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c.PisT,Qand R are F
d.QisT,PandR are F
It is false in the other four cases; bence, it is a contingency.

Section 3.5. Equivalences

In the above basic truth tables of the last section, note particularly the column
for ‘€=>". This table says that p and q have the same truth value: if p is true then so
is g, and if p is false then so is g. Hence if we wish to say that two formulas are
equivalent we can do it in one of two ways: (1) we could say that they have the same
truth table, or (2) we could say that the result of placing a <> between them is a
tautology. Either of these ways can be tested by truth tables. (By the way, we can
justify our earlier claims in this manner. Write a truth table for each of (pA(gAr))
and ((pAg)Ar). You will discover them to be the same, so we are justified in our
practice of dropping the internal parentheses -- it wouldn't matter which way you
added them back on. Now write a truth table for ~(pvq)e>{~pr~g). You will
discover that there are all T's in its final column; so it's a tautology. This means that
~(pV¢) and (~pA~q) are equivalent ways of saying the same thing. Recall that we
said that neither p nor gcould be translated either way.)

Koowledge of certain of these equivalents, especially the "DeMorgan Laws” which
relate ‘A, ‘V', and ‘~' can make your programming life much easier. Most
programming languages have tives” corresponding to these three. For
example, Pascal has ‘AND’, ‘OR’, and ‘NOT'. One type of "atomic expression” in
Pascal is simple equality, greater than, and less than between variables. So 'X<Y',
‘A=, and the like are "atomic expressions” which can be either true or false, and
which can be made into compound expressi by ns of the tives. Pascal
(and other programming languages) use such expressions to control the action of a
loop. Two loop structures in Pascal are

WIILE p DO
<body>

and
REPEAT <body>
UNTIL p

The "while loop™ works as follows: the statement(s) in the "body” are continually
performed so long as p is true. p is checked for truth or falsity, and if it is true then
the "body" is performed and p is again checked. If it is true the process is repeated.
When p is false the “body” is mot performed, and control is passed to the next
statement in line. The "until loop™ performs the "body” until p becomes true - that
is, as long as p is false. (Actually, it performs the body, then checks for p's truth or
falsity. If p is false, then it does it all again. If p is true, control is passed to the next
statement.)

Suppose you wish to perform some action as long as some complex state of affairs
is true. Let's say you want to perform “body” as long as either A<B or B=50. If you
were to use the while loop you would say

WHILE ((A<B) OR (B=50)) DO

<body>
If you were to use an until loop you would say
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REPEAT <body>
UNTIL NOT((A<B) OR (B=50))
Using the DeMorgan Laws you could alternatively put this last loop as
REPEAT <body>
UNTIL (NOT(A<B) AND NOT(B=50))
But these are easy cases. Suppose instead you want a loop to stop when either A>B
or A<C, and you were to use a while loop. You should say to yourself: "The loop is to
stop when one or the other of these statements becomes true. That is, it continues so
long as the disjunction is false.” So you write
WHILE NOT((A>B) OR (A<C)) DO
<body>
You might also appeal to DeMorgan’s Laws and say to yourself: "So it stops when one
or the other of the statements becomes true. So it must continue as long as they're
both false.” So you might write
WHILE (NOT(A>B) AND NOT(A<C)) DO
<body>
Suppose the desire was instead to write a while loop to stop when both A=B and
B=C. Yousay "So it is to stop when (A=B AND B=C); it must therefore continue as
long as this compound statement is false.” So you write
WHILE NOT({A=B) AND (B=C)) DO
<body>
Or, using DeMorgan's Laws, you write
WHILE (NOT(A=B) OR NOT(B=C)) DO
<body >
Finally suppose you want to loop to stop when neither A=B nor B=C. Again you say:
"Stops when NOT(A=B OR B=C). Therefore continues so long as this compound
statement is false.” So you write
WHILE ((A=B) OR (B=C)) DO
<body>
A good grasp of these simple equivalences helps programming a lot. If you don't know
the answer off the top of your head, you can always write a truth table to figure it out.

Section 3.6. Truth Table Shortcuts and Related Methods

3.8.1. Some Shortcuts

As mentioned above, to consider every possible assignment of T or F to each of
the n sentence letters of a given complex sentence would require a truth table with 27
rows in it. When there are more than three dilferent sentence letters in a sentence, the
construction of an entire truth table becomes extremely long and tedious. Thercfore
various shortcuts have been developed to aid in evaluating such sentences. Using the
shortcuts depends on what you wish to show about the sentence in question. For
example, if you wonder whether the formula is a tautology, you might check only
those rows which you don't already know that it's true. Consider, for example, a
sentence like (pAgq)—>p. We know from the ‘—>"' truth table that the only time an
\——>' statement can be false is when its antecedent is true. And since the antecedent
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is (pAq) and the only time a conjunction is true is when both conjuncts are true, this
is the only case we have to look at. In other words. we need only look at the first row
of the truth table. As we discover when looking at this row, the consequent, p, is also
true. (And therefore, according to the ‘—>' truth table, the entire sentence is true in
this row). But as we said, we already knew that this was the only possible case where
the formula might have been false, and so it must be a tautology because even here it
is truc. Alternatively, we might have said to ourselves that the only time this sentence
could have been false was when the consequent was false. Therefore the only lines of
the truth table we need look at are the last two (where p is false). But then we notice
that in these two rows, (pA g) is false, so that the entire conditional must be true. So,
you say to yoursell, even in these rows the sentence is true, so it must be a tautology.

3.6.2. Truth Trees

Another method often used in evaluating sentences for tautologousness (and, as
we shall sce later, for evaluating the validity of arguments) is called "truth trees”. Tna
wide variety of cases the truth tree method (which we will state as an algorithm) can
quickly yicld an answer to whether a formula is a tautology, and if not, what rows of
the truth table create the F's which prevent the formula from being a tautology.
Before giving the algorithm, let us introduce "branching rules”. There are nine such
rules: one for each binary connective and one for the negation of any conpective. The
idea is that we shall construct a "tree” (don't worry about what precisely a tree is -
the idea will be clear enough) to test the formula we're interested in. Depending on
just how the formula is constructed by the connectives, we shall "break it down" using
the branching rules, thereby constructing a diagram (a “tree”). The nine branching
rules tell us how to break down any complex formula (except simple negations) into its
parts by making the tree bigger. Of course, when you “break down” a formula you
might discover that one of its parts is itselfl complex, and so you have to "break it
down™ by using the branching rule appropriate to it. It is the continual "breakup” of
complex formulas which conmstructs the truth tree. Every complex formula can be
"broken down” by the branching rules.

(pra) (pvq) (p—>4q) (pe>q)
/N /N /N
PO ¢ -p « P %
~(pha) ~(pvq) ~(p—>q) ~(p€>q) =
/\N | | /X |
~p ~ L £ s P
q q q q

As you can sce, some of the rules introduce more than one formula on a node of
the tree. Each of these formulas is eligible for being broken up, although you operate
on just one at a time. This means we can be led to such sequences of "breakdowns” as
the following. We might have a node of the tree with two formulas on it, and "break
up” one of them (the order of breakdown never matters, except for efficiency), yielding
two dilflcrent branches. Now, to break up the other formula, we have to break it up on
both branches, like this
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\

(pvaq)
(p—>r)

VANA

ll_ere we branched the (pVg) to yield two branches, and then branched the (p—>r) to
yield two branches under each of the former branches. We could have done it the
other way: branch (p—=r) first to yield two branches and then branch (pVvg). But
here too we must branch the second formula under both of the branches we got from

(p—>r).

(pvq)
(p—>r)

../ ;
/N /N

You should note -- we will mention why it is important later -- that the branching
rules all have the property that: the formula being branched is true if and only il every
formula on sl least one branch is trae. For instanee, (A H) yields an A branch and
I branch. The (AV ) i true just in ease ab least one of A and M is true. (A —>1)
yiclds only one branch, which contains both A and ~B. ~(A—>08) is true (that is,
(A —>B) is false) exactly in case A and ~[7 are both true (that is, A is true and B ix
false). The same is truc for all our branching rules.

We are now ready to state the tautology-testing algorithm using truth trees. The
algorithm for evaluating a formula says to do the following.
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(1) start by writing the negation of the formula to be tested as the root of the tree.
(The negation of the entire formula).

{2) Apply a branching rule to any unchecked formula in the tree, writing the result of
the branching under every "active” (to be defined soon) path beneath the formula,

(3) check off (with a *>") the formula you just used the branching rule on,

{4) if any path from the root of the tree to a leal contains a formula and also the
negation of that formula, put an ‘x’ under that path. Any path with an ‘x' under it is
not active and need be considered no further. All other paths are active.

(5) Repeat steps (2)-(4) until either (a) there are no more active paths, or (b) there is
an active path but there are no more unchecked complex formulas on that path.

If you reach step (5a), then the original unnegated formula was a tautology. If you
reach step (5b) then the original unnegated formula was not a tautology and every
open path describes some row (or rows) of the truth table where it was false. Let us
consider two examples, the first of a tautology and the second of a contingency. The
first formula is (A V B)<>(~A—>B)

> ~[(AVB)€>{~A—>B)|

> (AvB) >4V B)
> ~{~A—>B) > (~A—>B)
~A ~A
~B ~B
VAN VAN
B ~A
X X X X

Since no path is active, the original formula, (A vV B)<>{~A —>B) is a tautology.

The sccond formula, which is not a tautology, is (A A B)€>(~AA~B)
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> ~[(AAB)e>{~AA~B)]

> AAB > ~{AAB)
> ~(~AA-B) > (~AA=B)
A -A
B -B
VAN VAN
> ~=A »~~B -A -B
A B

Here every path is active. (The fact that all paths are active is irrelevant, all that's
important is that some path is still active.) Each open path describes some row of the
truth table according to which [(AAB)€>(~AA~B)] is false. We can describe the
relevant rows by looking at a path and seeing which atomic sentences occur in it
unnegated and which occur negated. In the leftmost branch, for example, both A and
B occur. The relevant row is where both A and B are true. The second-to-left path
also has both A and B in it and therefore describes the same row of the truth table.
The third and fourth paths both have ~4 and ~B in them, and the relevant row of the
truth table is where both A and B are false. (When checking an active path, it may
happen that some sentence letter does not occur in it. In this case, we have described
two rows of the truth table, one where the missing letter is T and one where it is F. If
two letters are missing from a path, then we have described four rows of the truth
table, etc.) These rows of the truth table which show that the formula is not a
tautology are called counterezamples (to the formula).

This tree method gives a rather quick way of checking truth tables, especially in
those cases where there are a lot of sentence letters. The method works because of the
interplay of two things. First, the branching rules have the properties that, if the
branched sentence is true then so is at least one of the branches, and conversely. This
means that every open path describes a way that all the sentences on that path might
be true, including the sentence at the root. And since these are all the ways a sentence
might be true, it follows that there are no rows of truth tables which have been
ignored. Sccond, we bave placed the negation of the sentence at the root. So if all
paths are pon-active, there is mo way this negation can be true; and hence the
unnegated sentence must be a tautology. If some path is still active, then it does
describe a way the root (negated sentence) can be true, and hence a way the unnegated
sentence can be false.
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Section 3.7. Arguments

An argument is a set of sentences in which one of the sentences (called the
conclusion) is claimed to “follow from” the others (called the premises). For example,
the lollowing collection of sentences forms an argument.

Fither it is not the case that Leslie pays attention and does not lose track of the
argument, or it is not the case that she does not take notes and does not do well
in the course. Leslie neither does well in the course nor loses track of the
argument. If Leslie studies logic, then she does not do well in the course only if
she does not take notes and pays attention. Therefore Leslie does not study logic.

You can tell this is an argument in part by the context -- here someone is trying to
convince you of something (that Leslie does not study logic) by adducing some reasons.
Also the lact that the word therefore occurs here gives the information that you are
supposed to become convinced. Such words as therefore, hence, s, it follows that, and
the like, function as conclusion-indicators. They tell you that the sentence following is
the conclusion of the argument. (Not all arguments in English will necessarily have
the conclusion at the end). Words like because, for the reason that, on account of, and
the like, are premise-indicators telling you that the associated sentences function as
premises to the argument.

Virtue, in an argument, is called validity. An argument is valid if and only if the
conclusion really does "follow from” its premises. Conversely, a bad argument is called
invalid. So the question arises: how can we determine whether an argument is good or
bad, virtuous or unvirtuous! There are, generally speaking, two ways that can be
used. One way is to construct an explicit formal proof of the translation into symbolic
form of the argument. This method will be discussed later in this chapter. The other
way is to use one of the truth table methods. This way rests upon understanding what
"follows from” means in terms of the truth or falsity of the parts of an argument.

Definition 3.7.1: valid argument
An argument is (truth functionally) valid if and only if: In any row of a truth
table in which all the premises are true, so is the conclusion.

To determine whether an argument is valid according to this definition, you need to
write a truth table (or use some other truth method). If you wrote a truth table it
would contain columns for every atomic sentence letter that occurred anywhere in the
argument. This typically means that the truth table would be very large. If this
method is employed, you write a column for cach premise and for the conclusion.
Once their truth tables. have been constructed it is a simple matter to see whether
there is any row in which all the premises are true and the conclusion false. If there is
such a row, then the argument is invalid, otherwise it is valid. If it is invalid, then the
row found describes (one) counterezample: the T's and F's assigned in that row to the
atomic sentences tells you what state of affairs could happen in the world that would
make all the premises be true and the conclusion false. That is, it shows you why the
argument is invalid.

Of course not every argument in ordinary language is so carefully stated as the
one above. Often, certain premises are left out especially when the speaker views them
as "obvious”. According to the definition above, such enthymatic arguments (as they
are called) are invalid. But in another sense they are good arguments and could be
stated validly merely by making explicit these unstated, "obvious™ premises. Finding
the literal counterexample can often help in uncovering precisely what the "hidden”™
premiscs are.

Let us symbolize the argument above. We use the following scheme of
abbreviation.
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P: Leslie pays attention
L: Leslie loses track of the argument
N: Leslie takes notes
W: Leslie does well in the course
S: Leslie studies logic
And the argument is symbolized as (can you get the same answer?):
~(PA=L)V~(~NA~W)

~(WvL)

S—>{~W—>(~NAP))

s, ~5
We note that there are five atomic sentences here, so a complete truth table would
have 25, i.e., 32, lines in it. It could be written, but it would be tedious. We could also
try one of the shortcut methods. Since we wish to know whether it is valid, we are
interested in whether it is possible that all premises are true and the conclusion false.
(If this is possible, then the argument is invalid.) To try to find this out, we might
start by making ~S be false, that is we start by assigning

S:T
The sccond premise is supposed to be true (as are all premises), so, since il is a
negation, the internal disjunction should be false, therefore

s: T

W:F

L:F
If the third premise is to be true, then since S is true, ~W—>(~NAP) must also be
truc. But since ~W is already required to be true, it follows that (~NAP) must be
true, i.e.,

5:T

W:F

L:F

N:F

BT
Given all this, let's see if we have succceded in making the first premise true. If we
have, the argument is invalid. If we baven't, then since we were forced to use these
assignments to make premises two and three true and the conclusion I'a_lse, the
argument must be valid. (Because there is no possible way to make all premises true
and the conclusion false). We could write a truth table for premise one to see whether
it is true or false in the row described by the already-given assignment of truth values
to the atomic sentences. But we could also do it in a quicker manner. Since L is false,
~L is true: and since P is true, it follows that (PA~L) is true. So, the first part of
premise 1, ~(PA~L), is false. Therefore, if premise one is to be true, the second
disjunct must be true. But since both W and N are false, (~NA=W) must be true and
so ~(~NA=W) must be false. Therefore, we cannot make all premises true and the
conclusion false, and so this is a valid argument.

Let's retest this argument by truth trees. Recall that the account of truth trees
given carlier tested an individual sentence for being or not being a tautology: We
negated the sentence and checked whether there were any active paths left in the tree.
If not, the sentence was a tautology (since there was no possible way for the negation
of the sentence to be false). If so, it wasn't and we cnulc! find at least one
counterexample. With a minor modification of the algorithm given there (the only
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change is in step 1) we can apply that method to arguments.
1. At the root of the tree, list all premises and the negation of the conclusion.

2. Apply a branching rule to any unchecked formula in the tree, writing the result
under every active path beneath the formula.

3. Check off the formula you just branched.

4. 1f any path from the root of the tree to a leal contains a formula and also the
negation of that formula, put an ‘x’ under that leal. Any path with an 'x
under it is not active.

5. Repeat steps (2)-(4) until either (a) there are no more active paths, or (b) there is an

active path but no more unchecked complex formulas.
If you reach step (5a) then the argument is valid, b it is not possible to have all
the premises and also the negation of the Jusion all be true. If you reach step (5b),
then it s possible, and you can use the method described earlier to find the
counterexample(s) to the argument. Here is the truth tree method applied to the
above argument. (The numbers beside the "checks™ merely give the order in which we
applied the branching rules).

6> '-(PA—L)v—{—N.'\—W]

2> -{WVL)
3> S—>{~W—>{~NAP))
1>7=5
s
-Ww
~L
-..S /
o 4> ~W—>(~NAP)
>
5> ~NAP
x .
~-N
P
7> ~(PA-L) 8> —{~Na=-W)
7 N
~P / \'"—L ~~N ——W
X X X X
Since all paths close, the argument is valid.
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Section 3.8. Normal Forms

A normal form of a formula is a (possibly different) formula which has the same
truth table as the original formula and furthermore is written in a certain way. For
example, we might want our formulas not to bave any <> in them. We could replace
any part of a formula that does have a <> in it by a truth table equivalent
representation, for instance replace any part like (p€=>q) with ((p—>q)A (g—>p))-
This would give us a formula which we might call the biconditional-free normal form.
This is not a particularly interesting type of normal form, but other types are more
interesting.

In working with logical formulas, it is often convenient to restrict our attention to
formulas of some particular simple form. In this section, we will define several types of
"normal forms" for formulas, and we will show how to convert any formula into normal
form.

Objective 3.8.1
Give reasons for studying normal forms.

Objective 3.8.2
Define disjunctive normal form and conjunctive normal form.

Objective 3.8.3
Show how to convert any propositional formula into disjunctive or conjunctive
normal form.

Objective 3.8.4
Illustrate some applications of normal forms.

Before we can begin to talk about normal forms, we must specify precisely what it
means for two formulas to be “equivalent”. Once we have introduced the appropriate
definitions and notation for equivalence, the definitions of normal forms will follow
quite naturally.

Definition 3.8.1: logical equivalence

Two formulas are logically equivalent (or just equivalent, for short) if they

represent the same propositional function.

In other words, two formulas (or complex propositions) are equivalent if they
have the same truth table. (Strictly speaking, this is not true. The formulas g and
({(p—>q) N (~p—=q)) are equivalent, since they represent the same propositional
function, but their truth tables have different numbers of rows and columns. Note
that the truth tables are the same, however, in the scnsc that for every row witha T
in the p column there is an otherwise identical row with an F in the p column. When
the p column is deleted, and the identical rows are merged, the two truth tables
become identical.)

Notation: =
If p and g are equivalent formulas, we write p= ¢.

In order to be able to talk about propositional formulas in general, we give a
special name to the set of all formulas.

Definition 3.8.2: F

F = {p | p is a propositional formula}.

Then = is simply a relation on F. In fact, = is an equivalence relation. (We go
into this more in Chapter 8. You might look at this now and try to think of what you
have to show in order to prove this fact?) This justifics our use of the term
"equivalent” for =.
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