
9 The Fundamental Theorem 
of Arithmetic 

Prime Factorization 
In Chapter 8 we looked for a general conjecture about the relation between τ(n) 

and n, and failed. Now we look for a pattern in the relation between prime numbers 
and composites. Finding such a pattern may illuminate our earlier problem. 

Composite numbers have divisors other than themselves and 1. Some of those 
divisors are primes, and some may be composite. The divisors of composite divisors 
also may be prime or composite. But it looks as if we've got to get to prime divisors 
sooner or later. This leads to the conjecture: 

CONJECTURE: Any composite number can be represented as a product in which 
all of the factors (multiplicands) are primes. 

Pick a composite number such as 300. One algorithm for finding the factorization 
is to begin with the smallest prime divisor (2) and use it as a factor. We get 300 = 
2·150. We look at 150 and find its smallest prime divisor. This is 2 again, so we 
replace 150 with 2·75 and write 300 = 2·2·75. 75 is not prime. We find its smallest 
prime divisor (3), replace 75 with 3·25, giving 300 = 2·2·3·25. The smallest prime 
divisor of 25 is 5, so we get 300 = 2·2·3·5·5. Since 5 is prime, we are done. 

Another algorithm for finding the prime factorization of a 
number is called the "branching method."1 Select any two 
numbers whose product is the number to be factored. If the 
factors are not prime numbers, then continue factoring until all 
factors are prime. The branching that leads to the prime 
factorization of 300 (shown at right) gives 300 = 5·3·5·2·2. 
The convention is to write the primes in ascending order, so we 
should say 300 = 2·2·3·5·5. 

300 

15 20 

5 3 5 4 

2 2 
Exercise. Write 57, 117, and 1728 as the products of primes. 

By either method, any composite number can be represented as the product of 
primes. This leads to the following proof. 
                                                 
1  Angel & Porter, A Survey of Mathematics with Applications, 4th Ed. (Reading, Mass.: Addison-Wesley, 

1993), pp. 173-5 



124 9 THE FUNDAMENTAL THEOREM OF ARITHMETIC 

Proof: Take any natural number n. If n is composite, it can be written as the 
product of two smaller natural numbers. If those two natural numbers are both prime, 
the conjecture is true. If either of the two is composite, it is in turn the product of 
smaller natural numbers. Continuing this process until we meet only primes, we 
eventually have n written as the product of primes.  

Many composite numbers can be factored in more than one way. For example, 12 
= 2·6 = 3·4 = 1·12. But every number I've tried seemed to have only one prime 
factorization. Is that the case for all composite numbers? 

Suppose I decide to factor some huge number N. I opt to use the first algorithm, 
above, and, after much computer time, I get a list of n primes p1, p2, p3, … , and pn. I 
confirm that the pis really are all prime numbers. I multiply them all together and get 
the product p1p2p3…pn = N. Suppose someone else factors the same number N. She 
uses a different algorithm, running on a different kind of computer. She discovers a 
list of m prime divisors q1, q2, q3, … , and qm. Every one of her qis is prime, and their 
product q1q2q3…qm = N. Is it possible that n is not equal to m and/or that at least one 
of my ps is different from at least one of her qs? In how many ways can a composite 
number be written as the product of primes? Or is there a unique factorization of any 
composite number into primes? 

What happens if a number you're trying to factor is prime? How many divisors do 
you have to try before you can be sure that the number you're trying to factor is prime? 

There are some simple tests that permit quick recognition that a number is not 
prime. There is no need to test even numbers, because every even number is divisible 
by 2. Any number ending in a 5 or a 0 will be divisible by 5. We can see that a number 
like 5,106,843 is divisible by 3 by adding its digits (27) and then adding the digits in 
the result (9) until we get a single digit. If that digit is divisible by 3 (it is), the original 
number was divisible by 3. Other tests can be performed by converting the original 
number to a base other than 10. When the easy tests fail, we just have to try dividing 
the number by one prime after another. 

If we have tried all the primes smaller than some prime p, and if p2 > N (where N 
is the number we are trying to factor), then we can stop. N must be prime. (Don't just 
accept this claim. Satisfy yourself that it is true by figuring out why it must be so.) If N 
is a 100-digit number, p could be a 49- or 50-digit number. That means we'd have to 
try every prime less than some 49- or 50-digit number. How many primes would that 

be? It has been proved that the number of primes less than N is approximately N
ln(N).2 

We'd have to check about 1046 primes. If our computer could try a million primes a 
second, it would take about 3×1024 years (that's 3 followed by 24 zeroes, or 3 million 

                                                 
2  By ln(N) I mean the natural logarithm of N. 
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billion billion years) to finish the test. Even if a 100-digit number is composite, it 
might take a very long time to find its prime factors. 

It is conceivable, until we can prove otherwise, that the prime factorization of 
some really big number using two different methods might yield two sets of prime 
factors that are not identical. 

The conjecture is that there is one and only one prime factorization of any 
composite number. The conjecture has been proved. It is a theorem. Specifically, it is 
the Fundamental Theorem of Arithmetic.3 

THE FUNDAMENTAL THEOREM OF ARITHMETIC. If (1) p1, p2, p3, … , 
pn and q1, q2, q3, … , qm are primes (both groups written in order of increasing 
size) and if (2) p1p2p3…pn = q1q2q3…qm, then p1 = q1, p2 = q2, … , pn = qm and 

hence m = n. 

The Fundamental Theorem of Arithmetic 
Outline of the Proof 

It would be reasonable to prove first that p1 = q1. Now p1 is 
a divisor of the product of all the ps (call it N) so it must be a 
divisor of the product of all the qs (which is also N). If we knew 
that this forces p1 to divide at least one of the qs, we could then 
reason like this: Since p1 divides one of the qs, and since the qs 
are prime, so p1 must equal the q that it divides. q1 is the 
smallest of the qs, so p1 ≥ q1. Identical reasoning about q1 shows 
that q1 ≥ p1. Thus p1 = q1. So, replacing q1 with p1 in 
q1q2q3…qm, we get p1p2p3…pn = p1q2q3…qm. Dividing both 
sides by p1 we get p2p3…pn = q2q3…qm. This new equation has 
one less prime on each side. The same kind of reasoning that 
proved p1 = q1 also shows that p2 = q2. Step by step we peel 
away the primes from each side, establishing that pk = qk for all values of k. Since 
every p pairs off with one q and vice versa, we see that m = n (the number of ps = the 
number of qs). 

A mathematical demonstration [proof] is 
not a simple juxtaposition of syllogisms, 
it is syllogisms placed in a certain order, 
and the order in which these elements are 
placed is much more important than the 
elements themselves. If I have the feeling, 
the intuition, so to speak, of this order, so 
as to perceive at a glance the reasoning as 
a whole, I need no longer fear lest I forget 
one of the elements, for each of them will 
take its allotted place in the array, and that 
without any effort of memory on my 
part.4 

The problem is that we don't know that whenever a prime divides the product of 
several natural numbers it must divide at least one of them. 

                                                 
3  The Fundamental Theorem of Arithmetic is also called the "unique factorization theorem." 
4  Henri Poincaré, in an address to the psychological society in Paris on the psychology of mathematicians, 

reprinted as an essay in Volume 4 of The World of Mathematics by J.R. Newman (New York: Simon and 
Schuster, 1956) pp. 2041-2050. 
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Special Numbers 
Consider numbers (prime or composite) that do have the special property that, 

whenever they divide a product of two multiplicands, they divide at least one of the 
multiplicands. Stein calls them "special numbers."5  

DEFINITION: A natural number greater than 1 is special if and only if, 
whenever it divides the product of two natural numbers, it divides at least one 

of them. Symbolically, x is special ≡ ((x|(a·b)) ⊃ (x|a ∨ x|b)). 
 

If all primes are special, the proof-strategy outlined above will work, because we 
would know "that this forces p1 to divide at least one of the qs." Before we try to 
prove that all primes are special, we should assure ourselves that at least some primes 
are special.  

CONJECTURE: 2 is special. 

PROOF: The conjecture is that whenever 2 divides a number a·b (i.e., when 
2 | (a·b)), 2 must divide a or b or both. We use an indirect proof. Suppose that 2 
divides a·b but that 2 does not divide either a or b. If 2 does not divide a or b then 
both a and b are odd. If they are odd, a can be written as 2d+1 for some whole 
number d, and b can be written as 2e+1 for some whole number e. Using these forms 
of a and b, the product a·b can be written: (2d+1)(2e+1) = 4de+2d+2e+1. Clearly, 
4de+2d+2e is an even number. So 4de+2d+2e+1 (one more than an even number) 
must be odd. So a·b must be odd. But since 2 divides a·b, we have a contradiction 
(a·b is odd and a·b is not odd). Either a or b must be even. Either 2 must divide a or 
2 must divide b. Therefore 2 is special.  

Try to prove that 3 and 5 are special. 

You might conjecture that any natural number is special. However, that 
conjecture is easily disproved by the fact that 6 divides 12 (= 3·4), but it divides 
neither 3 nor 4, so 6 is not special. That 6 (a composite number) is not special suggests 
the conjecture that no composite number is special. We can re-state this conjecture in 
the form of its contrapositive,6 as 

CONJECTURE: Every special number is prime. 

PROOF: We prove this conjecture by proving that no composite number is 
special. Let n be a composite number. Then n is the product of two smaller natural 
                                                 
5  Sherman K. Stein, Mathematics: the Man-Made Universe, 2nd Ed. (San Francisco: W.H. Freeman and 

Company, 1969). 
6  The contrapositive of ∀x(Cx ⊃ ~Sx) (no composite number is special) is ∀x(~~Sx ⊃ ~Cx). Getting rid of 

the double-negation and because ~Cx (x is not composite) is (for x > 1) equivalent to Px (x is prime), this is 
∀x(Sx ⊃ Px) (every special number is prime). 
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numbers, a and b, which are both greater than 1. Thus n divides the product of a and 
b, because every number divides itself. Because a and b are smaller than n, n cannot 
divide either a or b. Thus n is not special. Since the only thing we assumed about n 
was that it was composite, we have proved that no composite number can be special, 
from which it follows that every special number is prime.  

So, ∀x(Sx ⊃ Px) – every special number is prime. As you should remember, this 
does not establish the converse, that every prime is special. To prove the Fundamental 
Theorem of Arithmetic we need to prove that every prime is special. 

As we saw, if every prime is special, then factorization into primes is unique 
(in symbols, S ⊃ U, where S is the statement that all primes are special, and U is the 
statement that factorization into primes is unique). To prove S ⊃ U, we assumed 
something that we did not know. We said "If we knew that this forces p1 to divide at 
least one of the qs, …" and proved the Fundamental Theorem. That is a Conditional 
Proof step. We assume S and tried to prove U. If we succeed it follows that S ⊃ U. 

Look back to what led us to define "special numbers" and remind yourself that the 
issue then was the question "If a prime divides the product of several natural numbers, 
must it divide at least one of them?" We can prove the theorem: 

THEOREM 1: If a special number divides the product of several natural numbers, 
then it divides at least one of them. 

PROOF: We make the argument for the case in which a special number s divides 
the product of three natural numbers a, b, and c. We have to prove that s divides at 
least one of a, b, and c. 

Our assumed premise is that s is a special number which divides the product abc. 
Now bc (the product of two natural numbers) is a natural number. So abc is the 
product of two natural numbers – a and bc. Then s must divide either a or bc. If s 
divides a, we have shown that it divides at least one of a, b, and c. If s does not divide 
a, it must divide bc. If s divides bc, it must divide either b or c. So whenever (if) a 
special number divides a product of three natural numbers, it must divide at least one 
of them. Using mathematical induction, we could show that when a special number 
divides the product of any number of natural numbers, it divides at least one of 
them.  

Euclid's Algorithm 
A number that is a divisor of two integers a and b is called a common divisor of 

a and b. A pair of numbers may have several common divisors (every pair of integers 
not both equal to 0 has at least one common divisor, since 1 divides every integer). 

The greatest common divisor of two integers a and b – symbolized as (a, b) – is 
the largest integer that divides both a and b. 
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(0, 0) does not exist, since there is no largest divisor of 0. By the definition of 
"divides" every number divides 0, as ∀x(x·0 = 0). 

LEMMA 1: For any natural number a, (a, 0) = a. 

PROOF: Every natural number d is a divisor of 0, since 0 = 0·d. Thus, the 
largest common divisor of a and 0 is simply the largest divisor of a, namely a itself.  

LEMMA 2: If p is prime and p does not divide a, then (p, a) = 1. 

PROOF: The only divisors of p are 1 and p. Since p does not divide a, it follows 
that the only common divisor of both p and a is 1. Thus 1 is the greatest common 
divisor of p and a.  

LEMMA 3: Let a and b be natural numbers (so a is not 0). When we divide a into 
b we obtain a quotient q and a remainder r, so b = qa+r.7 Then (b, a) = (a, r) (the 

greatest common divisor of b and a is the greatest common divisor of a and r). 

To see what this means, look at the example where a = 12 and b = 57. Since 12 
"goes into" 57 four times with nine "left over," we have quotient q = 4 and remainder 
r = 9. That is, 57 = 4·12+9. Lemma 3 says that (57, 12) = (12, 9). Is that true? In 
general, since r is less than a, the computation of (a, r) will be easier than (b, a). 

We can prove more than just that the greatest common divisor of a and b is the 
same as the greatest common divisor of a and r. We'll prove that the list of all the 
common divisors of a and b is the same as the list of all common divisors of a and r. 
From this, Lemma 3 follows easily. 

PROOF: Let d be any natural number dividing both a and r. Since d divides a it 
must divide qa. Hence it must also divide the sum qa+r, which is b.8 Thus d divides 
b. So any common divisor of a and r is a common divisor of b and a. 

Now we have to prove the converse – that every common divisor of b and a is a 
common divisor of a and r. Let d be any natural number that divides both b and a. 
Then d divides qa, and hence also the difference b−qa,8 which is r. Thus d divides a 
and r. So any common divisor of b and a is a common divisor of a and r. 

We have shown that the list of common divisors of b and a is the same as the list 
of common divisors of a and r. In particular, the greatest common divisor of b and a 
must be the same as the greatest common divisor of a and r. So (b, a) = (a, r).  

One way to find the greatest common divisor of two large numbers is to list all the 
divisors of each number and find the largest number on both lists. Lemma 3 shows an 
                                                 
7  Either q or r (but not both) could be 0, and r < a. 
8  From the lemma before Theorem 1 in Chapter 8. 
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easier way to calculate the greatest common divisor of two natural numbers. The 
method is called Euclid's algorithm. To find the greatest common divisor of the 
numbers 72 and 20 (i.e., (72, 20)), we first divide 72 by 20. We get 72 = 3·20+12. 
The remainder is 12. By Lemma 3, (72, 20) = (20, 12). Divide 12 into 20 and find the 
remainder. 20 = 1·12+8 (the remainder is 8), so by Lemma 3, (20, 12) = (12, 8). 
Divide 8 into 12. 12 = 1·8+4, so (12, 8) = (8, 4). Divide 4 into 8 and find the 
remainder. 8 = 2·4+0 (the remainder is 0). By Lemma 3, (8, 4) = (4, 0). But Lemma 
1 asserts that (4, 0) = 4. Combining all the steps, we get (72, 20) = 4. 

We repeatedly divide and find remainders until we find a remainder of 0. At each 
step the remainder is smaller than the remainder from the previous step. Eventually we 
must obtain a remainder of 0. The remainder before 0 is the greatest common divisor. 

Exercise on Euclid's Algorithm 
1. Use Euclid's Algorithm to find the greatest common divisor of (a) 117 and 51. (b) of 

252 and 147. (c) of 176 and 105. (d) of 600 and 398. (e) of 6447 and 5767. 
2. Find (433, 144), (164, 72), (91, 39), (6463, 5773), (1468823, 1456813). 

Last Steps in the Proof 

LEMMA 4: For any whole numbers a and b (not both 0) there are integers m and 
n such that (a, b) = ma+nb. 

PROOF: Lemma 4 is related to the potato-weighing questions discussed in 
Chapter 8. Lemma 4 says that a- and b-gram weights can weigh a number of grams as 
small as the greatest common divisor of a and b. We can use the Euclidean Algorithm 
to find the greatest common divisor of any pair of weights and answer questions we 
posed (but did not answer) in the discussion of weights and measures. 

In order to find m and n, we "unwind" the Euclidean Algorithm. An example 
should make this clearer. 

Say a = 945 and b = 219. We will find (a, b) by the Euclidean Algorithm and 
then find integers m and n such that (a, b) = ma+nb. The computations for finding 
(945, 219) appear on the left, below; the underline identifies the successive a and b in 
the relation b = qa+r at each stage. On the right are equations for the remainders at 
each stage; these equations will be used for finding m and n. 

 Euclidean Algorithm Equations for finding m and n 
 945 = (4·219)+69 69 = (1·945)−(4·219) 
 219 = (3·69)+12 12 = (1·219)−(3·69) 
 69 = (5·12)+9 9 = (1·69)−(5·12) 
 12 = (1·9)+3 3 = (1·12)−(1·9) 
 9 = (3·3)+0  
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Remember what we're trying to do. We want an equation like (a, b) = ma+nb, 
where a = 945, b = 219. The Euclidean Algorithm shows that (945, 219) is 3. We 
want to find m and n that satisfy the equation 3 = 945·m+219·n. We use the right 
column, starting at the bottom and working up (equivalent to finding a way to weigh a 
3-gram potato with 945- and 219-gram weights). 

The bottom equation on the right (3 = (1·12)− (1·9)) expresses 3 in terms of 9's 
and 12's. We want to express it in terms of 945's and 219's. The next equation above it 
expresses 9 in terms of 69's and 12's (9 = (1·69)−(5·12)). Substituting that 
expression for 9 in 3 = (1·12)−(1·9), we get 3=(1·12)−(1·((1·69)−(5·12))) which 
can be re-written as 3 = (1·12)−(1·69)+(5·12), or 3 = (6·12)−(1·69), an equation 
for 3 in terms of 12's and 69's. To remove the 12, we use 12 = (1·219)−(3·69). We 
re-write 3 = (6·12)−(1·69) as 3 = 6·((1·219)−(3·69))−(1·69). Reduce it to 3 = 
(6·219)−(18·69)−(1·69), or 3 = (6·219)−(19·69). This expresses 3 in terms of 69's 
and 219's. To get rid of the 69's, we look at the top equation on the right column of our 
table, above, and find 69 = (1·945)−(4·219). Substituting for 69 in the equation 3 = 
(6·219)−(19·69), we get 3 = (6·219)−(19·((1·945)−(4·219)), simplified to 3 = 
(82·219)−(19·945). Thus, 3 = (82·219)+ ((−19)·945). We have found m = −19 
and n = 82 that express (945, 219) in the form m·945+n·219. 

Since this technique can be applied to any (a, b), we have proved the lemma.  

THEOREM 2: Every prime is special. 

PROOF: Let a and b be natural numbers, and let p be a prime that divides their 
product ab. We wish to prove that p must divide at least one of a and b. To do this, we 
prove that if p does not divide a, it must divide b. 

If p does not divide a, we have, by Lemma 2, (p, a) = 1. Lemma 4 then promises 
that there are integers m and n such that 1 = mp+na. If we multiply both sides of this 
equation by b, we obtain b = mpb+nab. p divides mpb. Since p divides ab, it also 
divides nab. Hence, p divides the sum mpb+nab. That sum is just b. Therefore p 
divides b. So p is special. Since this proof made no assumptions about p except that it 
was prime, we have shown that every prime is special.  

THEOREM 3: If a prime p divides a product q1q2q3…qm it divides at least one of 
the qs. 

PROOF: Use mathematical induction. If there is only one q (so m = 1) then p 
divides it. Assume (as an AP) that the theorem is true for m = n, so whenever p 
divides a product N = q1q2q3…qn it divides at least one of the qs. Now look at the 
case when m = n+1 (the product contains one more multiplicand). q1q2q3…qnqn+1 is 
the product of two numbers, N and qn+1. By theorem 2, whenever a prime divides the 
product of two natural numbers, it divides one of them. So either p divides N or p 
divides qn+1. If p divides N, then (since N contains only n factors), the assumed 
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premise states that p must divide at least one of them. If p does not divide N, then it 
must divide qn+1. So if the theorem is true for m = n, it must be true for m = n+1. 
Therefore the theorem is true for any m.  

THE FUNDAMENTAL THEOREM OF ARITHMETIC: Every composite 
natural number is the product of primes in exactly one way. 

PROOF: Suppose that two prime factorizations of some number N are p1, p2, … , 
pn and q1, q2, … , qm. Then N = p1p2…pn = q1q2…qm. Since p1 divides N, therefore 
p1 divides q1q2…qm. By theorem 3, p1 must divide at least one of the factors qk. But 
every qk is prime, so p1 = qk. Cancelling these factors from the equation p1p2…pn = 
q1q2…qm, it follows that p2 must divide at least one of the remaining factors qi, and 
hence must be equal to it. Cancelling these equal factors from the two sides of the 
equation, we continue the process with p3,…, pn. After all of the ps have been 
cancelled, the left side of the equation will be equal to 1. Since all the qs are prime, 
they are all greater than 1, so there can be no qs left on the right side of the equation. 
Hence every p will have been paired off with one q, so there must have been equal 
numbers of both (m = n).  

Euclid went on to show that if factorization into primes is unique, then every 
prime is special. You should recognize that we could symbolize this as U ⊃ S. Once 
we have proved U ⊃ S, we can put it together with the previously proved S ⊃ U to get 
S ≡ U. That is, the Fundamental Theorem of Arithmetic U is equivalent to the 
statement S ("every prime is special"). 

To prove U ⊃ S, we use Conditional Proof again. We assume (U) that 
factorization into primes is unique (i.e., that the Fundamental Theorem is true) and 
prove that every prime is special (S). Then we can say, "if the Fundamental Theorem 
is true then every prime is special" (U ⊃ S). 

CONJECTURE: If the Fundamental Theorem is true (factorization into primes is 
unique) then every prime is special. 

PROOF: Consider two natural numbers a and b and a prime p that divides the 
product a·b. We want to prove that p divides either a or b or both. Now, since p 
divides a·b, there must be a natural number q such that a·b = p·q (from the 
definition of "divides"). We can express q, a, and b as the products of primes, as: 
 q = r1r2…rs,  a = s1s2…sn,  b = t1t2…tm 
It's possible that one or more of q, a, and b is/are prime. If that were so, then we'd 
have q = r1 or a = d1 or b = t1. 

Since a·b = p·q, so p·q = a·b, and we have 
  p·r1r2…rs = s1s2…sn·t1t2…tm. 
On the assumption that factorization into primes is unique (this is the assumed premise 
for the Conditional Proof), the prime p must occur among the ss or among the ts. If p 
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occurs among the ss, then p divides a. If p is among the ts, then p divides b. This 
shows that p is special.  

So the Fundamental Theorem of Arithmetic is equivalent to the statement "every 
prime is special." 

Exercise on the Fundamental Theorem of Arithmetic 
1. Define in your own words "prime number" and "special number." Which is easier: 

showing that a number is prime or showing that it is special? Why? Is it easier to 
show that every special number is prime or that every prime number is special? 
Why? Is "prime" a synonym for "special" in ordinary arithmetic? 

2. List all the divisors of 23·54. How can one use the Fundamental Theorem in 
answering this question? 

3. Let a = 33·72 and b=3·5·73. Use the Fundamental Theorem to show that (a, b) 
= 3·72. Explain how you used the Fundamental Theorem of Arithmetic. 

4. Find (144, 96) in three ways. (a) List all the divisors of 96 and of 144 and find 
which is the greatest common divisor. (b) Use the Euclidean Algorithm. (c) 
Express 96 and 144 as the product of primes and use the Fundamental Theorem of 
Arithmetic. 

5. Find the largest number that divides both 25·7 and 26·5. 

The Fundamental Theorem and Irrational Numbers 
In Chapter 7 we proved that there is no rational number whose square is 2. The 

fundamental theorem allows us to prove that there are infinitely many irrational 
numbers. 

Imagine a rational number ab whose square is 2, where a and b are coprime. Two 

natural numbers whose greatest common divisor is 1 are said to be relatively prime or 
coprime. Let the number of primes in the prime factorization of a be m, and the 

number of primes in the prime factorization of b be n.9 From a
2

b2 = 2, we get a2 = 2b2. 

Since a is the product of m primes, then a2 will be the product of 2·m primes.10 
Similarly, b2 will be the product of 2·n primes. But then 2b2 will be the product of 
(2·n)+1 primes (Why?). So the number of primes in the prime factorization of a2 is 
even, and the number of primes in the prime factorization of 2b2 is odd. But a2 is 
equal to 2b2. If a2 = 2b2, then the same number has two different prime factorizations 
(one with an odd, one with an even number of primes). This is impossible, according 
                                                 
9  m and/or n could be 1 if one or both of a and b is/are prime. 
10  Figure it out. If a = p1·p2·p3·…·pm, then a·a = p1·p2·p3·…·pm·p1·p2·p3·…·pm, so every one of 

the m primes occurs twice in a2, so we have 2·m primes. 
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to the Fundamental Theorem of Arithmetic. So there is no rational number whose 
square is two.  

Any number whose square root is rational must contain an even number of every 
prime in its prime factorization. Thus, 8 = 2·2·2, so the square root of 8 is irrational. 
16= 2·2·2·2, so the square root of 16 is rational. Cube roots of numbers whose prime 
factorizations don't contain a multiple of 3 of every prime factor are also irrational. 
And so on. 

Generalizing this further, we can prove 

Theorem: If a is an integer, then the nth root of a (
n a) is either an integer or an 

irrational number. 

Proof: Using fractional powers, 
n a is just another way to write a1/n. If 

n a is 

rational then there are some integers u and v such that 
n a = uv, with u and v relatively 

prime. Then (n a)n = (uv)n, giving (a1/n)n = a = u
n

vn. Multiplying both sides by vn, we 

get vna = un. By the fundamental theorem of arithmetic, every prime factor of vna 
must be a prime factor of un. The prime factors of un are just the prime factors of u 
repeated n times, so the prime factors of vna must be prime factors of u. 

By definition, if a special number divides the product of two natural numbers, 
then it divides at least one of them. Every prime is special. So every prime factor of u 
must divide either vn or a. But u and v are relatively prime. None of the factors of u 
can divide v or any power of v. So every prime factor of u must be a factor of a. Every 
prime factor of un is a prime factor of u, so every prime factor of un is a prime factor 
of a. But un = vna. So every prime factor of vna is a prime factor of a. 

Since every prime factor of vna is a prime factor of a, so there are no prime 

factors of vn. So vn = v = 1. So uv = u, and a = un. Every prime factor of a must 

appear n times in the prime factorization of un. Thus, every prime factor of a must 

occur n times in the prime factorization of a. Then a is an nth power, and so 
n a is an 

integer. So, if 
n a is rational, then 

n a is an integer. Either 
n a is an integer or it is 

irrational.  

n and Tau of n (again) 
In Chapter 10 we tried to find a pattern in the relations between a number n and 

the number of its divisors τ(n). Knowing that each natural number has a unique prime 


