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Chapter 4.

Predicate Logic

Section 4.1. Introduction

is chapter we shall expand treatment of the formal system of ln;;i_: inu: the
domalilll: ‘:; ‘ﬁrolpnrdcr preé:’ulephm': (often simply called "pred_lnu logic™ or first
order logic” or "quantifier logic™). We shall (1) discuss the notion of translation of
English into first order predicate logic notation, (2) give an explicit formal system of
first order logic, and (3) discuss some normal forms for formulas of first order logic. In
Chapter 9 we will discuss what would be an appropriate semantics for first order logic
akin to the truth table semantics we gave for propositional logic in the last chapter.

Section 4.2. Translation

In propositional logic, the smallest unit we considered was the atomic sentence.
We invc]:tigmd logical E:roperties of sentences (and arguments) where these properties
were dependent on the relationships that obtain between atomic sentences (such as }he
“if-then" relationship, the "and" relationship, etc.), b_ut we did not :on}lder any logical
properties that a sentence (or argument) had in virtue of the relationship between
subjects and predicates of atomic sentences. It is l_,hla topic that first order logic
addresses. First order logic is built on top of propn_smonnl logie; all you ha_ve learned
about propositional logic still holds here, but we will add some new things in order to
accommodate the new information which we can represent because we have data' about
the relationship between subjects, objects and predicates. So: what does this new
information amount to! Mostly it has to.do with a new representation of atomic
sentences. If you were to apply the translation method of the ‘last chapter gxu!.ly as
stated there, all you would have to do to obtain a prediul._e 1951c representation of r.t!e
sentences would be to use a different scheme of abbreviation which breaks atomic
sentences into their smaller components (subjects, predicates, ete.). Of course, this
means that we need a somewhat different definition of a I'ofn_xula so0 that we can reflect
this further breakdown. And when we come to the explicit formal system we shall
peed a few more rules of inference to tell us how to operate on these new atomic
sentences. But all of the old rules of inference will remain valid.

It is traditional to break the topic of first order logic up into four segments: (a)
propositional logic (which we discussed in the last chapter) (b) monadic (that is, 1-ary)
predicate logic, (c) relations (that is, n-ary predicate logic), and (d), identity. We shall
continue to use the notation we discussed in the last ch‘apler, al}d start our discussion
with (b). Once we have translations for monadic pred]eai.e logic Iu_lder our bell.s,_ we
shall move on to translation for the n-adic predicate logic and then discuss translations
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for identity. In the next section we will give rules for operating in a formal system,

4.2.1. Monadic Predicate Logic
Consider a typical at sentence from the last chapter:
Kim danced

If we were going to break this atomic sentence up into parts, we would pick out Kim,
the subject, and danced, the predicate. Intuitively the sentence asserts that the
predicate is true of the subject. Similarly, if we had the atomic sentence

Jefl is a scholar

we would say the Jeff is the subject, and the asserts that the predicate is a
scholar is true of him, or that the characteristic or property of being a scholar can be
truly asserted of Jefl. To fully represent this logical form (of these kinds of atomic
sentences) we obviously need some kind of abbreviation for the subjects and
predicates. We shall use lower case letters (usually with some association to the
English name) to abbreviate the names. Kim would be represented as k, and Jeff as 5.
The predicates of the sentences, danced and is a scholar, will get represented by
capital letters (again, normally with some association with the English); danced by D,
and ia a scholar by S. Finally, to represent the whole sentence, we wish to associate k
with D and 5 with S. We do this simply by writing

D(k)
S(j)

(Later on, when we are more comfortable with the notation, we will often omit these
parcutheses when the context makes it clear how to restore them). It will be noted
that the kind of predicates we are considering take one argument (the subject) to form
an cotire (atomic) sentence. This is why they are called "monadic”, and it stands in
contrast with such predicates (or relations) as ss taller than which obviously require
two arguments to form an atomic sentence. Quite often this information about how
many arguments a predicate (or relation) takes to form an entire atomic sentence is
given as a superscript. So we might have had D! stand for dances, S! stand for is a
scholar, and maybe T? stand for is taller than. So the superscript says how many
arguments are required for an atomic sentence. What, then, would one make of a
"predicate” like A°? Well - it requires zero names to form an atomic sentence. And
what is that? That's just an atomic proposition, as we discussed in the last chapter.
So you can see that propositional logic is just 0-ary predicate logic. The topic of this
section is l-ary (or monadic) predicate logic and the topic of the next section is n-ary
predicate logic. Normally, when the context makes it clear, we will omit the use of
superscripts.

In any case, one type of atomic sentence we can now represent more fully is the
kind we have just discussed, where there is a name in the subject position and the rest
of the sentence predicates some property of the object named by the subject term.
But this is not the only kind of atomic sentence we want to represent in monadic
predicate logic. Consider such seotences as

Every integer is 3 number
Some integers are primes

In such sentences we intuitively pick out a set (in these examples, the set indicated by
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‘integer’) and assert that some predicate ( is & number or is a prime ) is true of every
(or some) member of that set. To represent such sentences we obviously need some
way of picking out sets, some way of talking about every or some members of the set,
and a way of predicating a property of those members. The words every and some in
these examples are quantifiers, and we have special symbols for them namely, Y and
3 (respectively). These are called the univeraal quantifier and exzistential quantifier.
To say that something is in the set of integers is to say that the predicate sa an integer
is true of it (so we can continue to use our predicates for the purposes of picking out
sets). All that remains is to state a method for talking about members of the set when
we don't have any specific ones in mind. For this purpose we shall employ variables.
Stylistically we use x, ¥, z, ¥, ete (lower case letters near the end of the alphabet) for
this and try to keep them separate from the lower case letters we use for names. So we
say things like 'I(x)' to mean z is an integer; but since ‘x’ is a variable and does not
name anything, the formula ‘I(x)' is neither true nor false - it is instead an open
formula (of one variable) which expresses an open proposition (of one variable).
Similarly, if we let P stand for és a prime, then 'P(x)' is an open formula (of one
variable) and ‘(I(x)AP(x))’ is also an open formula (of one variable). These will become
sentences if the variable is replaced by a name. They will also become sentences il the
variable is bound to a quantifier.

Teo bind a variable in a formula to a quantifier, one expands the quantifier into a
quantifier phrase by adding a variable to the quantifier (the same one used in the open
formula). For example, we might add ‘x' to the quantifier ‘3, forming the quantifier
phrase {3 z) and then place it in front of the open formula ‘(I(z)A P(2))’ forming the
"closed” formula

(3 2)(I(z)AP(2))

(It is the parentheses that tell what the scope of the quantifier phrase is - just as it is
the ‘BEGIN/END' structure of programs which tells what the scope of identifiers in a
program is for a block structured, statically scoped language).) The formula above is
different from

(3 2)I(2)A P(2))

In this last example, the scope of the (3 2)' extends only to the {I(z)' and not the
‘P(z).

The quantifier phrase {3 z)’ can be read "there exists an z° and the quantifier
phrase ‘[J z)’ can be read "for each z". Of course, the use of ‘z’ instead of, say, y'
here is immaterial, because “there exists an 2" and "there exists a y" say the same
thing. The only reason to use one rather than another would be in sentences where we
wish to distinguish two or more things. In these cases, the use of a different variable
allows them to refer to different things (but does not require it). We shall shortly give
examples of this. The quasi-English phrases "there exists an z~ and "for each z" have
many stylistic variants. The obvious ones are:

there exists an x: there is at least one x, something

for each x: for all x, for every x.

More stylistic variants become apparent after we give some other translation hints.
Given the apparatus so far developed we can translate a wide variety of atomic
English sentences, besides the ones involving names and a predicate. There are simple
ones involving only one predicate, such as those of I-IV in the table following. But we
can also translate certain natural relationships between predicates, such as the
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relationships indicate}i in V-VIII. (In each type we give a sampling of the stylistic
variants of the quantifiers). In the translations we have omitted the superscripts and
the parentheses around the variables, but this should raise no difficulties.

Type of English sentence Tranalation Ezamples

L Everything is A [V z)Az
Everythingisan A

Everything is extended.
Everything is a physical object

. Something is an A (Fz)Az
There is an A
At least one A exists
There are A's

Something is 3 buffalo.
There is a positron

At least one aardvark exists
There sre quasars

M.  Nothingis A ~Jz)Az Nothing is a chialligon

A's don't exist or (V 2)~Az Unicorns don’t exist
V. Something is not A (F2)~Az Something isn’t dead
There is 2 non-A There is a non-student
Y Every AialB (¥ z)(Az—>Bz) Every dog is s mammal [A: x is a dog)
Every A u‘B Every computer is electronic
Every A_E s Every proflessor talks
Each ‘A iza E‘i Each senator is a citizen
All A's are B'a All women are people

A's m.'B‘n Students are smart
Any AisaB Any table is 2 piece of furniture

VL MoAisaB (V 2)(Az—>~Bz) Nostudent is s professor
No A's are B's or ~(Az)(AzABz) Nodogs are birds
None of the A's are B's Nene of the senators is unemployed

VIIL Some Aisa B
At leastone Aisa B
There exists an A whichisa B
Thereisan AB

Some philosopher is a scientist

At least one mathematician is a charlatan
There is a computer which is cheap
There is a tall man

(32)(4zABz)

VIII.  Some AisnotaB (3z)(AzA~Bz)
Some A's are not B's

Some A's are not B

Some professor is not a student
Some scientists are not women
Some philosophers are not serious

A llumher of observations should be made about these translations. The first has
to dn? with the translation of the stylistic variants of "for each x" with a ‘—>" relation
holllitug between the subject (A) and predicate (B) while we translate the stylistic
variants of "Lhe_re_is an x” with ‘A’ relating them. The easiest way to comvince
yourself that this is correct is to just try the alternatives with a few examples. For
example, we say to translate All boys are male as (V 2)( Bz—>Mz). Try reading these
symbols back into "stilted English™: you get for each z, if z is a boy then z is a male
Doesn't this sound as if it means the same as All boys are malef But il it wer;
translated as (V z)(BzA Mz), that is, by using an ‘A’ rather than an ‘—>', then it
yould go back into "stilted English® as for cach z, z is both o boy and male, IBul. this
Just F.'m't be right! This last would mean that everything (tables, computers, water
etc) is both a boy and male, whereas the original sentence only said that bu;ra were
male. The n‘:nr:l] here is: when translating sentences using (V z) -- that is, translating
sentences using stylistic variants of "for each x” -- use the ‘—>' to connect the subject
of the sentence with the predicate of the sentence. We also translated some dogs are
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terriers as (3 2)(DzA Tz). Again, translate this back into "stilted English" and you get
there is an z which is a dog and a terrier - which sounds right, doesn't it? But if we
had translated it as (3 z)(Dz—>Tz) we'd be in trouble. Remember that (p—>¢) and
(~pV¥q) have the same truth table. This means that (3 2)(Dz—>Tz) and
(3z)(~DzV Tz) are the same. But the English of this last sentence is something i
either not a dog or elsc ia a terrier. That is made true much too easily - for example
by a briefcase (which is not a dog, and so is something which either is not a dog or else
is a terrier)! Rather, the original English sentence says that there is something which
simultaneously is a dog and is a terrier.

For the Group VI sentences -- like no whale is @ fish — one ean view it in two
ways: either as saying, of all whales, that they are not fish; or as saying that it is false
that some whale is a fish. The former way would yield (V 2)( Wz—>~Fz). The latter
way yields 3 z)( WzAFz). We shall later see that these are equivalent, and either
can be used for translation. Oune is tempted to tramslate everything i physical as
(V z)( Tz—>Psz), where T:x is a thing. But this is not required, since the possible
values of ‘x’ are all and only things; the antecedent "x is a thing” is already included in
the (V z) part, and so the sentence could just as well be translated as (V z)Pz.

There are some other sentemces whose translations depend on the specific
predicates involved, and judgment must be used to determine which quantifier to use.
Consider primes are integers. Such sentences should be translated with a universal
quantifier: (¥ z)(Pz—>Iz). But other, similar, sentences should be translated with an
existential quantifier, such as Dogs are barking: (3 z)(DzA Bz). One needs to consult
one’s linguistic intuitions to discover whether the universal or the existential quantifier
is appropriate.

Another fine point concerns the quantifier any. Often it is natural to translate it
as a universal, as in our above list. But at other times, especially in the antecedent of
a conditional, it is natural to translate it as an existential, as in if any person can
aolve the cquation, Terry can, which would be translated as ((3 z)(PzA S2)—>5(1)).
It is worth noticing here in this example that we first recognized if-then as the main
connective, yielding ‘—>'. Then we translated any peraon can solve the cquation as
(3 z)(PzA5z) and the consequent as 5(t).2 So the hints given in the last chapter
concerning how to translate truth-functionally complex sentences still hold - the only
difference now is our expanded definition of "atomic sentence”.

You should keep the translations mentioned in Groups I-VIII of the previous table
carelully in mind, as they will form the building blocks of most specific translations
you will have to perform. For example, whenever you see a sentence like All A's are
B, you will know that it is to be translated as (V z)(Az—>Bz). The translation of the
specific subject and of the specific predicate will go in place of the ‘A’ and ‘B’ in this
trapslation scheme. Let us therefore turn to the question of how to translate various
types of subjects and predicates. One important fact is that modification of a noun by
an adjective or by a relative clause amounts to conjunction. For example, the subject

tall person amounts to saying, of some z, that z is tall and z is a person. The subject
student who ia taking compuling amounts to saying z is a student and z is taking
computing. Similar remarks hold for adjectival modification and relative clause
restriction within predicates. So to translate Every tall student taking computing 1]
an ambitious person who will go far: we first recognize it as an Every <subject> is a
<predicale> type, and hence start with (V¥ z)( <subject >z—><predicate >z). The

d

2 However, if the sentence with any in its has 3 p in its g which
refers back to the any, then the hint given in this parsgraph will yicld incorrect results. For
example, il the sentence is if any person can solve ‘5 cquation, then he will get an "A” and we
translate as suggested in the paragraph here, we get (A z)( Pz Sz)—>Az), which is incorrect
because the Z in the consequent js not bound to the uantifier in the antecedent. The correct

r far such is ( 3]((?3"‘\3:}—)'1:].
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<subject> has an adjective (tall) a noun (atu

c n dent) and i ]
compuling), and this is (TzA S?A Cz). The predicate afw hn.a:nr:.!;jtell‘:‘:ivcelT(:’r:b:g':km)ﬂ
a noun (person) and a relative clause (who will go far), so it gets translaledwa;

(AzAPzAGz). The who - L i
parentheseg)} le sentence is therefore translated (again omitting internal

(V 2)(( TzA S2A C2)—>{Az A PzA Gz))

E:E::a:u :ihni; h:;::ekni:l?astilt:!it'Engliahé for each z, if z is tall and a student and taking
f ' 2 is ambitious and a person and will far. Thi
enough to the original to convince you that we have indeest:.ratslstc:i: I::::ll-‘:::;}do“

As nice as it would be to have some sort of a i

; b utomatic translati

E.ng‘llstl} to ‘ﬁr‘st-prdc_rllugw, none seems to be forthcoming. 8:: an:::t ﬁ::?urrzlfrom
f::t;e 115}1::1.:: intuitions - together with the kind of hints we have been givi{;g %‘:z
suh_“: !:lah‘re I-:lan pass on are these. Often, when English uses an explicit and.in the
evomiadion mlkh JAhma th s oties It Vadh e £l 0 ey

he re-translating it back into English and seei i
means the same as the original. Consider fo i S g
3 v r example Every man and
:gfl;;il;}:c:];:e::p:: hatw: I:,he form (V z)( <subject >(z)—> <predicate ;?:’l};n ;;3
: : rs to be z is a man and z is a woman. S ’
:;:2:::322‘ if::tmrg (v I]EEIM:_ ;\ Wz2)—>Cz). But this is wrong, uoy’;:udf;:\?el:tien lr:(-“
7 t to: for each z, if z is 3 man and z is a woman then
that, according to this last sentence, in order to be able to app!y,szc:u:tpilg-bnr:;t:

man and a woman! There are vari i is di
AL o ol Thars various solutions to this difficulty. Here are three

(V¥ 2)(M(2)—>C(2)) A (Y 2)(W(z)—>C(2))
(Y 2)V y)([M(2)—>C(2)] & [W(y)—>C(v)])
(¥ 2)([M(2)v W(z)] —>C(z))

In the first, we have broken it into two se i
) ntences, one saying men ¢
other that women can apply. In the second, we used two qufntiﬁem?:uzpl"ﬂz Slnedn::;

and one for the women, and we say of each vari i
we say of z that il it is a man or ‘)"mm“ thv::iar.!ﬂ:nt:;;:‘;e’ S R G,

Apnother hint concerns enly. In the last ch i it i
“ﬂ:[‘:'n n;m?\inat.:]nn with if, it reverses th: 3]7}'51' der Po:l!;dt;:l iy :i" 5
conditional. Another use of only is as a universal i i ini .

. . othe quantifier (as in Only int
primes); but again it reverses the antecedent and consequent. [This se:t:'n:: :fl::l‘]d‘;:

translated as (V¥ z)( P(z)—>I(z d i
bpenaintadl b1 1 u"( p}r}}::d_not the other way around (as it would be if the

Finally, we should remark that it is i istingui
it is important to distinguish truth-f i
i:::;ﬂ:?";egtence? f:mp nl.hehrsi_ For example, the sentence Something is a ]:;::Linzﬂﬂ
1t a circle is truth luoctionally complex and should be i
; . 3 nall; translated with ‘A’
:« "'“ﬁ':"“"" connective, So overall it is ((F2)S(2)A(F2)C(z)). But the :'Inrcn:o
Somcthing is a_square and a circle is not truth functionally complex. Instead it gets

:E:;:'_a'-fd as (3z)(S(z)A C(z)), saying of one thing that it is both a square and a

s L:t us look at r.I_:e Lranzlatioln of some more interesting sentences. Here is a set of
mples together with a few brief remarks on the process of translation, and a final

ion 2 August 9, 1986 Translation




Chapter 4 -T8- Predicate Logic

translation. You should carefully go through these examples to make sure you could
come up with the same answers.

(a) All cats will purr if their ears are rubbed.

(b) Only persons over 21 will be admitted.

{¢) Any healthy baby is pleased if people sing to him or show him bright objects.
(d) No valuable diamonds are cracked or cloudy.

(¢) If everything is mental, then nothing is physical unless something is both
mental and physical.

(f) If a registered voter has not declared a party and only those who have
declared a party can vote, then he or she cannot vote.

Sentence (a) is a type V statement with cats as subject and a complex if-then as
predicate. So it should become

(a*) (V 2)( C(2)—>{R(z)—>P(z))

I a type of universal quantifier, which (you wi]l_rem:mher]
f:::rcane‘;et}:t] o‘:-:le:r :? f'"“ d 3"13 and © quent; so it translates as (P: z is a person,

Q: z is over 21)

(6*) (¥ 2)(A(z)—>(P(2)~ O(2))

i i i i i hink of
It i haps instructive to see why the various other traua!zhons one might th
aremiierl;rrscu The sentence (V¥ z)(P(z)A 0(z))—>A(z)) is wrong because it says
(wrongly) that all persons over 21 are admitted and does not say that no one else ;:
admitted. The sentence (¥ 2)((P(z)AA(z))—>0(z)) says (correctly) that all peop]e
who are admitted are over 21, but does not also say (as the English does) that the only
things that can gain admittance are people.

i i i ifier. The subject
Sentence (¢) should be recognized a3 using any as a‘nmve_rsal quanti e
i::he con(ju]nction of healthy and baby, and the predicate is an if-then statement with
an "or” in the antecedent. The relevant predicates are: S: people sing to z, O: people

show z bright objects,
(*) (¥ 2)([H(2)A B(z)] —>(8(z)v 0(2)) —>P(z)])

i j i i i { valuable and
Sentence (d) is of our type VI. The subject is the conjunction o L e 3
d::me:nda,[w]hile the predicate is the disjunction of cracked and_cl'audy. Since it is a
type VI sentence, the translation hints give two ways to translate it

(d*) (¥ 2)([V(2)AD(2)|—>~[C(z)V L(=)))
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(4**) ~@ 2)([V(2)AD(2)]A[C(2)V L(2)])

Sentence (e) should be recognized as having if-then as main connective, and having
unless as the main connective of the ¢ quent. The ant tis our type I, and the
conscquent's parts can be recognized as type III and type VII respectively. So it would
get translated as

(e*)(V 2)M(2)—>{(V 2)~P(z) V(I 2)(M(z)A P(=)))]

Sentence (f) contains a bit of a trick. We can see the problem if we just try to
translate it using the hints so far given. Using these hints, we would say that the main
connective is if-then, and that the antecedent has a conjunction. The first conjunct
looks like an existential statement: Some registered wvoter has not declared a party
and the second comjunct is an "only” statement, becoming All whe can vote have
declared a party. The consequent uses the phrase he or she to refer to the previously-
mentioned voter who has not declared a party. (One does not use a disjunction - the
he or she just refers to the voter, z, regardless of sex). So we are ready to try to
translate it, getting

(@ 2)[R()AV(2)A=D()A(Y 2)(C(2)—>D(2))) —>~C(2)}

But this translation is not quite right. In the consequent we have an "x" which is not
attached to any quantifier phrase - the {3 z) only extends to the first conjunet and
the (V z)' to the second conjunct of the antecedent. In technical jargon (which we
shall carcfully define later), this last occurrence of ‘x' is free and not bound by any
quantifier. (This is the same problem noted in the last footnote about any). In any
case, it does not necessarily refer to who we want it to, namely the registered voter
who has not declared a party. A general trick which you will find useful is to recognize
that when English uses a pronoun in a consequent to refer to some z introduced by a
quantifier in the antecedent, what is really asserted by the sentence is that every thing
that satisfies the antecedent also satisfies the consequent. We should therefore
translate this sentence as

(S*) (Y a)([R(2)A V(z)A=D(2)] MV 2)( C(z)—>D(2)])—>~C(z)}

You will now notice that the last ‘x" is in the scope of the initial quantifier. But you
might ask about the embedded (V z)' quantifier in the antecedent - doesn't the fact
that it uses the same variable as the main quantifier mean that there will be some
confusion? The answer is no, and for more-or-less the same reasons that most
programming languages do not get confused when you declare the same variable name
inside the scope of another declaration -- it always nses the "nearest”™ declaration if it
is still in its scope. Here, the z's in [C(z)—=>D(z)] are bound by the closest (V z)'
and not the "outside™ one. But it might be more clear to use a different variable, like
this

(7**) (¥ 2){([R(2)A V(2)A=D(2)A(V y)[C(y)—>D(y)])—>~C(2)}
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One final remark about translation has to do with the quantifiers and negation. If
we say "Something is not F", that's the same as saying "not everything is F*. That is,
(32)~F(z) is the same as_~(V 2)F(z). Similarly, "Nothing is F" is the same as
"Everything is not F~, 0 ~3 z)F(z) is the same as (V 2)~F(z). Generally, a negation
can be "moved through” a quantifier phrase ( in either direction) by changing the
quantifier. These are called the laws of quantifier negation.

4.2.2. Translating Relations

The examples we have discussed thus far involve tr lating O-ary predi (i.e.,
propositions) and translating monadic predicates. In this section we discuss the full
range of predicates, excepting the special case of identity (which we discuss in the next
section).

Just as monadic translation builds on the propositional logic translation, so too
the n-ary translations build on the monadic ones. What is new is the recognition of
how to bandle certain new kinds of English constructions.

Some predicates in English are obviously two-place, as for example "__is larger
than __", "__flows inte ", "—Js morth of __~ and the like. These can be
translated by such predicates as L%, F?, N% and to form a sentence, two names or
variables are added; we can say L% a,b) says "Alaska is larger than Belgium™ and that
F?(m,a) says "The MacKentzie River flows into the Arctic Ocean”. Other predicates
are three-place. Line A eztends from B to C would be translated E%(a,b,c), and Eight
is a sum of five and three could be translated S%(e,f,t). Still other ones are four-,
five-, etc, place, and are translated with the appropriate superscript and the requisite
number of names.

Adding quantifiers to this is easy. Somcthing i larger than Alberta would be
translated [5 2)T%z,a); Nothing is north of the North Pole would go as
~(3z)N*(z,n). The issue is slightly more complicated when instead of having
something, nothing, everything we have a quantified noun, such as some man, every
number, no physical object. For these types of subjects one needs to recall the hints in
the last subsection.

Some state is larger than Alberta
Every number is larger than zero

No person knows more than Ken
would be translated, respectively, as (we omit superscripts when no ambiguity results)

(Fz)(S(z)AL(z,a))
(V z)(N(z)—>L(z,2))
~(Jz)(P(z)rK(2,k))

which is exactly what you would expect from the previous subsection.

Reflexive pronouns, like itzelf, himaelf, themaelves are translated as follows: if the
grammatical antecedent is a name, just re-use the name. Sammy hates himself gets
translated as H?(s,s). If the grammatical antecedent is a quantified term, re-use the
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(\f;ri:?{hk(.z]_!:iﬁfz:rﬁ:m hates  himaelf becomes ~(Tz)(P(z)AH(z,2)) or

If a formula has a sequence of quantifiers all of the same type (all universal 1l
existentials), then the order of the quantifiers is immaterial. (U’;)}v vV z]F’[s:,';:]
is t-he_ same as (V y)(V 2)(V x_)f"!{s,y,z) - and the same as any other order of
quantifiers. But when the quantifiers are mixed, the story is different. Consider

Everything is caused by something

There is something which everything is caused by

These are obviously quite different in meanin d i
| : g, and translating them we see that the
difference shows up in the order of quantifiers. 'i'hey are, respectively

(V) (3 y)C(2,y)
(Fy)V 2)C¥(z,y)

where CQ:.z is caused by y. Sometimes it is difficult to see exactly what the difference
is, but let's consider G%z gave y to z.

(V2)V )3 y)G(z,5.2)

says that everyone gave everyone something (or other). As remarked before, this is
equivalent to

(V =)V 2)3y)G(a,y,2)
On the other hand
(V2)(3y)V :)G(2,y,2)

says that for each person there is a specific gift he gave to everyone. That is, for each
person you can find some particular gift which he gave to everyone. On the third hand

(ay){v :NV 2)G(z,y,2)

[which iy equivalent to (Fy)(V =)V 2)G(z2,y,2)] says that there is some one thing and
everyone gave it to everyone.

Genitives and possessives indicate ownership or possession. In English this might
be Cf(plltlll)" mdl_cal.cd with owns or has, but more commonly by the possessive case.
Jeff's computer 1o slow should be paraphrased as there 12 a computer which Jeff owna
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that is slow and therefore tramslated (Jz)(C(z)A0(j,2)AS(z)). Sometimes the
possessive case indicates a different relationship. Jeff's brother prub_ably ought to be
translated by B2z is a brother of y. So, Jeff's brother 's compuler is alow should be
translated as (3z)(C(2)A(3 y)[B(y./)A O(y,2)]A5(2)) - which says that there is a
computer and a brother of Jeff who owns 1t, and it is slow.

English uses prepositional phrases to express relationships, and often one wishes
to use existential quantifiers to capture the meaning.

Jeff bought a computer from 3 woman with a dog

would be translated, in stages

(3z)(z is a computer A j bought z from a woman with a dog)
(3 z)C(2) A (y)ly ie o woman with a dog A j bought z from y])
(@2} C(2)A(3 )3 s(y is a woman A z is a dog A y owns £)A B(j.z,v)))

@ z) c(x)A@ U@ ) W()AD()A O(y,:))ABlj,2.9)])
Here are some examples translated for you. You should try to translate them
yoursell and see if you come up with equivalent translations.

(a) Everyone who used Jefl's computer is sought by Sally.

(b) Everything which will convince somebody of sound judgement will
convince everyone.

(c) Any number such that all numbers less than it are interesting is
interesting.

(d) No number is prime unless it is divisible only by 1 and itsell

(e) A teacher has no scruples if he assigns a problem that has no solution.

We here provide a translation of these sentences (we translate everyone in (a) as every
person). The scheme of abbreviation for these is

P: z is a person

C' z is a computer
O:zowns y

U: z used y

5: z is sought by y
J: z has sound judgment
C% z convinces y

N: z is a number

L: zisless than y

I: z is interesting

: 7 is prime

: z is divisible by y
1z isequal toy

: z is a teacher

: z is a problem

DambhD

an 2 August 9, 1986 Translation

B B B B R R R R EEREERNENENRNENENEN,

Chapter 4 - B1- Predicate Logic

A: z assigns y

L: z is a solution to y
H: z has scruples

J: Jefl

¢: Sally

0:1

(a*) (V 2)(P(2)A (B y) CH(¥)A O(5,9)A Ulz,))—>5(z2,4))

(6) (¥ 2)((3 y)[P(y)A I(9)A C¥(z,9)| VY 2)(P(2)—>C(2,2)))

(e*) (VY 2)N(2)A(Y y)N(p)AL(y,2)—>1(y))—>I(2))

(4*) (V 2)(N(z)—>(=R(2)V(V y)(N(y)AD(2,4)—> E(y,0)V E(y,2))))

The last clause of (d*) says "Every number that divides z is either equal to 1 or to z7.
When we encounter identity in the next section we shall use that instead.

(") (V 2)(T(2)M3 y)(B(y)AA(z.9)A~(T 2)L(2,y))—>~H(2))

4.2.3. Identity

The final area of first-order logic that we are interested in is that of identity. This
is that relation which holds between anything and itsell, and not to another thing (no
matter how similar). Being a relation, it could be translated by some two-place
predicate as we did with an example in the last section. But it also has some special
properties which set it apart from other relations, and for that reason it is usually
given a special symbol, ‘=", =

Sentences which can be translated using identity are:

1. Simple identities such as Mark twain is Samual Clemens and the stylistic variants
using is the same as, is none other than, ia identical to and the like, would
be translated as ‘m=4’

2. Negations of simple identities, such as Mark Twain is not Walter Scott and its
stylistic variants using is not the same aa, s different from, is other than,
etc, would be translated as ‘~m=w’, or, commonly as ‘m#* w'.

3. Ezceptives. These are sentences where someone is explicitly excluded from
consideration, A sentence like John ia taller than cveryone clse tells us to
gather together all people except for John, and that a comparison of John
with this group will show that John is taller than each of them. So, using P:
1 is a person, T: z is taller than y, we would translate it as

(V z)(P(z)rz# —>T(2.5))

A sentence like Jokn is taller than everyone ezcept Len explicitly excludes
Len from the group of people that John is taller than. So, in addition to
excluding John from the comparison group, as above, we also wish to exclude
Len by adding another clause to the antecedent, giving
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\J :)(P[x]h:#jhztl—#f(j,:}}

Stylistic variants of ezcept are: else but, but, other than. Another type of
exceptive involves "only™. Consider

Len is the only person smarter than John
Only Len is a smarter person than John

(stylistic variants of each other). Such sentences say three things: that Len
is a person, that Len is smarter than John, and that no other person is.

P(1)AS(L)MY 2YP(z)Az#1—>5(1,7))

To negate this sentence, one should be careful. The "literal negation™ is
*[F{I]AS[I.,{)A(V z)(P(z)Az# 1—>5(1,2))

which by DeMorgan's laws is

~P()V~S(L,)v ~(¥ 2)(P(2)Az# I—>5(j,7))

You should ask yoursell whether you think that Len is not the enly person
smarter than Len should be translated this way - i.e., whether it should be
translated as saying that either Len isn't a person or he isn't smarter than
John or someone else is. If mot, you have to be careful where you place
pegations in the translation. Maost likely you would want the negation to
have "parrow scope”, yielding

PAS(L A~V 2)(P(z)Az# I—>5(4,2))

wherein Len is a persom, is smarter than John, but is not the only such
person,

4. Superlatives: A sentence like Len is the tallest person in fown is a superlative. A
superlative sentence says that some object has a property to the highest
degree. Superlatives are to be translated using the comparative, like taller
than, and identity. So generally speaking, we never have a predicate which
means "is the F-est”, but rather only relations like "is F-er than™. For the
present example let's use P:zisiny, P: zisaperson, T%: z is taller than y,
I: Len, and t: the town. The translation is '

(¥ 2)[P(2)n (=, 0)Az# I—>T(],2)] A P()AI(Le)

Intuitively we say, "for any person in the town other than Len, Len is taller
than bim; and furthermore Len is a person in the town.” It is important to
put the z#1 clause in, otherwise you will find Len amangst the z's, and he
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will turn out to be taller than himself! Note t
outside the scope of the qnantiﬁcr.lm SHERR R

5. Numerical statements, For any finite natural number, careful i i i
ta. i use of identit;
a way of saying that there are that many things of a certaine:ylp{. SII:::

example, let P: z is a professor. We can sa
: i y that there t
professors in the following way. e e

at least formula
1 (3z)Pz
g (32) 3 y)(P(z)AP(y)rz#y)

(F2)3y) I :)P(2)AP(y)AP()Az#: yAa# 2 Ay#z)

You need to add the non-identities because merely using different variables

does not ensure distinctness of objects i
- the h
also say al moast n professors " IR S e

al_most formula
1 (¥ 2)(V y)(P(z)AP(y)—>2=y)
i (Va2)¥ v]{VIHP(zlf‘P(v]“ngii}—M'l-'"l"t"s"fi

(V 2)(V y)(V )V w)(P(2)AP(y)A P()A P(w)—>

zmyVzm:V = wa'xVy-w\ftiw}

(The idea here is: try to pick out more tha i
I Tt i _ n n professors and you will
discover that there is some identity happening.) To say there is ezoctly n
professors you could conjoin the formula for at least n professors with the

one for ‘at most n pTO'I!SSO]'S‘ For cxamplc to s there are exactly tw
’ @
Y ¥ °

(F2)By)(P(2)AP(y)rz2 y) AV 2)(V y)(V 2)(P(2)A P(y)AP(z)—>z=yVa=1Vy=1)

There are eelrl.ain shorter formulas which are equivalent to this. One
strategy is this: start out by saying that there are at least n, but before
closing these parentheses, add that any professor you choose is identical to
one of the first n. So the exactly two professors case becomes

F2)ByNP)NP(yINz#E gAY 2)(P(2)—22= 2V y=12))
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As a special case, to say exactly one professor exists, there is another

commonly-used formula

(@2)V Y P(y)e>z=v)

ich i i i y tly one
which is equivalent to the other ways of saying that there's exac
professor. (And of course to say that there are no professors we can use

=(32)P(2).)

Section 4.3. Definition of Formula and Related Items

i ion i intuitive basis
We have so far discussed translation into a formal system on an intuitive
wir.lml.ﬂ.e giving an explicit definition of what strings of symbols count as well-formed
formulas. Here is a definition of our system.

I. A constant or a variable is a term

II.V and 3 are quantifiers

IIL. If P™ is an n-place predicate and z,,...z, are n terms, then
P-(:U v ¥n)
is a formula (an atomic formula)

IV. If z, and =, are terms, then

5=z

is a formula (an atomic formula)

V. If ¢ is a formula, then
~$

is a formula

VI. If & and ¥ are formulas, then
(&A)
(4v¥)
(@—>¥)
(4<>¥)

Section 3
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are formulas

VII. If T is a quantifier and a is a variable and ¢ is a formula, then
(Ma)é

is a formula

We retain our conventions about dropping parentheses and altering their style, and we
introduce the conventions that ~z,= z, can be written as z,# z, and that we can drop
the superscript on a predicate.

The definition admits certain formulas which have no intuitive English
counterpart, such as (V z)P?, (V z)(V z)F'(z) and the like. These are harmless, and to
eliminate them would mean needless complication in the definition of formula.

Intuitively speaking, an occurrence of a variable in a formula ¢ is a free
orcurrence in & if that variable is in ¢ but is not in the scope (or domain) of any
quantifier phrase using that variable. It is a bound occurrence in & if it is in ¢ but
not a free occurrence in . The problem with this as a definition is that it uses "scope”
to define bound/free; but the definition of "scope”™ has not been given. So, although
the intuitive meaning of these terms is clear, there is need of a precise definition. Here
is one for free occurrence in ¢

1. Any occurrence of a variable in an atomic formula is a free occurrence in
that formula

2. If an occurrence of a variable is free in formula &, then it is a free
occurrence in —¢

3. If an occurrence of a variable is free in formula & or in formula ¢, then it
is a free occurrence in

(6A¥)
(6vw)

(6—>¥)
(bs>y)

4. Il an occurrence of a variable is free in formula &, and it is not the
variable &, then it is a free occurrence in

(V)
(Fa)d

5. No other occurrences of variables in a formula are free in that formula.
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AD occyrrence of 3 Yariable in 3 formula is bound if and ?nly if it is not free. To
discover what quantifier phrase an occurrence of a variable is bound by, one needs to
investigate how the formula was "put together®. lnl.umv'el}. whenever one uses rule
VIl to construct 3 sub-formula of a given formula, one binds every occurrence of the
variable which occurs in the quantifier phrase. They are bound by (and in the scope
of) that quantifier phrase, Further detail could be given here, but we trust that the

concept is clear enough.
A formula with a free occurrence of a variable intuitively has no fixed meaning.

It is akin to
x+3=7

He is tall

Where ‘x' and ‘be’ function as free occur of variables. You t tell whether
these formulas are true or false until you know what ‘x" and ‘he’ stand for. Note that
this is not the case when we quantily these variables:

Fa)s+3=7)
Everything is tall

Here we do have a formula which is either true or false. Such formulas -- ones that
have no free occurrences of variables - are called sentences, and are the kinds of
formulas we are interested in deseribing truth and falsity for. (As we will in Chapter

9).

Section 4.4. A Formal System for First-Order Logic with
Identity

We shall continue our practice of giving intreduction and elimination rules for
cach connective; bowever, for ease of constructing proofs we shall also give the
Quantifier Negation and Bound Variable Substitution rules as if they were primitive.
(Actually they can be derived from the others). Most of these rules require the
notation of preper free variable substitution. The idea of this is clear, although the
formal statement is a bit complicated. Suppose we had the formula

(V 2)(F(z,9) {3 ¥)Clz.y,2:)AH(¥)])

and you wished to convert this to a formula which "said the same thing™ but used
different variables. Obviously, if wis a variable, then

[v 3)“1':")_""3 ’}G[x!’ﬂ']“\ﬁ{ ID]"

will do the job by replacing the first and last occurrences of y by w. We have altered
none of the formula’s structure - every variable which was bound by a quantifier is still
bound by that same quantifier, no new variables become bound by a quantifier, and all
the free occurrences of y were uniformly replaced. But if we were to also alter the y in
the middle to w, yielding
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(¥ 2)(F(2,0)—>(3y)G(3,9,2) A H(w)])

we no longer have a formula which "says the same thing" - the old posjtion used to be
bound by (3 y) but no longer is. Similarly, we could not change the y') ¢o 2, since then
the occurrences would be bound by the (¥ z). One normally says that these
restrictions avoid "collision and confusion” of variables in substitution. One hitch:
suppose we were to change the zin our first formula to y. Then the result no longer
"says the same”, and we can tell this by noting that we cannot perform a proper
substitution on this result to get back to our original formula. Even though the
resulting formula does not "say the same thing” as the original, e wish to allow this
to be a proper free variable substitution. Basically, a proper free variable substitution
comes about when, in 3 formula ¢, you take all free occurrences of some variable &
and replace them by the variable B in such a way that none of the 's become bound.
It should be emphasized that free variable substitution is net a rule of our system.
Rather it is a concept which is used in stating the things that ere rules of inference. In
fact, the unrestricted use of this as if it were a rule of inference would |ead from truths
to falsehoods. So it is used in the very specific circumstances indicated in certain
rules.

The notion of bound variable substitution is similar, except that we wish to change
a quantificr phrase and all the variables it binds. So we wish to go from

(V 2)(F(2,9)—>3 y)G(z,3,2))

to
(V w)(F(w,y)—>(3 y)G(w,p,2))

(by changing the bound z's to w) and also to

(V 2)(F(z,y)—(T v) G(z,w,2))

(by changing the bound y's to w). We cannot change z's to y for two reasons: the
original occurrence of y would become bound, and the original last occurrence of =z
would become bound by a different quantifier. As we shall see shortly, unlike the free
variable substitution, bound variable substitution ir a rule of inference in our system.

We are now in a position to give our rules. With the definitions of variable
substitution before us, the rules of Quantifier Negation, Bound Variable Substitution,
¥ -elimination, and 3-introduction are quite straightforward and intuitively very
plausible. The other two rules, V -introduction and 3-elimination, require some
discussion.

QUANTIFIER NEGATION (QN)

<V 2)é ~32)é (¥ 2)~4 3:)-4
ERR (V2)-¢ SERS ~V 2)é
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BOUNDED VARIABLE SUBSTITUTION (BVS)

where & comes from & by proper bound variable
substitution on some subformula of ¢

»
A universally quantified formula - that is, one where the universal quantifier is
the main connective - says that the formula inside the quantifier is true for any value

substituted for the variable which has been quantified over. So we ol_.:;ht. to be able to
lace these ences by any term we wish - 5o long as we avoid "confusion and

h

co’l—iisiun' of variables. We shall use 6% to mean "the result of proper free

of tfor zin the formula ¢°.

UNIVERSAL QUANTIFIER ELIMINATION (V-E)

(V2)8

: for any t
t
* I

A formula with a name (or variable) in it intuitively says that the ?I:uecl.
designated by the name has a certain (possibly complex) property true of it. So il you
koew this you would be justified in asserting that eamcmmy has that property. And
this is precisely what existential quantifier introduction says.

EXISTENTIAL QUANTIFIER INTRODUCTION (3 - 1)
‘t
¢ z

3a)é
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It is important to note what (3 =1J) says: it is a legitimate operation if you could
have done a proper free variable substitution from the formula you end up with to get
back to the original. This has the consequence of not requiring that the addition of
the (3 z) quantifier phrase "capture” all of the occurrences of ¢ in the original formula.
For_example we can pass from F(t,y,t) to (3 2)F(z,y,t) or to (3 2)F(t,y,2) as well as
to (3 z)F(z,y,z) by the rule of (3 -1).

Here are some examples using the rules we have so far discussed.

We derive (3 y)P(y) from (V 2)——P(z)
L | (V 2)=~P(2)

2 | ==P(z) LV-E
s | pla) 2,~E
« [(3y)P(y) 33-1

We derive (3 v)(3 y)F(w,y) from (¥ 2)(¥ y)(G(z,y)—>F(z,y)) and G(a,b)

L | (¥ 2)Y y)(G(z,y)—>F(z,y))
G(a,b)

3 [ (Vy)(Gla,y)—>F(a,y) LV-E
4 | G(a,b)—>F(a,b) 3, V-E
b g“-ﬁ} 24—>E
6 | (3y)F(a,y) 5,3-1
7. | (@w) y)F(e,y) ex=

We derive (V 2)~P(z) from (¥ y)~F(y,a) and (~(3 2)P(2)v(3 w)F(w,q)

L [VHVI-F(v.u}
2. | <3 2)P(z)v(I w)F(w,e)
~(2)P(2)v( y)F(y.a) 2, BVS

3

4. | <3 y)F(y,a) 1, QN

5. —éa 2)P(z) 34v-E
6 [(V2)~P(z) . 5 QN

7. (¥ 2)~P(2) 8, BVS

The remaining two rules, Existential Quantifier Elimination (3=E) and
Universal Quantifier Introduction (¥ =), require the notion of an arbitrary variable.
Let us start with (3= E). Intuitively speaking, when you are given an existentially
quantified formula, what you have been told is that something satisfies the formula
following the quantifier phrase. But you are not told what that something is. Given
then that we don't know what the object in question is, how can we tell what lurther
formulas ean be derived from it! The answer is: the formulas that follow from an
existentially quantified formula are exactly those formulas which would follow no
matter what name you were to use in place of the existentially quantified variable.
Our method of finding this out involves the notion of an arbitrary variable. An
arbitrary variable is first a variable, but importantly is a method of preventing us from
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illicitly using any information we might have about that variable. What we do is this:
we have an existentially quantified formula in our derivation; we pick an “arbitrary
instance” of it by using some variable and introducing this instance as a subsidiary
assumption; we mark the scope line of this subsidiary assumption with the variable we
have chosen, and we do not allow reiteration to be performed from outside this scope
line to within it if the formula being reiterated has a free occurrence of the "arbitrary
variable” we chose. Finally, anything which can be derived from this arbitrary
instance can be derived from the existentially q ified formula outside it as long se
the formula thus derived has no free occurrences of the "arbitrary variable™. So here is
the pattern

EXISTENTIAL QUANTIFIER ELIMINATION (3 = E)
(32)é

wherc:(aw% comes from ¢ by proper
free variable substitution of u for x

(b) no formula with a free occurrence of u was
reiterated to within the u-scope line

(¢) the formula ¢ (which has been “popped outside”)
has no free occurrence of u

The anootation for the line ¢ is: the number of the line (3 z)$, and the line numbers
of the subproof, plus ‘—E'. It is the (b) restriction here which was our original
motivation for requiring all formulas to which a rule of inference is to be applied to be
in the acope level where the result of the rule was to appear, and to require that the
rule of Reiteration be applied to ensure this. Our way of preventing certain illicit
inferences in the predicate logic is to require the Reiteration and to make Reiteration
impossible when a formula with a free variable must go through a scope line which
mentions that variable. This same restriction will come into play in our rule ¥ =71
also (see below).

Some examples:

From (V z)(P(z)—>Q(a)) we prove (3 y) P(y)—>Q(a))
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1 [ (V2)(P(z)—>Q(a))
2 } [EFTL)]
3 | 1 P(uw)
| ul
4 I (¥ z2)(P(z)—>Q(a)) LR
5 | | Plu)—>Q(a) 4,V-E
6. 1 Q(a) 3,6 —FE
7. 1Q(a) 23-63-E
s | [(3y)P(y)—>Q(a)] 27 —>1

From (3 2)( P(2)—~V 2)Qz) we prove ((V 2)P(z)—~{V 2)Q3)

L | @2)(P(2)—V 2)Q(2))

2. I (V 2)P(2)

3. I (3z)(P(z)—=V¥ 2)Q(z)) 1L,R

4. I u] P(u)—>V 2)Q(2)

5. | 1 (Va)P(2) 2,R

6. I %ul 5V-E
1. I 1 (¥2)Q(2) 48 —>E
8, | (V2)Q(z) 34-73-E
5. | (¥ 2)P(z)—>(¥ 2)Q(2)) 2.8 —>]

From (3 z)(V y )V 2)F(z,y,2) we prove (3 2)F(z,2,2)

L (32U y)Y 2)F(z,p,2)
2 u|| (VY y)V 2)F(u,y,2)

3. IWu,u,:l 2, V-E
4 | Flu,u,u) 3, ¥Y-E
5. | (32)F(z,2,2) 4,3-1
6 | (2)F(z,2,2) 1,2-53-E

The last of our quantifier rules (there are still two identity rules) is Universal
Quantifier lntroduction (¥ = 7). This rule lollows the principle that if you ean show
that a formula is true of a "completely arbitrary”™ object, then you are justified in
asserting that the formula holds of everything. Again we shall use our scope lines with
variables to ensure that we've really proven something of an arbitrary object. Again,
we cannot reiterate any formula with a free variable through any scope line which is
fagged with that variable. The general form of this rule of inference is
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UNIVERSAL QUANTIFIER INTRODUCTION (V=1
ul - where: (a) ¢%cuuld come from ¢ by proper free variable

substitution of u for x

&L
z
(b) no formula with a free occurrence
of u is reiterated to within the
v id.{ ) u-scope line
z)b(z

(Note that, unlike 3 = E, we have made no assumption here. Rather, we simply start
a scope line which is labelled with u.)
Here are some examples

We prove ((V 2)P(z)—>(V 2)Q(z)) from (V z)(P(z)—>Q(z))

L[ (¥ 2)(P(2)—Q(2)

2 I (V2)P(2)

3, | nI (V 2)(P(2)—>Q(z) LR

4. | 4&]—3-@{&:} 3, V-E
5, | z)P(z) 2,R

s | | [ P[u) 5V-E
1. | 1 Q(uw) 40 —E
8. (Y 2)Q(z) IV -1
2. | (V z2)P(z)—{V 2)Q(2)) 2-8 —>]

We prove (3 2)P(2)—>(V 2)Q(2) from (V z)(F y) P(v)—>Q(2))

1| (Y 2@ 0)Pr)—>@(2))

2. | (32)P(z)

3. | ul thﬂa v)P(y)—=Q(z)) LR

1. | l\‘ lP r1—> () 3,V-E

5 | 2,R

5. | | (3 v]Ptvl 5, BVS

1. | | Qlu) 46 —>E

8. 1(Vz)Q(z) 3TV -1

o | (F2)P(2)—V 2)Q(3) 2,8 —>/
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We are now in a position to give the rules of identity. Unlike our other rules,
Identity Introduction (=1I) requires no premises. What it says is that everything is
scll-identieal; that we are allowed to write t=¢ (for any constant or variable )

.anywhere we wish in a proof.

IDENTITY INTRODUCTION (=1)

=t
Here are a few examples using =1

From (b= b—a-{"l' 2)G(z)) and (G(a)—>H(a)) we prove (I 2)H(z)

1| b=b—x(V 2)G(z2)

2. | Gla)—>H(a)

3 | b=b =]

o |V :]G{:] 1,3 —>E
5. c:[ 4, V-E
6. 2,5 —=F
7. [3 z]h‘[s] 6,3-1

We prove (¥ 2)(3 y)z=y from no premises

1 ul|u5u -[3
2 (Aylu=y 1,3=1
3 (Y :]liy}:- ¥ 12,V =1

The last rule is Identity Elimination (=E), which is often called Leibniz's Law.
Intuitively stated, (=E) says that given a sentence in which a name occurs, you can
replace that name by a different name of the same object without changing the truth
or falsity of the sentence. Thus, if you know that 2x is even, and that 2x = y, then
you know that y is even. Here's a formal statement of the rule. Note that the relative
position of the identity and the formula being substituted into is irrelevant. So there
are really four versions of this rule. Alsc, one needn’t substitute for every occurrence
of the constant or variable.

Section 4 August 9, 1988 A Formal System for First-Order




Chapter 4 - 94 Predicate Logic

IDENTITY ELIMINATION (=E)

a=b b=a where: lh-#:-muld come from ¢ by proper free
. wariable substitution of a for b
i 2
*3 3
¢ L

Here are some derivations using all our rules

From P(a) we derive (z)(z=a A P(z))

1 | Pla)

2 |a=a -]
3 | a=a A P(a) 1,2 A
4 | (z)z=a A P(z)) 3,3-1

From P(a)and ~P(b) we prove a# b

i | Pla)

2. | ~P(b)

3 =¢-h

4 |P(a) LR

5 | P(b) 34=E
1 |~P(b) 2R
7 | a®b 36 ~1

L] ul vl lu=v
1|
2 I | lo=v -
3. | | Je=u 12=EF
4 | |umv—>v=u 1-3 —>/
5. | UV y)u=y—>y=u) -4V =1
8 | (V2)Vy)Nzmy—>y=2) 15V =1
iection 4 August 9, 1988 A Formal System for First-Order
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We prove (V z)(V y)(V z)(z=yAy=z—>z=:) [Transitivity of ‘=] from no premises.

L|ul ¢] wl |lu=vAv=w
[

el 1 1 | [u=v 1, AE

af 1] |v=e 1, AE

4 1 1 | |Ju=w 23=E
5. | | lu=vAv=w—>u=w 1-4 —>]
5 | NV :)u=vAv=z—>umz) 1-5V =1
% 4(V v[V: umyAy=:—>um;z) 1-6V =T
g LYV )V ) z=yry=z—>u=:) 1TV -]

From P(a) and (3 z)(V y)z=y we derive (z)(V y)(P(y)e>1=y),

1. | Pla)

2 '[5i )V y)z=y

s | x| (Vy)a=y

1. il | P(:z)

5. Wy=y 3,R

6. F L s5V-E

% P(:)—>z=: 4-6 —>]
& Tz

9. Vya=y 3R

10. =g o, VE

1. a=: 8'10 - E
12 P(a) 1R

13. P(z) 11,12 =E
14. z=r—>P(z) 813 —>J
15. Plz)e>z=: 7,14 «>]
15, (Y y)(Ply)e>2=y) 15V =1
17, (Fz)(V ) Ply)e>z=y) 16,3-1
8. | (@z)(V y)(Ply)e>z=y) 2,3173-E

A relation R? is said to be reflezive if and only if everything bears R® to itsell, that is
(V 2)R*(z,2)

It is said to be symmetric if and only if, anything which bears R? to another has R?
borne back to it by that other objeet, ie.,

(V 2 UV y) Rz, 9)—>R%(y.2))
It is said to be transitive il and only if, whenever three objects are such that the first

bears 12 to the second and the second bears R? to the third, then the first bears R? to
the third. Symbolically,
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(V 2)(V y)(V 2)(R?(z,y)A R*(y,z)—>R¥z,2))

It is said to be non-isolated if and only if everything bears R? to something, i.e.,

(V 2)3 y)R¥(z.p)

(We will present these concepts again in a set-theoretic framework when we present

more set theory in Chapter 5). Here we prove that any relation which is non-isolated,
symmetric, and transitive must also be reflexive, that is

{(VJG Y)R(z,9), (¥ 2)(V y)(R(z,y)—>R(y,2)), (¥ 2)(V¥ y )V z)(R(z,0)AR(y,2)—>R(z,2))}

JR(z,2)

1. | (V2)3y)Rzy

2. | (VY z)(V y} Rzy—>Ryz)

3. | (Va)UV y)V :)(Rzy A Ry: —>Razz)

‘4 ul (V :)(3 y)Ray 1L,R

5. (3 y | Ruy 4, V-E

6. Ruv

1. (V 2)(V y)(Rzy—>Ryz) 2,R

8. (V y)(Ruy—>Ryu) 7, V-E

9. (Ruv—>Rvu) 8,V-E

10. Ruvu 6,9 —F
1. Ruvh Rvu 8,11 AJ

12. (V 2)(V y)(V :)(RzyARy:—>Rz2:) 3R

13. (V y)(V z)(Ruy A Ry: —>Ruz) 12,V-E
4. (V 2)(RuvA Rv:—>Ruz) 13, YV-E
15. (RuvA Rvu —>Ruu) 14,V-E
18, Ruu 11,15 —>E
17. Ruu 56-16,3-F
18, (V 2)Rz2z 417V =1

Woe close our examples with a rather long and difficult problem. Given that there are
at most two things, that @ and b are both P's, and they're different, prove that
everything is a P.

Lo (F2) AV z)z=z Vv z=y)
2. P(a) A P(b)
3. a#b

4. ul [=P(u)

(F2)Ty)V z)z=z V zmy) I,R
x| YNV 2)zmz v 2my)

It
= Jrll[V:)(z-:V =y)
| | a=zv a=y TIV-E
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9. b=z Vv “"l‘
10. u=zVu=y
1. u=z

12. a=z V g=y
13. a=u V g=y
14. | a=u

15. | =P(u

18. | P(a)AP(b)
17, | P(a)

18, | ~P(a)

19. a¥u

20. a¥z

21 a=z V gm=y
22, a=y

23. a#b

24, y*b

25. b=z v b=y
26, b=z

. b=u

28, P(a) A P(b)
. P(b)

30. ~P(u)

1. P(u)

32, u#z

33. u=y

34 a=zx V a=y
35, a=uy

36. ~P(u)

a7 Pla)AP(b)
38, Pla)

39 Plu)

40, atu

1l. a=z

4. a#b

43 z#b

", b=y

45, b=u

46. Pla)AP(b)

. | P(&)

48, P(u)

4. ~P(u)

50, P(u)A~P(u)
51. Plu)r=P(u)

52, Plu)A~P(u)

53, Plu)

54, ~P(u)

5. ~=~Plu)

G, P(u)

st (Y 2)(2)
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-1
<
11
ol ]

1112-E

4R

2, R

18, AE
14,16 = E
14-18~1
11,19 = E
8 R
21,20 v E

2425 VE
11,26 = E

10,32 VE
833=E

4, R

2,R

37, AE
3538 = E
35-39 —J1
3440 VE
3R
41,42=E
943 VE
33,44 =E
2,R

46 AE
45,47 = E
4 R
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