

Maths & Logic (360-124)

The Answers

- 1. (a) 10202221_3 (b) 1000011010_2 (c) 56455_7 (d) 517_9
- 2. (a) 725 (b) 526 (c) 416 (d) 421
- 3. (a) $\frac{1}{1 \cdot 2} = \frac{1}{2}$; $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{(n+2)+1}{(n+1)(n+2)} = \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n}{(n+2)+1} = \frac{n}{(n+2)+1}$
 - (b) $5|8^1-3^1=5$; $8^{n+1}-3^{n+1}=8\cdot 8^n-3^{n+1}=(5+3)8^n-3\cdot 3^n=5\cdot 8^n+3\cdot (8^n-3^n)$ and 5 divides each of these terms.
 - (c) $1 = 1^2$; $1+3+5+\cdots+(2n+1) = 1+3+5+\cdots+(2n-1)+(2n+1) = n^2+(2n+1) = (n+1)^2$.
- 4. Given bq + r = dx, b = dy for some x, y, then r = (bq + r) bq = dx dyq = d(x yq) so $d \mid r$.
- $5. \ 2^3 3^3 57$
- 6. $1701 = 3^5 \cdot 7$, so the factors are: 1, 3, 9, 27, 81, 243, 7, 21, 63, 189, 567, 1701.
- 7. 7×103
- 8. 647 (the number is prime)
- 9. 11! + 1, or $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 + 1$. (You want 10 consecutive composites in all, so **start** at 11! + 2 or the similar product using only primes. That means the number before the list is 11! + 1 or the corresponding primes-only expression.)
- 10. Any composite number will do express it as a product of smaller numbers to show it's not special. E.g. 24 is not special, since $24 \mid 4 \times 6$ but 24 does not divide either 4 or 6.
- 11. As done in the text for $\sqrt{3}$ on p.200, or for $\sqrt{2}$ on p.172.