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CONTRACTIBILITY OF THE KAKIMIZU COMPLEX

AND SYMMETRIC SEIFERT SURFACES

PIOTR PRZYTYCKI AND JENNIFER SCHULTENS

Abstract. The Kakimizu complex of a knot is a flag simplicial complex whose
vertices correspond to minimal genus Seifert surfaces and edges to disjoint pairs
of such surfaces. We discuss a general setting in which one can define a similar
complex. We prove that this complex is contractible, which was conjectured by
Kakimizu. More generally, the fixed-point set (in the Kakimizu complex) for
any subgroup of an appropriate mapping class group is contractible or empty.
Moreover, we prove that this fixed-point set is non-empty for finite subgroups,
which implies the existence of symmetric Seifert surfaces.

1. Introduction

We study a generalisation MS(E) of the following simplicial complex MS(L)
defined by Kakimizu [Kak92]. Let E = E(L) be the exterior of a tubular neigh-
bourhood of a knot L in S3. A spanning surface is a surface properly embedded
in E, which is contained in some Seifert surface for L. Let MS(L) be the set of
isotopy classes of spanning surfaces which have minimal genus. The vertex set of
MS(L) is defined to be MS(L). Vertices σ, σ′ ∈ MS(L) span an edge if they have
representative spanning surfaces which are disjoint. Simplices are spanned on all
complete subgraphs of the 1–skeleton. In other words, MS(L) is the flag complex
spanned on its 1–skeleton. Kakimizu defines MS(L) for links in the same way, but
we later argue that this is not the right definition and we define our MS(E) for
E = E(L) differently. However, for all links whose MS(L) have been studied so far
we have MS(E(L)) = MS(L).

The general setting in which we define MS(E(L)), or more generally
MS(E, γ, α), is the following. Let E be a compact connected orientable, irre-
ducible and a ∂–irreducible 3–manifold. In particular, for any non-splittable link
L in S3, the complement E(L) of a regular neighbourhood of L satisfies these con-
ditions. Let γ be a union of oriented disjoint simple closed curves on ∂E which
does not separate any component of ∂E. For E = E(L) an example of γ is the
set of longitudes of all link components (or its subset). We fix a class α in the
homology group H2(E, ∂E,Z) satisfying ∂α = [γ]. For E = E(L) and γ the set
of longitudes, there is only one choice for α. It is the homology class dual to the
element of H1(E,Z) mapping all oriented meridian classes onto a fixed generator
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of Z. A spanning surface is an oriented surface with no torus components properly
embedded in E in the homology class α whose boundary is homotopic with γ.

We also need to assume that the map H2(E,Z) → H2(E, ∂E,Z) is trivial. This
is very restrictive (but satisfied by the link complements in S3), and implies that
α is determined by γ. Most importantly, it also guarantees that Thurston norm
minimising spanning surfaces do not separate E. Indeed, the union of the non-closed
components of a spanning surface does not separate E in view of the hypothesis
on γ. Moreover, if a spanning surface has closed components, then since they are
trivial in H2(E, ∂E,Z) removing them decreases Thurston norm.

We now define the simplicial complex MS(E, γ, α), which we abbreviate to
MS(E), if E = E(L) and γ is the set of all longitudes. The vertex set ofMS(E, γ, α)
is defined to be MS(E, γ, α), the set of isotopy classes of spanning surfaces which
have minimal Thurston norm. However, we span an edge on σ, σ′ ∈ MS(E, γ, α)
only if they have representatives S ∈ σ, S′ ∈ σ′ such that the (connected) lift of
E \ S′ to the infinite cyclic cover associated with α intersects exactly two lifts of
E \ S. In the terminology of Section 2 this means that the Kakimizu distance be-
tween σ and σ′ equals one. This is not always true for disjoint S, S′ (because they
are allowed to be disconnected). This error was made by Kakimizu [Kak92, formula
1.3(b)] who did not distinguish between MS(L) and MS(E(L)). However, both
his and our article prove that the right complex to consider is MS(E(L)).

For every link L it is a basic question to determine the complex MS(E(L)) which
encodes the structure of the set of all Thurston norm minimising spanning surfaces.
This was done for all prime knots of at most 10 crossings by Kakimizu [Kak05,
Theorem A]. Moreover, questions about common properties of all MS(E(L)) (or
rather MS(L)) have been asked. Here is a brief summary (for a broader account,
see [Pel07]).

Scharlemann–Thompson proved [ST88, Proposition 5] that MS(E(L)) is con-
nected, in the case where L is a knot. Later Kakimizu [Kak92, Theorem A] provided
another proof for links. Schultens [Sch10, Theorem 6] proved that, in the case where
L is a knot, MS(E(L)) is simply connected (see also [SS09] for atoroidal genus 1
knots). For atoroidal knots bounds on the diameter of MS(E(L)) have been ob-
tained ([Pel07], [SS09]). Kakimizu conjectured (see [Sak94, Conjecture 0.2]) that
MS(L) is contractible. This was verified for special arborescent links by Sakuma
[Sak94, Theorem 3.3 and Proposition 3.11] and announced for special prime alter-
nating links by Hirasawa–Sakuma [HS97]. In the present article, we confirm this
conjecture, under no hypothesis, for the complex MS(E, γ, α).

Theorem 1.1. MS(E, γ, α) is contractible.

Using the same method we are also able to establish the following. Note that
for E = E(L) all mapping classes of E fix α and the homotopy class of γ.

Theorem 1.2. Let G be a finite subgroup of the mapping class group of E fixing
α and the homotopy class of γ. We consider its natural action on MS(E, γ, α).
Then there is a simplex in MS(E, γ, α) fixed by all elements of G.

Sakuma argued [Sak94, Proposition 4.9(1)] (see also [Sch10, Theorem 5] for
knots) that the set of vertices of any simplex of MS(E, γ, α) can be realised as a
union of pairwise disjoint spanning surfaces. Hence in the language of spanning
surfaces Theorem 1.2 amounts to the following.
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Corollary 1.3. Let G be a finite subgroup of the mapping class group of E fixing α
and the homotopy class of γ. Then there is a non-empty union of pairwise disjoint
Thurston norm minimising spanning surfaces which is G–invariant up to isotopy.

In the case where E is atoroidal and ∂E is a union of tori, its interior admits,
by the work of Thurston and the theorem of Prasad, a unique complete hyperbolic
structure. Then the mapping class group of E coincides with the isometry group
of its interior, hence it is finite. Moreover, after deforming the metric in a way
discussed in [Pel07, Chapter 10] we can assume that each element of MS(E, γ, α)
has a unique representative of minimal area. In this case Corollary 1.3 gives the
following.

Corollary 1.4. If E is atoroidal and ∂E is a union of tori, then there is a non-
empty union of pairwise disjoint Thurston norm minimising spanning surfaces
which is invariant under any isometry fixing α (the homotopy class of γ is then
fixed automatically). In particular, if E = E(L), then this union is invariant under
any isometry.

A related result concerning periodic knots was proved in Edmonds [Edm84].
Finally, Theorem 1.1 turns out to be a special case (G trivial) of the following.

Theorem 1.5. Let G be any subgroup of the mapping class group of E fixing α
and the homotopy class of γ. Then its fixed-point set FixG(MS(E, γ, α)) is either
empty or contractible.

We decided to provide the proof of Theorem 1.1 first and then the more techni-
cally involved proof of the generalisation, Theorem 1.5.

We conclude with the following consequence of Theorem 1.5.

Corollary 1.6. Denote by G the mapping class group of E fixing α and the homo-
topy class of γ. Let F be the set of those subgroups of G which stabilise a point in
MS(E, γ, α). Then MS(E, γ, α) is the model for EF(G) (the classifying space for
G with respect to the family F ; see [Lüc05]).

Actually, it is not clear to us what groups, apart from all finite ones (see Theo-
rem 1.2), belong to the family F . It is also not clear if MS(E, γ, α) can be locally
infinite.1

Outline of the idea. We now outline the main idea of the article. The central
object is the projection map π, which assigns to a pair of vertices σ, ρ ∈ MS(E, γ, α)
at distance d > 0 a vertex πσ(ρ) adjacent to ρ at distance d− 1 from σ. Kakimizu
[Kak92] used the projection to prove that MS(E(L)) is connected, but in fact he
did not need to verify that it is well-defined — he worked only with representatives
of vertices. We verify that π is well-defined using a result of Oertel on cut-and-paste
operations on surfaces with simplified intersection.

We explain how to prove contractibility of MS(E, γ, α). Assume for simplicity
that MS(E, γ, α) is finite (which is the case for E hyperbolic; see [Thu80, Corollary
8.8.6(b)]). We fix some σ ∈ MS(E, γ, α). Then we prove that among vertices
farthest from σ there exists a vertex ρ which is strongly dominated by πσ(ρ). This
means that all the vertices adjacent to ρ are also adjacent to or equal πσ(ρ). Hence
there is a homotopy retraction of MS(E, γ, α) onto the subcomplex spanned by all
the vertices except ρ. Proceeding in this way we retract the whole complex onto σ.

1After we had circulated our article, Jessica Banks has established that MS(E, γ, α) can be
locally infinite [Ban11].
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Remaining questions. Questions about the structure of the set of all incom-
pressible spanning surfaces remain open. Kakimizu [Kak92] considers the complex
IS(L) whose vertices are isotopy classes of spanning surfaces which are incompress-
ible and ∂–incompressible but not necessarily of minimal Thurston norm. The edges
of IS(L) are defined like edges of MS(L); in particular, we have an embedding of
MS(L) into IS(L). Kakimizu asks if IS(L) is contractible as well. He proves that
IS(L) is connected, using a composition of the projection π with an additional
operation, but we do not know how to make this operation well-defined on the
set of isotopy classes of surfaces. This is why we do not know if we can extend
Theorem 1.5 or even Theorem 1.1 to the complex IS(L) (or rather to IS(E, γ, α),
appropriately defined). Note however that since MS(E, γ, α) would be a subcom-
plex of IS(E, γ, α), Theorem 1.2 would trivially carry over to IS(E, γ, α).

Organisation of the article. In Section 2 we discuss Kakimizu distance, a geo-
metric way to understand the distance between vertices of MS(E, γ, α) in its 1–
skeleton. In Section 3 we prove that we can compute this distance from representa-
tive surfaces with simplified intersection. We use this in Section 4 to prove that the
projection map is well-defined. In Section 5 we introduce the order on MS(E, γ, α)
in which we will contract the complex. We establish various properties of the pro-
jection map in Section 6. Using these, we establish contractibility, Theorem 1.1, in
Section 7. Next, in Section 8 we prove the fixed-point result, Theorem 1.2. Finally,
in Section 9 we prove Theorem 1.5, that all fixed-point sets are contractible, if
non-empty.

2. Kakimizu distance

In this section we start recalling the method in which Kakimizu proved [Kak92,
Theorem A] that MS(E(L)) is connected. This method was later used by Schultens
[Sch10, Theorem 6] to prove that MS(E(L)) is simply connected, in the case where
L is a knot, and will also be the basic tool in the present article.

This method is to study a pair S,R of Thurston norm minimising spanning

surfaces via the lifts of E \ S,E \ R to the infinite cyclic cover Ẽ of E associated
with the (kernel of the) element of H1(E,Z) dual to α. It turns out that the
distance in MS(E, γ, α) between two vertices [S], [R] determined by those surfaces
can be read instantly from the relative position of the lifts of E \ S and E \R.

We recall the setting and notation of [Kak92]. Let p : Ẽ → E be the covering map
discussed above. Let τ be the generator of the group of covering transformations

of Ẽ. Suppose that S ⊂ E is a Thurston norm minimising spanning surface. The
hypothesis that γ does not separate the components of ∂E guarantees that E \ S
is connected. Let E0 denote a lift of E \ S to Ẽ and denote Ej = τ j(E0) for j ∈ Z.
Note the difference with [Kak92], where E0 is the closure of our E0. Denote also
Sj = Ej−1 ∩ Ej for j ∈ Z (the bars will always denote closures).

Definition 2.1. Let R be another Thurston norm minimising spanning surface.

Let ER be any lift of E \R to Ẽ. We set

r = max{k ∈ Z|Ek intersects ER}, m = min{k ∈ Z|Ek intersects ER},

and we put d(S,R) = r −m. This value does not depend on the choice of the lift
ER. See Figure 1.
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Figure 1. d(S,R) is defined via the lifts of S and R

Furthermore, for any two isotopy classes σ, ρ of Thurston norm minimising span-
ning surfaces we define d(σ, ρ) to be the minimum of d(S,R) over all representatives
S of σ and R of ρ.

Observe that in the case σ = ρ we can take S = R which satisfy d(S,R) = 0.
Recall that we declared two different vertices σ, ρ of MS(E, γ, α) to be adjacent
if they satisfy d(S,R) = 1 for some S ∈ σ,R ∈ ρ. Note that if S and R are
disconnected, it could happen that S and R are disjoint, but d(S,R) exceeds 1.
One might not be able to improve that by varying S and R in the isotopy classes.

Kakimizu proves the following. (Our context is more general, but the proof
trivially carries over.)

Proposition 2.2 ([Kak92, Proposition 1.4]). The function d is a metric on
MS(E, γ, α).

In fact, if we endow the 1–skeleton of MS(E, γ, α) with the path-metric l in
which all the edges have length 1, then d satisfies the following.

Proposition 2.3 ([Kak92, Proposition 3.1]). The metric d coincides with l on
MS(E, γ, α).

Let us indicate how Kakimizu proves Proposition 2.3. The distance l = l(σ, ρ)
is realised by a path σ0 = σ, σ1, . . . , σl = ρ. By Proposition 2.2, we have d(σ, ρ) ≤
d(σ0, σ1) + . . .+ d(σl−1, σl) = l, which is the estimate in one direction. The second
estimate will be explained at the beginning of Section 4.
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3. Simplified intersection

In this section we address the following issue. What hypotheses on the represen-
tatives S,R of spanning surfaces σ, ρ guarantee d(σ, ρ) = d(S,R)? To formulate a
criterion we need the following terminology (see [Oer88]).

Let S,R be compact surfaces properly embedded in a connected (not necessarily
compact) 3–manifold M with boundary. We discuss product regions bounded by
S and R in ∂M and M . If β is an (abstract) arc, we denote by I the product
β × I with {x} × I collapsed to a point for each x ∈ ∂β. A product region in ∂M
is an embedded copy of I with β × {0} ⊂ S, β × {1} ⊂ R, and I ∩ (S ∪ R) = ∂I.
Similarly, if W is a compact surface with boundary and δ is a closed 1–submanifold
of ∂W , we denote by J the product W ×I with intervals {x}×I collapsed to points
for x ∈ δ. A product region in M (called a blister in [Sak94]) is an embedded copy
of J with W × {0} ⊂ S, W × {1} ⊂ R, and J ∩ (S ∪R) = ∂J \ int(J ∩ ∂M). Note
that δ is allowed to be empty, in which case the product region is really a product.

We say that two surfaces S,R in a manifold M have simplified intersection if
they do not bound any product region. In particular, if a component Ṡ of S is
isotopic to a component Ṙ of R, then we must have Ṡ = Ṙ.

We say that S and R are almost transverse if for each component Ṡ of S and Ṙ
of R either Ṡ equals Ṙ or they intersect transversely. In particular, if S equals R,
then S and R are almost transverse.

We say that surfaces S and R are almost disjoint if for intersecting components
Ṡ of S and Ṙ of R we have Ṡ = Ṙ. In particular, S is almost disjoint from itself.

Note that for a pair of surfaces S,R, the surface R can always be isotoped to R′

which is almost transverse to S and has simplified intersection with S. (This is not
true if we wanted to drop ‘almost’: consider the case where some components of S
and R coincide. Actually, this also fails in the very special case where S = R and
M is a surface bundle over a circle, but we will ignore that since then MS(E, γ, α)
is trivial.) Moreover, if R1, R2 are almost disjoint, then they can be isotoped to
almost disjoint R′

1, R
′
2 which are both almost transverse to S and have simplified

intersection with S (again we cannot require that R′
1, R

′
2 are disjoint, even if R1, R2

are).

Remark 3.1. In [Oer88] the definition of having simplified intersection consists of
one more condition, which under standard hypotheses follows from the others.
Namely, let M be orientable, irreducible, ∂–irreducible and suppose that S,R are
orientable, incompressible and ∂–incompressible. If S and R are almost transverse
and have simplified intersection, then there are no components of S ∩R which are
closed curves that are trivial in S or R, or arcs that are ∂–parallel in S or R.

We now answer the opening question of the section.

Proposition 3.2. Let S,R be spanning surfaces in E representing σ, ρ in
MS(E, γ, α). If S and R are almost transverse and have simplified intersection,
then they satisfy

d(σ, ρ) = d(S,R).

We deduce Proposition 3.2 from the following version of [Sak94, Proposition
4.8(2)], which we give without a proof.
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Proposition 3.3. Let M be a (possibly non-compact) orientable, irreducible, and
∂–irreducible 3–manifold. Let W,N be (possibly non-compact) proper 3–submani-
folds of M such that ∂W, ∂N are incompressible and ∂–incompressible surfaces
which are almost transverse with simplified intersection. If N is isotopic to a sub-
manifold N ′ such that the interior of N ′ is disjoint from W , then the interior of N
is disjoint from W also.

In the setting described in Section 2, this yields the following.

Corollary 3.4. Let W,N be proper 3–submanifolds of Ẽ such that ∂W, ∂N are
unions of lifts of Thurston norm minimising spanning surfaces which are almost
transverse with simplified intersection. If N is isotopic to N ′ such that the interior
of N ′ is disjoint from W , then the interior of N is disjoint from W also.

We will usually invoke Corollary 3.4 in the situation where W = Ej and N =

τ i(E
R
) for some j, i, where Ej and ER are as in Section 2.

We are now prepared for the following.

Proof of Proposition 3.2. Let R and S be almost transverse with simplified inter-
section. Let R′ be an element of ρ = [R] for which the minimum of d(S,R′) is

attained. Then we have d(σ, ρ) = d(S,R′) = r′ − m′, where ER′
, r′,m′ are as

in Definition 2.1 with R replaced by R′. Then ER′
is disjoint from all Ej with

j ≥ r′ +1 or j ≤ m′ − 1. Let ER be the lift of E \R to Ẽ isotopic to ER′
. Since R

has simplified intersection with S, its lifts have simplified intersection with the lifts
of S. By Corollary 3.4, ER is disjoint from all Ej with j ≥ r′ + 1 or j ≤ m′ − 1.
Then we have r ≤ r′ and m ≥ m′, which implies d(S,R) ≤ d(S,R′), as desired. �

We conclude by recording the following lemma, whose proof we leave for the
reader.

Lemma 3.5. Let M be orientable, irreducible, ∂–irreducible and suppose that S,R
and T are orientable, incompressible and ∂–incompressible surfaces properly embed-
ded in M . Then S,R and T can be isotoped to be pairwise almost transverse and
have pairwise simplified intersection.

4. Projection map

In this section we recall a construction of Kakimizu which we think of as a
projection map and which will be our main tool. First, we need to fix a basepoint
σ ∈ MS(E, γ, α). The projection map πσ will map every ρ ∈ MS(E, γ, α) at
distance n > 0 from σ to a vertex πσ(ρ) ∈ MS(E, γ, α) adjacent to ρ at distance
n− 1 from σ.

The existence of such a projection map completes Kakimizu’s proof of Proposi-
tion 2.3. It implies, in particular, that MS(E, γ, α) is connected. In the present
article we promote this method to prove contractibility of MS(E, γ, α).

We say that an oriented surface T is obtained by a cut-and-paste operation on
S and R if it is a union of closures of oriented components of S \ R, R \ S and
common components of S and R, with ∂T ⊂ ∂S ∪ ∂R.

Definition 4.1. Let σ 	= ρ be vertices of MS(E, γ, α). Put n = d(σ, ρ). For any
fixed spanning surface S ∈ σ we can choose R ∈ ρ such that S and R are almost
transverse with simplified intersection. In particular, S and R have almost disjoint
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boundaries, which means that the boundary components are disjoint or equal. By
Proposition 3.2 we have d(S,R) = n.

Recall the notation of Section 2 where r is largest such that the translate Er of

E0 intersects the lift ER of E \R to Ẽ. Denote R̃ = E
R ∩ τ (E

R
). Let P̃∗ ⊂ Sr ∪ R̃

denote the surface obtained by a cut-and-paste operation on Sr and R̃, which is

the intersection of the boundaries of E
R \ Er and τ (E

R
) ∪ Er. See Figure 2.

P
~

a)

E Er
~

b)

r~
R

P

R

~

Figure 2. Construction of P̃

The surface P̃∗ considered with the orientation inherited from R̃ and Sr satisfies

in homology ∂(ER ∩ Er) = R̃ − P̃∗. Hence the image P∗ of P̃∗ under p is in the

homology class α. Moreover, P̃∗ embeds under p into E. Its boundary ∂P∗ is not
only homologous but also homotopic to γ. This follows from the fact that ∂P∗ is
homotopic to a combination of curves in γ and that, by the hypothesis that γ does
not separate the components of ∂E, no non-trivial combination of curves in γ is
homologous to zero.

Now a calculation as in case 1 of the proof of [Kak92, Theorem 2.1] yields that

P∗ is of minimal Thurston norm. Hence P̃ obtained from P̃∗ by removing torus
components projects to a spanning surface P . We define

πσ(ρ) = [P ].

We prove that this class is well-defined in Proposition 4.4.

As indicated at the beginning of this section, we have the following property,
which justifies calling πσ the projection.

Remark 4.2. The surface P in Definition 4.1 satisfies d(R,P ) = 1 and d(S, P ) =
n− 1. Hence πσ(ρ) is adjacent to ρ and satisfies d(σ, πσ(ρ)) = n− 1.

In the proof that the projection is well-defined we need the following result.

Theorem 4.3 ([Oer88, Theorem 3]). Let M be an orientable, irreducible, ∂–
irreducible 3–manifold. Let S,R be orientable, incompressible, ∂–incompressible
surfaces properly embedded in M . Assume that S and R are almost transverse
with simplified intersection and that they are isotopic to S′, R′, respectively, which
are also almost transverse with simplified intersection. Suppose a cut-and-paste
operation on S and R yields an orientable, incompressible and ∂–incompressible
surface P . Then there is a corresponding cut-and-paste operation on S′, R′ yielding
a surface P ′ isotopic to P .
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Proposition 4.4. The class [P ] in Definition 4.1 does not depend on the choice of
S and R.

Proof. We can fix S ∈ σ. Let R,R′ ∈ ρ be almost transverse to S with simplified

intersection. Let P̃∗ be obtained by a cut-and-paste operation on R̃ and Sr as in

Definition 4.1. Let ER′
, R̃′ be the lifts of E \ R′, R′ to Ẽ isotopic to ER, R̃,

respectively. By Corollary 3.4, r is the largest integer such that ER′
intersects Er.

Let P̃∗
′
be the surface obtained from the cut-and-paste operation on Sr and R̃′

described in Definition 4.1, with R̃′ in place of R̃.

By Theorem 4.3 there is a surface P̃∗
′′
, obtained by a cut-and-paste operation

on R̃′ and Sr, which is isotopic to P̃∗. The correspondence in Theorem 4.3 (arising

from the proof) is such that in fact we have P̃∗
′′
= P̃∗

′
, which implies P̃ ′′ = P̃ ′, as

desired. �

5. Ordering the vertices

In this section we describe a natural way of ordering the vertices of the complex
MS(E, γ, α). One can check that for special arborescent links this order coincides
with the order described in [Sak94, Lemma 3.7] (for appropriate σ).

We begin with the following, which describes a possible position of a pair of
adjacent vertices ρ, ρ′ ∈ MS(E, γ, α) with respect to a vertex σ ∈ MS(E, γ, α).
Note that ρ and ρ′ may be at the same or different distance from σ. We may choose
almost disjoint R ∈ ρ,R′ ∈ ρ′ such that R and R′ are almost transverse to a fixed
S ∈ σ and have simplified intersection with S. Moreover, we can assume that R
and R′ also have simplified intersection (this does not follow automatically from

almost disjointness). By Proposition 3.2 we then have d(R,R′) = 1. As usual ER′

denotes a lift of E \R′ to Ẽ and r′ is largest such that Er′ intersects E
R′
. Let ER

be the lift of E \R contained in E
R′

∪ τ−1(E
R′

).

Definition 5.1. If ER intersects Er′ , then we write

ρ <σ ρ′.

See Figure 3. We write ρ ≤σ ρ′ if ρ <σ ρ′ or ρ = ρ′.

Remark 5.2. Definition 5.1 does not depend on the choices of R and R′. Indeed,
by Corollary 3.4 the isotopy class of ER′

does not depend on the choice of R′ ∈ ρ′.
Hence also the isotopy class of ER is well-defined. Again by Corollary 3.4 the
property that ER intersects Er′ is invariant.

We prove that adjacent vertices are always related by <σ.

Lemma 5.3. Let ρ 	= ρ′ be adjacent vertices of MS(E, γ, α) and consider any
σ ∈ MS(E, γ, α). Then we have ρ′ <σ ρ or ρ <σ ρ′.

Later, in Lemma 5.5, we will show that in fact ρ′ <σ ρ and ρ <σ ρ′ cannot
happen simultaneously, which justifies using the notation <σ.

Proof. Assume we do not have ρ <σ ρ′, i.e. ER is disjoint from Er′ . If we now
interchange ρ with ρ′, then Er = Er′−1 takes on the role of Er′ and τ−1(ER′

) takes

on the role of ER. Since τ−1(ER′
) intersects Er′−1, we have ρ′ <σ ρ. �

In the following configuration we can determine the direction of the relation <σ.
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E

R
~

R
~ ’

r ’

Figure 3. Relation [R] <σ [R′]

Lemma 5.4. If in Definition 5.1 the vertex ρ is farther from σ than ρ′, then we
have ρ <σ ρ′.

Proof. Since ER is contained in E
R′

∪ τ−1(E
R′

), it may intersect only Ek with
m′ − 1 ≤ k ≤ r′. By Proposition 3.2 we have d(S,R) = d(S,R′) + 1, so ER must
intersect all those Ek. In particular it intersects Er′ , as desired. �

We now prove that, in particular, ρ′ ≤σ ρ and ρ ≤σ ρ′ implies ρ = ρ′.

Lemma 5.5. There are no ρ1, . . . , ρk, for k ≥ 2, satisfying

ρ1 <σ ρ2 <σ . . . <σ ρk <σ ρ1.

Before we provide the proof, we record the following immediate consequence of
Lemma 5.5 and the Kuratowski-Zorn lemma. Note that in general the relation <σ

is not transitive, because ρ <σ ρ′ and ρ′ <σ ρ′′ do not imply that ρ and ρ′′ are
adjacent.

Corollary 5.6. The relation <σ extends to a linear order on MS(E, γ, α).

Proof of Lemma 5.5. Since consecutive ρi are adjacent, we can inductively choose
Rk ∈ ρk, Rk−1 ∈ ρk−1, . . . , R1 ∈ ρ1 satisfying the following. First, each Ri is almost
transverse to S with simplified intersection. Second, for i < k the surface Ri is
almost disjoint with Ri+1 and they have simplified intersection. Let r be largest

such that Er intersects a lift ERk

of E \Rk. For i < k define inductively ERi

to be

the lift of E\Ri contained in E
Ri+1

∪τ−1(E
Ri+1

). In view of ρ1 <σ ρ2 <σ . . . <σ ρk,

all ERi

intersect Er.
Finally, let R∗ ∈ ρk be almost transverse to S with simplified intersection and

almost disjoint from R1 with simplified intersection. Let ER∗
be the lift of E \

R∗ contained in E
R1

∪ τ−1(E
R1

). In view of ρk <σ ρ1, ER∗
intersects Er. By
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Corollary 3.4, ER∗
and ER1

lie in the same isotopy class. Then the surfaces E
R∗

∩
τ (E

R∗

) and E
R1

∩ τ (E
R1

) are almost disjoint and bound a product containing all

E
Ri

∩ τ (E
Ri

). Hence all ρi coincide, a contradiction. �

6. Properties of the projection map

In this section we collect the properties of the projection map which will be used
later to prove the theorems from the Introduction.

The following property of the projection map πσ is the key to our proof of
Theorem 1.1.

Lemma 6.1. Let ρ and ρ′ be adjacent vertices of MS(E, γ, α) such that ρ is dif-
ferent from some σ ∈ MS(E, γ, α). Assume ρ ≤σ ρ′. Then we have ρ′ ≤σ πσ(ρ).
In particular, πσ(ρ) and ρ′ are equal or adjacent.

Proof. Let S,R,R′, ER′
, ER be as in Definition 5.1 and let P̃ be as in Definition 4.1.

Let EP be that lift of E \ P which is contained in E
R ∪ τ−1(E

R
).

Then ER′
is contained in E

P ∪ τ (E
P
). In particular, πσ(ρ) and ρ′ are equal

or adjacent. There is an isotopy i of P such that i(P ) is almost transverse to S
with simplified intersection and almost disjoint with R′ with simplified intersection.
Since EP is disjoint from Er, by Corollary 3.4 the lift of E\i(P ) in the isotopy class
of EP is also disjoint from Er. Hence we do not have πσ(ρ) <σ ρ′. By Lemma 5.3
we then have ρ′ ≤σ πσ(ρ), as desired. See Figure 4. �

A double application of Lemma 6.1 yields the following.

Corollary 6.2. Let ρ and ρ′ be adjacent vertices of MS(E, γ, α) different from
some σ ∈ MS(E, γ, α). Assume ρ ≤σ ρ′. Then we have πσ(ρ) ≤σ πσ(ρ

′).

The following two results will only be used in the proof of Theorem 1.2 in Sec-
tion 8. They are inspired by [Pol00]. In particular, the proof of our Lemma 6.4
resembles the proof of [Pol00, Lemma 3.9].

Lemma 6.3. Assume that there are vertices ρ1, . . . , ρk at the same non-zero dis-
tance from σ ∈ MS(E, γ, α) satisfying

ρ1 <σ ρ2 <σ . . . <σ ρk and πσ(ρ
1) = πσ(ρ

k).

Then all πσ(ρ
i) are equal and all ρi are pairwise adjacent.

Proof. The fact that all πσ(ρ
i) are equal follows immediately from Corollary 6.2

and Lemma 5.5. To show that all ρi are adjacent, it is enough to give an argument
that ρ1 and ρk are adjacent (for other pairs of ρi we pass to a subsequence).

First we choose ERk

, . . . , ER1

in the same way as in the proof of Lemma 5.5.

Let P̃ 1, P̃ k be obtained as in Definition 4.1. Then τ (P̃ k) is disjoint from ERk

and

in the same isotopy class as τ (P̃ 1). See Figure 5. Hence R̃1 and R̃k are isotopic to

almost disjoint surfaces i(R̃1) and i(R̃k) contained in the closure of the lift of E \P
bounded by P̃ 1 and τ (P̃ 1). Then we have

d
(
p(i(R̃1)), p(i(R̃k))

)
= 1. �
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~

~
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Figure 4. Configuration from Lemma 6.1

Recall that by [Sak94, Proposition 4.9(1)] all simplices of MS(E, γ, α) can be
realised by sets of disjoint spanning surfaces. Hence by Kneser’s theorem there is
a bound on the dimension of simplices in MS(E, γ, α). We promote this to the
following.

Lemma 6.4. For any n > 0 there is a constant ln satisfying the following. Let σ
be any vertex of MS(E, γ, α) and let ρ1, . . . , ρl be at distance n from σ satisfying

ρ1 <σ ρ2 <σ . . . <σ ρl.

Then we have l ≤ ln.

Proof. Let L be a bound on the dimension of simplices in MS(E, γ, α). We prove
by induction that it suffices to put ln = Ln. For n = 1 this follows directly from
Lemma 6.3. Assume we have verified this for some n ≥ 1.

Now let ρ1, . . . , ρl be at distance n+ 1 from σ satisfying ρ1 <σ ρ2 <σ . . . <σ ρl.
Put i0 = 0. For k ≥ 1 inductively define ik to be maximal satisfying πσ(ρ

ik) =
πσ(ρ

ik−1+1) until some im equals l. By Lemma 6.3 for all 1 ≤ k ≤ m we have
ik − ik−1 ≤ L. Summing up, this implies l ≤ mL.

It remains to bound m. By Corollary 6.2, for all 1 ≤ k < m we have πσ(ρ
ik) <σ

πσ(ρ
ik+1). This gives rise to

πσ(ρ
i1) <σ πσ(ρ

i2) <σ . . . <σ πσ(ρ
im).
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Figure 5. Configuration from Lemma 6.3

By Remark 4.2, all πσ(ρ
ik) are at distance n from σ. By induction hypothesis we

have m ≤ ln. Altogether, l is bounded by ln+1 = lnL, as desired. �

In Section 8 we will also need the following technical result. Roughly speaking
it says that projection paths do not exit balls containing their endpoints.

Lemma 6.5. For σ 	= ρ, σ′ ∈ MS(E, γ, α) with d(σ′, ρ) ≤ d and d(σ′, σ) ≤ d we
have d(σ′, πσ(ρ)) ≤ d.

Proof. Choose S ∈ σ,R ∈ ρ, S′ ∈ σ′ which are pairwise almost transverse with

simplified intersection (see Lemma 3.5). Let r, P̃ , P be as in Definition 4.1. Let EP

be the lift of E \P bounded by P̃ and τ−1(P̃ ). Choose a lift E′
0 of E \S′ to Ẽ and

denote E′
k = τk(E′

0).
Let t be the largest such that E′

t intersects ER ∩ Er−1 (which is non-empty).

Note (see Figure 6) that P̃ is contained in the union of

R̃ ∩
( ⋃
k≤r−1

Ek

)
and S̃ ∩

( ⋃
i≤0

τ i(E
R
)
)
.

In particular, EP is contained in the intersection of ER∪Er−1 with E
′
k’s satisfying

k ≤ t. Since we have d(S′, R) ≤ d and d(S′, S) ≤ d, these k must satisfy t− k ≤ d,
as desired. �

We conclude with another technical lemma which will be used only in Section 9.
Roughly speaking, it describes how the projection πσ′ looks from the point of view
of a vertex σ adjacent to σ′.
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~

Figure 6. Configuration from Lemma 6.5 (here S̃ = Er ∩Er−1)

Lemma 6.6. Let σ, σ′ ∈ MS(E, γ, α) be adjacent. Let ρ, ρ′ ∈ MS(E, γ, α) also be
adjacent satisfying ρ′ <σ′ ρ and ρ <σ ρ′. If σ′ 	= ρ′, then we have

(i) ρ ≤σ πσ′(ρ′),
(ii) if σ 	= ρ′, then d(σ, πσ′(ρ′)) ≤ d(σ, ρ′).

See Figure 7 for an illustration.

Proof. Let S ∈ σ, S′ ∈ σ′, R ∈ ρ,R′ ∈ ρ′ be pairwise almost transverse with
simplified intersection (this is easily achieved by viewing S ∪ S′ and R ∪ R′ as a
pair of surfaces). Let E′

0 be the lift of E \S′ contained in E0 ∪E1 (for some lift E0

of E \ S). Let r′ be largest such that E′
r′ = τ r

′
(E′

0) intersects a lift ER′
of E \R′.

Let ER be the lift of E \R contained in E
R′

∪ τ−1(E
R′

).
The hypotheses ρ′ <σ′ ρ and ρ <σ ρ′ guarantee that ER is disjoint from E′

r′ but

intersects Er′ . Let P ′ = p(P̃ ′) ∈ πσ′(ρ′) be obtained as in Definition 4.1 and let

EP ′
be the lift of E \ P ′ bounded by P̃ ′ and τ−1(P̃ ′). Since ER is disjoint from

E′
r′ , the surface P̃ ′ is contained in τ (E

R
). (In particular, ρ and πσ′(ρ′) are equal

or adjacent.)
There is an isotopy i of P ′ such that i(P ′) is almost transverse to S with simplified

intersection and almost disjoint from R with simplified intersection. Since EP ′
is

disjoint from Er′+1, by Corollary 3.4 the lift of E \ i(P ′) in the isotopy class of EP ′

is also disjoint from Er′+1. Moreover, this lift contains R̃, which intersects Er′ .
This implies assertion (i).

Assertion (ii) is trivial since EP ′
intersects exactly the same Ek as ER′

. �
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Figure 7. Configuration from Lemma 6.6 (here S̃ = Er′ ∩Er′−1

and S̃′ = E
′
r′ ∩E

′
r′−1)

7. Contractibility

In this section we prove Theorem 1.1. By Whitehead’s theorem it suffices to
prove that all finite subcomplexes of MS(E, γ, α) are contained in contractible
subcomplexes of MS(E, γ, α).

We say that a flag subcomplex X ⊂ MS(E, γ, α) is σ–convex, for σ ∈ X(0), if for
any ρ 	= σ ∈ X(0) we have πσ(ρ) ∈ X(0). By Remark 4.2 each finite subcomplex of
MS(E, γ, α) is contained in a finite σ–convex subcomplex of MS(E, γ, α) for any
(hence some) σ. Hence in order to prove Theorem 1.1, it suffices to establish that
finite σ–convex subcomplexes of MS(E, γ, α) are contractible. In fact, we have an
even stronger property than contractibility.

Definition 7.1. A finite graph is dismantlable if its vertices can be linearly ordered
x0, . . . , xm so that for each i 	= m there is j > i satisfying

(i) the vertex xj is adjacent to xi,
(ii) for any xk adjacent to xi with k > i, the vertex xj is adjacent or equal to

xk.

It is well known that finite flag complexes whose 1–skeleta are dismantlable
are contractible (see e.g. [CO09]). We just indicate that one obtains a homotopy
retraction onto xm by successively retracting xi to xj , where j is as in Definition 7.1.
In view of this, in order to prove Theorem 1.1 it remains to prove the following.

Theorem 7.2. Finite σ–convex subcomplexes of MS(E, γ, α) have dismantlable
1–skeleta.

Proof. We order all the vertices by extending the relation <σ, which is possible by
Corollary 5.6. By Lemma 6.1 for all ρ 	= σ we have ρ <σ πσ(ρ), hence σ is largest
in this order.
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For any non-largest xi we put xj = πσ(xi). As discussed above we have xi <σ xj ,
which implies j > i and condition (i) in Definition 7.1.

It remains to verify condition (ii). Let xk be adjacent to xi with k > i. By
Lemma 5.3 we have xi <σ xk or xk <σ xi. Since k > i we must have xi <σ xk.
Then xj and xk are adjacent or equal by Lemma 6.1. �

8. Fixed-point theorem

In this section we prove Theorem 1.2. Key notions will be the following.

Definition 8.1. A flag subcomplex X of MS(E, γ, α) is convex if for all σ 	= ρ ∈
X(0) the vertex πσ(ρ) lies in X(0).

For a vertex v of MS(E, γ, α), let N(v) denote the union of v with the set of
all vertices adjacent to v. For a subcomplex X of MS(E, γ, α) we put NX(v) =
N(v) ∩X(0).

A flag subcomplex X of MS(E, γ, α) is semi-convex if for all σ 	= ρ ∈ X(0) there
exists a vertex π ∈ X(0) satisfying

NX(πσ(ρ)) ⊂ NX(π)

and such that the distance between π and σ in the 1–skeleton of X equals
d(πσ(ρ), σ). In particular, a convex subcomplex is also semi-convex.

The convex hull of a subcomplex X of MS(E, γ, α) is the minimal convex sub-
complex of MS(E, γ, α) containing X, i.e. it is the intersection of all convex sub-
complexes of MS(E, γ, α) containing X.

Note that semi-convex subcomplexes of MS(E, γ, α) have 1–skeleta isometrically
embedded in the 1–skeleton of MS(E, γ, α). Hence when we discuss the distances
in semi-convex subcomplexes we do not have to specify whether we consider the
distance in the 1–skeleton of the subcomplex or of the whole MS(E, γ, α). We also
need the following preliminary result which follows directly from Lemma 6.5.

Corollary 8.2. The convex hull of a subcomplex of diameter d (in the 1–skeleton
of MS(E, γ, α)) has diameter d as well.

Proof of Theorem 1.2. Let X ⊂ MS(E, γ, α) be a finite orbit of the G–action on
MS(E, γ, α). Denote by X the convex hull of X. By Corollary 8.2 X has finite
diameter. Note that X is G–invariant. We now consider G–invariant non-empty
semi-convex subcomplexes Y of MS(E, γ, α) of minimal diameter d. We want to
show that d equals 1.

Otherwise, we also minimise the following value l(Y ). It is the maximum over
σ ∈ Y (0) of l admitting a sequence ρ1 <σ ρ2 <σ . . . <σ ρl for some ρ1, . . . , ρl at
distance d from σ. Note that l(Y ) is always finite by Lemma 6.4.

We say that a vertex v of a subcomplex Y of MS(E, γ, α) is strongly dominated
(by w) in Y if there is a vertex w in Y satisfying NY (v) � NY (w).

Let Z denote the set of all the vertices v ∈ Y (0) strongly dominated in Y . Let
W be the subcomplex of Y spanned by all the vertices in Y (0) \ Z. Obviously W
is G–invariant. In order to obtain a contradiction it suffices to establish that W is
non-empty and semi-convex, and l(W ) < l(Y ).

We first prove l(W ) < l(Y ). Consider any σ ∈ W (0) and a sequence ρ1 <σ ρ2 <σ

. . . <σ ρl(Y ) of vertices at distance d from σ. It suffices to show that ρ1 belongs to
Z.
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By the definition of l(Y ) every ρ ∈ Y (0) at distance d from σ adjacent to ρ1

violates ρ <σ ρ1. Then by Lemma 5.3 we have ρ1 <σ ρ. By Lemma 5.4 the same
holds for all other ρ ∈ Y (0) adjacent to ρ1. Hence by Lemma 6.1 all vertices in
Y adjacent to ρ1 are adjacent to or equal πσ(ρ

1). Note that πσ(ρ
1) might not lie

in Y (0), but since Y is semi-convex, there is π ∈ Y (0) at distance d − 1 from σ
satisfying NY (πσ(ρ

1)) ⊂ NY (π). At this point we have

NY (ρ
1) ⊂ NY (π).

Similarly, since d ≥ 2, there is π′ ∈ Y (0) at distance d − 2 from σ satisfying
NY (πσ(π)) ⊂ NY (π

′). In particular, π′ is adjacent to π but not to ρ1. Hence we
have

NY (ρ
1) � NY (π).

We conclude that ρ1 is strongly dominated by π in Y , which means that ρ1 belongs
to Z.

We now prove that W is non-empty. Pick a vertex v ∈ Y (0) with maximal NY (v)
(with respect to inclusion). Such a vertex exists, since otherwise we would have a
simplex in MS(E, γ, α) of infinite dimension. Then v is not strongly dominated in
Y by any vertex, and hence v belongs to W (0).

It remains to show that W is semi-convex. Take σ 	= ρ ∈ W (0). Since Y
is semi-convex, there is a vertex π of Y (0) at distance d − 1 from σ satisfying
NY (πσ(ρ)) ⊂ NY (π). Let π′ be a vertex of Y (0) with maximal possible NY (π

′)
containing NY (π). Such a vertex exists since MS(E, γ, α) is finite-dimensional.
Then π′ is not strongly dominated in Y , hence π′ belongs to W (0). Note that we
also have NW (πσ(ρ)) ⊂ NW (π′).

Now we prove that π′ is at distance d−1 from σ inW (1). Let π0 = π, π1, . . . , πd−1

= σ be a path in Y (0) from π to σ. Put π′
0 = π′, π′

d−1 = σ, and for all 0 < i < d− 1

let π′
i be a vertex of Y (0) with maximal possible NY (π

′
i) containing NY (πi). As

before, all π′
i belong to W (0). Moreover, since πi is adjacent to πi+1, then also π′

i is
adjacent to πi+1, and consequently π′

i is adjacent to π′
i+1. Hence the π′

i form a path

and π′ is at distance d− 1 from σ in W (1). Thus W is semi-convex, as required.
To summarise, assuming d ≥ 2 we proved that Y contains non-empty semi-

convex G–invariant W with l(W ) < l(Y ) (where l(W ) = 0 means that the diameter
of W is less than d). This contradicts the choice of Y . In the case d = 1, Y is the
desired G–invariant simplex. �

Note that the proof would be easier if we knew that MS(E, γ, α) is locally finite.

9. Contractibility of fixed-point sets

In this section we prove Theorem 1.5. This is an elaboration on the proof from
Section 7.

Let G be a subgroup of the mapping class group of E fixing α and the homotopy
class of γ. Its fixed-point set FixG(MS(E, γ, α)) has the following structure of a
flag simplicial complex X. Its vertices can be identified with the set V of minimal
G–invariant simplices of MS(E, γ, α). Its edges are spanned on pairs of vertices
corresponding to simplices in MS(E, γ, α) spanning a common simplex.

We assume that X = FixG(MS(E, γ, α)) is non-empty, i.e. there is a vertex
Σ ∈ V of X (a simplex of MS(E, γ, α)) which is invariant under G. We need to
prove that X is contractible. The plan of the proof is the same as in Section 7. We
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will define a mapping ΠΣ from V \{Σ} to V which will play the role of πσ. We will
observe that each finite subcomplex of X lies in a finite Σ–convex subcomplex of X.
The proof will then reduce to proving dismantlability of Σ–convex subcomplexes of
X.

Definition 9.1. For Σ 	= Δ ∈ V we define ΠΣ(Δ) ∈ V in the following way. We
choose a vertex σ of the simplex Σ. We consider δ ∈ Δ, which is minimal with
respect to the order <σ. We define ΠΣ(Δ) to be the G–orbit of πσ(δ). We still
need to check that this is an element of V , i.e. a simplex in MS(E, γ, α). Note that
since the relation <σ and the mapping πσ are G–equivariant, this definition does
not depend on the choice of σ.

Lemma 9.2. ΠΣ(Δ) spans a simplex of MS(E, γ, α). As a vertex of X it is
adjacent to Δ. Furthermore, for σ ∈ Σ, δ ∈ Δ as in Definition 9.1 and all π ∈
ΠΣ(Δ), we have

δ ≤σ π.

Proof. Let σ ∈ Σ and δ ∈ Δ be as in Definition 9.1. By Lemma 6.1, for all δ′ ∈ Δ
we have δ′ ≤σ πσ(δ). In particular, πσ(δ) is adjacent or equal to all the vertices of
Δ.

Now let π be any vertex of ΠΣ(Δ). By equivariance, π is adjacent or equal to all
the vertices of Δ. Moreover, we have π = πσ′(δ′) for some σ′ ∈ Σ, δ′ ∈ Δ satisfying
δ′ <σ′ δ. Now Lemma 6.6(i) implies δ ≤σ π.

Finally, by Lemma 6.1, πσ(δ) and π are adjacent or equal. �

We have the following analogue of Remark 4.2, which in particular implies that
ΠΣ(Δ) is different from Δ.

Lemma 9.3. The sum of the distances between a vertex of Σ and all the vertices
of ΠΣ(Δ) is less than the corresponding sum for Σ and Δ.

Note that by equivariance the value in Lemma 9.3 does not depend on the choice
of the vertex of Σ.

Proof. Fix σ ∈ Σ and let δ ∈ Δ be minimal with respect to <σ. By Remark 4.2
we have d(σ, πσ(δ)) < d(σ, δ). All other vertices δ′ ∈ Δ are in correspondence with
vertices π′ ∈ ΠΣ(Δ) of the form πσ′(δ′) for some σ′ ∈ Σ. By Lemma 6.6(ii) we then
have d(σ, π′) ≤ d(σ, δ′). Summing up the inequalities yields the lemma. �

We now introduce a definition analogous to the one in Section 7.

Definition 9.4. A flag subcomplex Y of X is Σ–convex, for Σ ∈ Y (0), if for any
Δ ∈ Y (0) \ {Σ} we have ΠΣ(Δ) ∈ Y (0).

Note that by Lemma 9.3 each finite subcomplex of X is contained in a finite
Σ–convex subcomplex of X. Hence in order to prove Theorem 1.5, it remains to
show the following.

Theorem 9.5. Let Y be a finite Σ–convex subcomplex of X. Then Y (1) is dis-
mantlable.

Proof. We choose any σ ∈ Σ. By Corollary 5.6 we can extend the relation <σ to a
linear order on MS(E, γ, α). Let x0 be the vertex of Y (0) containing the minimal
possible vertex of MS(E, γ, α) in this order. Let x1 be one of the remaining vertices
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of Y (0) containing a minimal possible vertex of MS(E, γ, α), etc. By Lemma 9.2,
every ΠΣ(Δ) is larger than Δ in this order. In particular, Σ is largest.

For any non-largest xi we put xj = ΠΣ(xi). By Lemma 9.2 j satisfies condition
(i) in Definition 7.1 and (as discussed above) we have j > i.

It remains to verify condition (ii). Let xk be adjacent to xi with k > i. Let
δ ∈ xi be the minimal element with respect to <σ. By the way we have ordered
the x’s, for all δ′ ∈ xk we have δ <σ δ′. From Lemma 6.1 we get δ′ ≤σ πσ(δ), for
all δ′ ∈ xk. By equivariance, we get that δ′ and π are adjacent or equal, for all
δ′ ∈ xk and π ∈ ΠΣ(xi) = xj . This means that xk and xj are adjacent or equal, as
desired. �
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