Algebraic Topology, problem list 6

Problem 1. Prove the *five lemma*, saying that if the following diagram is commutative, rows are exact, β , δ are isomorphisms, α is surjective, and ε is injective, then γ is an isomorphism.

Problem 2. For all $n \geq 0$ compute $H_n^{\Delta}(X)$ for X

- (i) the torus T^2 ,
- (ii) the projective plane $\mathbf{R}P^2$,
- (iii) the Klein bottle.

Use a convenient Δ -complex structure.

Problem 3. Let $n \ge 1$. Show that a reflection of \mathbb{R}^{n+1} preserving S^n induces an automorphism of $H_n(S^n)$ sending a generator to its negative. Using that, describe the automorphism induced on $H_n(S^n)$ by the antipodal map.

Problem 4. Let $n \geq 1$. Prove that S^n has a continuous field of nonzero tangent vectors if and only if n is odd.

Problem 5. Let $n \ge 1$. Prove that a map $S^n \to S^n$ induces the same maps on $\pi_n(S^n)$ and $H_n(S^n)$ (under any identification with \mathbf{Z}).