason. The
possibility of such explanations is neither precluded nor affirmed by
Goedel’s incompleteness theorem. The theorem does indicate that in struc-
ture and power the human brain is far more complex and subtle than any
nonliving machine yet envisaged. Goedel's own work is a remarkable
example of such complexity and subtlety. It is an occasion not for de-
jection because of the limitations of formal deduction but for a renewed
appreciation of the powers of creative reason.




