Algebraic Topology

Midterm 2 preparation problems

- **Problem 1.** Prove that the prism operator P defined in class satisfies $\partial P + P\partial = g_{\sharp} f_{\sharp}$, i.e. P is a chain homotopy between f_{\sharp} and g_{\sharp} .
- **Problem 2.** Compute the homology groups of the subspace of $I \times I$ consisting of the four boundary edges plus all points in the interior whose first coordinate is rational.
- **Problem 3.** Show that for the subspace $\mathbf{Q} \subset \mathbf{R}$, the relative homology group $H_1(\mathbf{R}, \mathbf{Q})$ is free abelian and find a basis.
- **Problem 4.** Show that $H_1(X, A)$ is not isomorphic to $\widetilde{H}_1(X/A)$ if X = [0, 1] and A is the sequence $1, \frac{1}{2}, \frac{1}{3}, \dots$ together with its limit 0.
- **Problem 5.** Let X be the n-dimensional simplex with its natural Δ -complex structure. Compute the homology groups of the k-skeleta X^k .
- **Problem 6.** Suppose that $f: S^n \to S^n$ has no fixed points. Prove that $\deg f = (-1)^{n+1}$. Deduce that for n even \mathbb{Z}_2 is the only nontrivial group that can act freely on S^n .
- **Problem 7.** Let X be a CW complex homeomorphic to S^2 . Prove that its 1-skeleton X^1 cannot be the complete graph K_5 or the complete bipartite graph $K_{3,3}$.
- **Problem 8.** Let X be the space obtained from the cube I^3 by identifying its bottom and top faces by translation, left and right faces by translation, and front and back faces by a rotation around the axis through the centres of left and right faces. Compute the homology groups of X.
- **Problem 9.** Let m, n > 1 and let l_1, \ldots, l_n be integers relatively prime to m. The lens space $L = L_m(l_1, \ldots, l_n)$ is the quotient of $S^{2n-1} \subset \mathbb{C}^n$ by the action of \mathbb{Z}_m generated by $(z_1, \ldots, z_n) \to (e^{2\pi i l_1} z_1, \ldots, e^{2\pi i l_n} z_n)$. Find a CW structure on L and compute its homology groups.
- **Problem 10.** Let $f: X \to Y$ be a map between n-dimensional connected CW complexes, for some $n \ge 1$. Suppose that f induces isomorphisms on π_i for all $i \le n$. Prove that f is a homotopy equivalence.

Problem 11. Let n > 1 and let G be an abelian group. X is a *Moore space* if it is simply-connected, $H_n(X) = G$ and $\widetilde{H}_i(X) = 0$ for $i \neq n$. Prove that two Moore spaces X, Y with common n, G that are CW complexes are homotopy equivalent.

Hints: proceed as for K(G, n) by constructing a template Moore space X with only n-cells and (n + 1)-cells. Construct a map $f: X \to Y$ inducing an isomorphism on π_n . Prove that f also induces an isomorphism on H_n by showing that $\pi_i(M_f, X) = 0$ for $i \le n + 1$.

- **Problem 12.** (i) Use the Mayer–Vietoris sequence to compute the homology groups of the space obtained from a torus $S^1 \times S^1$ by attaching a Möbius band via a homeomorphism from the boundary circle of the Möbius band to the circle $S^1 \times \{x_0\}$ of the torus.
 - (ii) Do the same for the space obtained by attaching a Möbius band to $\mathbf{R}P^2$ via a homeomorphism of its boundary circle to the standard $\mathbf{R}P^1 \subset \mathbf{R}P^2$.

Problem 13. The oriented surface S_g of genus g, embedded in \mathbb{R}^3 in the standard way, bounds a compact region V_g , called the *genus* g handlebody. Two copies of V_g , glued together by the identity map between their boundary surfaces S_g , form a closed 3-manifold M_g . Compute the homology groups $H_i(M_g)$ and the relative homology groups $H_i(V_g, S_g)$.

Problem 14. Consider a pair of spaces $(X,Y) = (A \cup B, C \cup D)$ with $C \subset A, B \subset D$, such that X is the union of the interiors of A and B, and Y is the union of the interiors of C and D. Prove that there is a relative Mayer-Vietoris exact sequence

$$\cdots \to H_{n+1}(X,Y) \to H_n(A \cap B, C \cap D) \to H_n(A,C) \oplus H_n(B,D) \to H_n(X,Y) \to \cdots$$

In particular, for A = B = X we have an exact sequence

$$\cdots \to H_{n+1}(X, C \cup D) \to H_n(X, C \cap D) \to H_n(X, C) \oplus H_n(X, D) \to H_n(X, C \cup D) \to \cdots$$

Problem 15. Compute the cohomology groups with **Z** coefficients of

- (i) the space obtained from S^2 under the identifications $x \sim -x$ for x in the equator S^1 ,
- (ii) the space obtained from S^3 under the identifications $x \sim -x$ for x in the equatorial $S^2 \subset S^3$.

Problem 16. Let X be the Moore space obtained from S^n by attaching a cell e^{n+1} by a map of degree m. Show that the quotient map $p: X \to X/S^n = S^{n+1}$ induces the trivial map on all $\widetilde{H}_i(-; \mathbf{Z})$ but not on $H^{n+1}(-; \mathbf{Z})$. Use that to show that the splittings in the universal coefficient theorem for cohomology do not commute with the maps induced by p.

Problem 17. Let H, G be finitely generated abelian groups. Prove that Tor(G, H) is the largest finite group that embeds in G and in H.

Problem 18. Prove that the groups Tor(G, H) are well defined. Prove the universal coefficient theorem for homology.

Problem 19. Let $F = \mathbf{Z}_p$ for p prime, or $F = \mathbf{Q}$. Prove that $H^n(X; F) = \text{Hom}(H_n(X; F), F)$.