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1. Introduction

Tits proved that every finitely generated linear group is either virtually solvable or con-
tains a nonabelian free group [22]. In other words, each linear group GLn(k) satisfies the 
Tits Alternative, saying that each of its finitely generated subgroups is virtually solvable 
or contains a nonabelian free group. It is believed that the Tits Alternative is common 
among ‘nonpositively curved’ groups. However, up to now it has been shown only for 
few particular classes of groups. Most notably, for: Gromov-hyperbolic groups [10], map-
ping class groups [12,16], Out(Fn) [3,4], fundamental groups of closed 3-manifolds (by 
geometrisation, cf. [14]), fundamental groups of some nonpositively curved real-analytic 
4-manifolds [27], CAT(0) cubical groups [21]. Whether CAT(0) groups satisfy the Tits 
Alternative remains an open question, even in the case of groups acting properly and 
cocompactly on 2-dimensional CAT(0) complexes.

In this article we prove the Tits Alternative for groups acting on triangle complexes 
that are “recurrent”. Here a triangle complex is a 2-dimensional simplicial complex X

built of geodesic Euclidean triangles, see [5, I.7.2]. We postpone the general definition of 
“recurrent” till Section 2, and here we discuss examples instead. All the group actions 
that we consider are by combinatorial isometries. An action of a group G is without 
inversions if each element of G stabilising a cell fixes it pointwise. The action is almost 
free if there is a bound on the order of cell stabilisers. Note that an almost free action on 
a triangle complex with finitely many isometry types of simplices is proper in the sense 
of [5, I.8.2].

Main Theorem. Let X be a simply connected triangle complex that is recurrent w.r.t. a 
finitely generated group G acting almost freely and without inversions. Then G is virtually 
cyclic, or virtually Z2, or contains a nonabelian free group.

In particular, by Remark 2.2 the same conclusion will hold for any finitely generated 
subgroup of G. In other words, G satisfies the Tits Alternative.

For example, let X be a 2-dimensional Euclidean building or a 2-dimensional systolic 
complex, which is a CAT(0) triangle complex with all edges of length 1 and all triangles 
equilateral. We will show in Corollaries 2.6 and 2.7 that X has a subdivision recurrent 
with respect to any automorphism group of X. This implies the following for finitely 
generated subgroups of G.

Theorem A. Let X be a 2-dimensional Euclidean building or a 2-dimensional systolic 
complex. Suppose that G acts almost freely on X (e.g. G acts on X properly and co-
compactly). Then any subgroup of G is virtually cyclic, or virtually Z2, or contains a 
nonabelian free group.

Ballmann and Brin proved that if X is any 2-dimensional CAT(0) complex, and G
acts on X properly and cocompactly, then G itself is virtually cyclic, or virtually Z2, or 
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contains a nonabelian free group [2]. However, it was only very recently that we were 
able to perform with Norin a first step to understand the subgroups of G, by proving 
that each of them is finite or contains Z [18].

Note that in Theorem A, as in many other applications of the Main Theorem, we 
will be able to remove the assumption that the group is finitely generated; see Section 5. 
However, we cannot remove the assumption on the uniform bound on the order of cell sta-
bilisers, as the following example that we learnt from Pierre-Emmanuel Caprace shows. 
Namely, the wreath product G = A5 � Z, where A5 denotes the alternating group on 
5 elements, acts on a CAT(0) square complex with finite cell stabilisers [9, Prop 9.33]. 
However, G neither contains a nonabelian free subgroup, nor is virtually solvable.

Other classes of recurrent complexes arise from complexes with various combinatorial 
nonpositive-curvature-like features. This includes Cayley complexes for the standard 
presentations of Artin groups of extra-large type (see Subsection 4.2 for the definition).

Theorem B. Let X be the Cayley complex for the standard presentation of an Artin group 
AΓ of extra-large type. Suppose that G acts almost freely on X (e.g. G = AΓ). Then any 
subgroup of G is virtually cyclic, or virtually Z2, or contains a nonabelian free group.

In Appendix A written jointly with Jon McCammond we extend Theorem B to a class 
of 2-dimensional Artin groups containing all large-type Artin groups. In the case where 
G = AΓ we extend Theorem B to all 2-dimensional AΓ with WΓ hyperbolic in [17]. We 
will give there an account on the current state of affairs concerning the Tits Alternative 
for other classes of Artin groups.

Another class of recurrent complexes arises from simply connected B(6)-small cancel-
lation complexes (see Subsection 4.1 for the definition and details).

Theorem C. Let X be a simply connected B(6)-small cancellation complex. Suppose that 
G acts almost freely on X. Then any finitely generated subgroup of G is virtually cyclic, 
or virtually Z2, or contains a nonabelian free group.

Let us note that Wise [26] associated to each simply connected B(6) complex X a 
CAT(0) cube complex C. Furthermore, in [21] the Tits Alternative is shown for groups 
acting almost freely on finite dimensional CAT(0) cube complexes. However, the complex 
C associated to a simply connected B(6) complex X might not be finitely dimensional 
— this happens e.g. when there is no bound on the size of the 2-cells in X. Therefore, 
the results from [21] do not imply Theorem C.

The method of proving the Tits Alternative presented in this paper raises the following 
natural questions.

Questions. Simplicial subdivisions of which 2-dimensional combinatorial complexes can 
be metrised as recurrent complexes? Can it be done for C(6)-small cancellation com-
plexes? What about Cayley complexes for standard presentations of 2-dimensional Artin 
groups?
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Fig. 1. The dumbbell graph (left) and the geodesic segments it is mapped into (right).

Idea of proof of the Main Theorem. For simplicity we assume that the action of G is 
free and that X is systolic. Supposing additionally that X is countable, we exhaust 
the quotient X = X/G with compact subcomplexes X1 ⊂ X2 ⊂ · · · . The fundamental 
groups Gi of Xi have direct limit G.

Collapsing we remove the free edges from Xi. We focus first on the case where some 
Xi is thick meaning that it has an edge e of degree ≥ 3. Consider the space of all local 
geodesics in Xi that are concatenations of segments . . . , a−1a0, a0a1, a1a2, . . . (where ai
denote points), as indicated in Fig. 1 on the right. We equip that space with a finite 
measure μ∗ assigning to each ‘cylinder’ of geodesics passing through prescribed consecu-
tive segments a0a1, a1a2, . . . , an−1an the value 

∏n−1
i=1

1
deg ai−1 , where deg ai is the degree 

of the edge containing ai. This is inspired by the work of Ballmann and Brin [2], who 
put a similar measure on a far larger space of geodesics. Using Poincaré recurrence à la 
[2] we can find a local isometric embedding f of the dumbbell graph Γ (see Fig. 1 on the 
left) into Xi with the following properties. Namely, f sends the vertices of Γ into e and 
the edges of Γ into concatenations of the segments in Fig. 1 on the right, terminating 
perpendicularly to e. In particular, f(Γ) avoids the vertices of Xi and hence the stabiliser 
in G of the lift of Γ to X contains a nonabelian free group.

In the case where Xi is not thick, it is a union of a graph and a dimension 2 pseudo-
manifold. The components of the pseudomanifold are π1-injective in X, since otherwise 
attaching compressing discs puts us back in the thick case. If one such component is a 
hyperbolic surface Σ, we find a nonabelian free group in π1(Σ) < G. Otherwise, each 
Gi is a free product of some copies of Z, Z2 and the Klein bottle group, which satisfies 
the Tits Alternative. One can arrange that the number of factors is bounded by a con-
stant independent of i, and then use the Hopfian property to deduce that the sequence 
G1 → G2 → · · · stabilises. This shows that G coincides with some Gi.

We believe that the overall method of our proof can be extended to treat all 2-
dimensional CAT(0) complexes. In particular, the ‘no thick subcomplexes’ part (cf. 
Proposition 3.7) is valid in such a general setting. To treat thick subcomplexes, one 
needs to find a method of ‘closing’ geodesics without the use of the additional structure 
of the recurrent complex. It seems that finding free subgroups could work then also in 
higher dimensions, for analogues of thick subcomplexes. However, at the moment we 
do not know how to proceed in the ‘no thick subcomplexes’ case in such higher dimen-
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sional setting, even for some restricted (combinatorial) classes of complexes, e.g. systolic 
complexes or Euclidean buildings.
Organisation. In Section 2 we define the main object of our interest, the recurrent 
complexes. We provide main examples and basic properties, and we show how to find 
nonabelian free subgroups given thick subcomplexes. In Section 3 we treat the case where 
there are no thick subcomplexes and we prove the Main Theorem. In Section 4 we pro-
vide applications to B(6)-small cancellation complexes and Artin groups of extra-large 
type, proving Theorem C and the finitely generated case of Theorem B. We discuss 
the case of infinitely generated subgroups and we complete the proofs of Theorems A
and B in Section 5. In Appendix A written jointly with Jon McCammond we present 
the aforementioned extention of Theorem B.

Acknowledgments
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valuable comments. This paper was written while D.O. was visiting McGill University. 
We would like to thank the Department of Mathematics and Statistics of McGill Uni-
versity for its hospitality during that stay.

2. Recurrent complexes

In this section we present a variant of the constructions introduced in [2].

Definition 2.1. Let X be a triangle complex, i.e. a 2-dimensional simplicial complex built 
of geodesic Euclidean triangles, with an action of a group G. Let x ∈ X1 −X0, let e be 
the edge containing x and let T be a triangle containing e. Then lkxT denotes the open 
half-circle of directions at x in T that are transverse to e. By deg x we denote the degree 
of e, i.e. the number of triangles containing x.

For v ∈ lkxT , let H(v) be the union of the directions v′ ∈ lkxT
′ with T ′ �= T such that 

there is a geodesic through x in T∪T ′ with directions v and v′. Note that for each triangle 
T ′ containing x with T ′ �= T there exists a unique such v′. Thus |H(v)| = deg x − 1. We 
have v′ ∈ H(v) if and only if v ∈ H(v′)

Furthermore, for v ∈ lkxT suppose that the geodesic in T with the starting direction v
terminates at a point x′ ∈ X1−X0. Then we denote its ending direction by I(v) ∈ lkx′T . 
Note that I(I(v)) = v.

We say that X is recurrent with respect to G if there is a G-invariant subset A of the 
union of all lkxT such that all the following hold:

(i) for each triangle T the set of a ∈ A with a in some lkxT is finite,
(ii) for each a ∈ A we have H(a) ⊂ A,
(iii) for each a ∈ A we have that I(a) is defined and belongs to A,
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Fig. 2. The set A for the isosceles right-angled triangle.

(iv) for each edge e of degree ≥ 3 there exists x ∈ e such that for some (hence any by 
(ii)) triangle T containing e the direction in lkxT perpendicular to e belongs to A,

(v) there is no finite sequence a0, a1, . . . , an, such that for all 0 ≤ i < n we have 
ai+1 ∈ H(I(ai)), and a0 = an or a0 = I(an).

Remark 2.2. If a triangle complex X is recurrent w.r.t. G and X ′ ⊆ X is a G′-invariant 
subcomplex, for some G′ < G, then X ′ is recurrent w.r.t. G′.

Remark 2.3. If X is CAT(0), then its local geodesics are global geodesics and hence 
embed, and consequently Definition 2.1(v) holds automatically for any A.

Example 2.4. Suppose that X admits a simplicial map ρ to a simplicial complex consist-
ing of only one triangle with angles π2 , 

π
4 , 

π
4 such that ρ restricted to each triangle of X

is an isometry. Then X has A satisfying Definition 2.1(i)-(iv) w.r.t. any automorphism 
group of X. Indeed, it suffices to define A ∩ lkxT with x in an edge e to be

• the vector perpendicular to e, for e the long edge and x dividing e in the ratio 1: 3,
• the vectors at angles π4 to e, for e the long edge and x the midpoint of e,
• the vectors at angles π4 and π2 to e, for e the short edge and x the midpoint of e,
• empty otherwise.

In other words, A is the union of the directions at the boundary of the two billiard 
trajectories in Fig. 2.

Example 2.5. Suppose that X admits a simplicial map ρ to a simplicial complex consist-
ing of only one triangle with angles π2 , 

π
3 , 

π
6 such that ρ restricted to each triangle of X

is an isometry. Then X has A satisfying Definition 2.1(i)-(iv) w.r.t. any automorphism 
group of X. Indeed, it suffices to define A in each triangle as the union of the directions at 
the boundary of the two billiard trajectories in Fig. 3, where y is, say, the edge midpoint.

We have the following immediate consequence of Example 2.5 and Remark 2.3.

Corollary 2.6. Let X be a 2-dimensional systolic complex. Then the barycentric subdivi-
sion of X is recurrent with respect to any automorphism group.
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Fig. 3. The set A for the triangle with angles π
2 ,

π
3 ,

π
6 .

Corollary 2.7. Let X be a 2-dimensional Euclidean building of type W with its usual 
geometric realisation, where each chamber is realised as a Euclidean triangle of angles 
π

mst
in the cases W = Ã2, C̃2, G̃2 or a square in the case W = (Ĩ2)2 = D∞ ×D∞. Then 

X has a subdivision X∗ that is recurrent with respect to any automorphism group G of 
X, and such that G acts on X∗ without inversions.

Proof. Since X is CAT(0), by Remark 2.3 we have that Definition 2.1(v) holds automat-
ically. If W = G̃2, it suffices to take X∗ = X and use Example 2.5. If W = Ã2, we take 
X∗ to be the barycentric subdivision of X and we use Example 2.5 as well. If W = C̃2, 
let X∗ be obtained from X by subdividing each triangle into two similar triangles along 
the altitude from the right angle. We then use Example 2.4. Finally, if W = (Ĩ2)2, let 
X∗ be the barycentric subdivision of X and use Example 2.4. �
Remark 2.8. In fact, if X is a triangle complex with finitely many isometry types of ‘sim-
plices with specified directions in A’, recurrent w.r.t. G, then its barycentric subdivision 
X ′ is also recurrent w.r.t. G, and consequently in the Main Theorem one can remove the 
assumption that G acts without inversions.

Indeed, first note that for ε sufficiently small, we can replace A by A′ whose geodesic 
segments with starting direction a′ ∈ A′ and ending direction I(a′) constitute the bound-
ary of the ε-neighbourhood of analogous segments from a ∈ A to I(a). Secondly, except 
for finitely many of such ε, these segments from a′ ∈ A′ to I(a′) do not pass through the 
vertices of X ′, and hence they show the recurrence of X ′ w.r.t. G.

Recurrent complexes are designed to satisfy the following lemma.

Definition 2.9. A 2-dimensional simplicial complex is essential if every edge has degree 
at least 2, and none of connected components is a single vertex. An essential triangle 
complex is thick if it has an edge of degree at least 3.

Lemma 2.10. Suppose that a triangle complex X has all edges of finite degree, is thick, 
and is recurrent with A/G finite. Then G contains a nonabelian free group.

To prove Lemma 2.10 we will use the following method of [2].
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Definition 2.11. Suppose that an essential triangle complex X has all edges of finite 
degree, and is recurrent with A/G finite. Consider the Markov chain with states A and 
the following transition function. Let b ∈ A ∩ lkxT . The transition probability p(a, b)
from a ∈ A to b equals 1

deg x−1 if b ∈ H(I(a)) and 0 otherwise.

Remark 2.12. A uniform measure μ on A is stationary for that Markov chain. Thus the 
space AZ can be equipped with Markov measure μ∗ invariant under the shift (see e.g. 
[24, Ex (8), page 21]). Since A/G is finite, the measure of the quotient AZ/G by the 
diagonal action of G is finite, w.l.o.g. a probability measure. Note that the shift map 
descends to AZ/G and is still measure preserving.

Lemma 2.13. Suppose that an essential triangle complex X has all edges of finite degree, 
and is recurrent with A/G finite. Let a ∈ A and b ∈ H(a). Then there is a local geodesic 
f : [0, l] → X with the directions at 0, l mapping to b, ga for some g ∈ G.

Proof. We have p(I(a), b) �= 0. Thus by the Poincaré recurrence (see e.g. [24, Thm 1.4]) 
applied to AZ/G we have a finite sequence a0 = I(a), a1 = b, . . . , an = ga0, for some 
g ∈ G, such that for all 0 ≤ i < n we have ai+1 ∈ H(I(ai)). Define f as the concatenation 
of the geodesics from ai to I(ai) for 1 ≤ i < n and from an = ga0 to gI(a0) = ga. �
Remark 2.14. An alternative, more combinatorial way of proving Lemma 2.13 was sug-
gested to us by Sam Shepherd. For example, if G acts freely on X, then the finite set 
A/G is the set of states for appropriate Markov chain for which the uniform measure is 
stationary. Consequently, since we have a positive transition probability from the state 
[I(a)] to the state [b], we also have a positive probability of passing from [b] to [I(a)]
after several steps.

Proof of Lemma 2.10. Let Γ (see Fig. 1 left) be the graph obtained from joining the 
basepoints of two closed paths C, C

′ by a path C
′′ (their lengths will be determined 

later). Let Γ be the universal cover of Γ with the action of the deck transformation 
group F2. The main idea of the proof is to construct a homomorphism ϕ : F2 → G and 
ϕ-equivariant local isometry Γ → X −X0 that is injective on the set of directions at the 
vertices of Γ.

Let C ′′ be a lift to Γ of C ′′ with endpoints c, c′. Let C, C ′ be some lifts of the paths 
C, C

′ starting at c, c′. Let h, h′ ∈ F2 be the elements mapping c to the other endpoint 
of C, and c′ to the other endpoint of C ′, respectively. Observe that C ∪ C ′ ∪ C ′′ is 
a fundamental domain for the action of F2 on Γ. Thus to define an equivariant map 
Γ → X−X0 it suffices to define a homomorphism ϕ : F2 → G and a map f : C∪C ′∪C ′′ →
X −X0 with the property that ϕ(h) maps f(c) to the other endpoint of f(C) and ϕ(h′)
maps f(c′) to the other endpoint of f(C ′).

Let e be an edge of X of degree ≥ 3. Then for i = 1, 2, 3, there are distinct triangles 
Ti containing e. Since Y is recurrent, by Definition 2.1(iv) we have x ∈ e such that for 
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any T containing e the direction in lkxT perpendicular to e belongs to A. Let vi be that 
direction in lkxTi.

Apply Lemma 2.13 to a = v1, b = v2, to obtain a local geodesic f : [0, l] → X − X0

with ending directions v2, gv1, for some g ∈ G. Identify C with [0, l]. Analogously, apply 
Lemma 2.13 to a = v1, b = v3 to obtain f : C ′′ → X − X0 with ending directions 
v3, g′′v1, for some g′′ ∈ G. Finally, apply Lemma 2.13 to a = v2, b = g′′v3, to obtain 
f : C ′ → X−X0 with ending directions g′′v3, g′g′′v2, for some g′ ∈ G. Define ϕ : F2 → G

by ϕ(h) = g and ϕ(h′) = g′. By the observation above, we can extend f : C ∪C ′ ∪C ′′ →
X −X0 to a ϕ-equivariant map Γ → X −X0 for which we keep the same notation f . 
Note that for each vertex w of Γ the three directions at w are mapped under f to a 
G-translate of the triple {v1, v2, v3}.

Let E be the set of directed edges of Γ. Consider the map f∗ : E → A that maps 
each directed edge wu ∈ E to the direction of f(wu) at f(w). We will prove that ϕ is 
injective by showing that f∗ is injective. Suppose that there are two edges wu, w′u′ ∈ E

with f∗(wu) = f∗(w′u′). Then we also have f∗(uw) = f∗(u′w′), so without loss of 
generality we can assume that the embedded edge-path γ in Γ from w to w′ passes 
through u. For i = 0, . . . , n, let ai be the images under f∗ of consecutive edges of γ. In 
particular, a0 = f∗(wu) and in the case where u′ lies on γ we have an = f∗(u′w′). If γ
does not contain u′, then we add an+1 = f∗(w′u′). Note that for i = 0, 1, . . . we have 
ai+1 ∈ H(I(ai)), and so f∗(wu) = f∗(w′u′) contradicts Definition 2.1(v). �
3. Invariant cocompact subcomplexes

Definition 3.1. Let X be a simplicial complex with a simplicial action of a group G. We 
say that a subcomplex Z ⊆ X is an invariant cocompact subcomplex with respect to G
(shortly G-c.s.) if Z is G-invariant, and the quotient Z/G is compact. Note that a G-c.s. 
is not required to be connected.

A simplicial complex homeomorphic to the plane R2 (resp. to the 2-sphere S2) is 
called a simplicial plane (resp. simplicial 2-sphere). A simplicial plane whose 1-skeleton 
is Gromov-hyperbolic (w.r.t. the metric where each edge has length 1) is called hyperbolic. 
By the classification of 2-dimensional orbifolds, if E is a non-hyperbolic simplicial plane 
with cocompact automorphism group H, then H is virtually Z2. We call such E a flat.

Lemma 3.2. Let X be a simply connected 2-dimensional simplicial complex with a finitely 
generated group G acting almost freely and without inversions. If each essential G-c.s. 
in X is a disjoint union of flats, then G is virtually a free product of some number of Z
and Z2.

Proof. Suppose first that X is countable. We may find an increasing sequence X1 ⊂
X2 ⊂ · · · of connected G-c.s.’s exhausting X. (Start with a G-orbit of a vertex, connect 
it equivariantly by edge-paths, then at each step add equivariantly remaining cells.) The 
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action of G on Xi lifts to an action of a group Gi on the universal cover X̃i of Xi. 
The corresponding maps X̃1 → X̃2 → · · · and X̃i → X̃ = X induce homomorphisms 
G1 → G2 → · · · and epimorphisms Gi � G. Note that the vertex stabilisers of the 
action of Gi on X̃i coincide with the vertex stabilisers of the action of G on Xi and thus 
have uniformly bounded order.

Since G is finitely generated, there is a finitely generated subgroup H1 < G1 such 
that H1 → G is an epimorphism. For each i > 1, let Hi be the image of H1 under the
homomorphism G1 → Gi. We obtain an infinite sequence of epimorphisms

H1 � H2 � · · · (1)

The epimorphism from the direct limit lim−−→Hi to G is in fact an isomorphism. Indeed, 
let hi ∈ ker(Hi → G) and let α be a path joining a basepoint x̃i ∈ X̃i to hix̃i. The 
projection of α to Xi is a closed path and it becomes contractible in some Xj, since Xj

exhaust X, and X is simply connected. Consequently the image hj ∈ Hj of hi fixes the 
image of x̃i in X̃j and thus hj ∈ ker(Hj → G) implies hj = 0.

Since each essential G-c.s. in X is a disjoint union of flats and G acts without inver-
sions, every Xi can be equivariantly collapsed (by removing triangles with free edges) to 
a space Yi that is a union of a graph and a disjoint union of flats. The preimage Ỹi ⊂ X̃i

of Yi under the covering map is thus a simply connected union of a graph and a disjoint 
union of flats, with a proper and cocompact action of Gi. Let Γi be the tree obtained from 
Ỹi by quotienting each flat to a vertex. The quotient Γi/Gi is a finite graph of groups 
Gi with π1Gi = Gi and edge groups of uniformly bounded order. Its vertex groups Gv

are also finite of uniformly bounded order, or have the following description for a vertex 
v obtained from quotienting a flat Z to v. Namely, let G′

v be the image of Gv in the 
isometry group of Z. We then have a short exact sequence 0 → K → Gv → G′

v → 0, with 
K finite of uniformly bounded order. By the classification of 2-dimensional Euclidean 
orbifolds, there are only finitely many possible isomorphism types for G′

v. Consequently, 
there are only finitely many possible isomorphism types for Gv. Analogously, there are 
only finitely many possible isomorphism types for the subgroups of Gv.

If H1 is generated by d elements, then so is each Hi for i > 1. Since each Hi is a 
subgroup of Gi, it is also the fundamental group of a finite graph of groups Hi with 
edge groups of uniformly bounded order. It follows, by a result of Linnell [15, Thm 
2], that there is a uniform bound on the number of edges in a minimal such graph 
with fundamental group Hi. (This is because the augmentation ideal in [15, Thm 2] is 
generated by at most d elements.) Edge and vertex groups of Hi have only finitely many 
isomorphism types. Furthermore, there are finitely many possible injections from edge 
groups to vertex groups, up to conjugations in vertex groups. However, such conjugations 
do not change π1Hi. Hence there are only finitely many isomorphism types in {Hi}∞i=1.

Let H be isomorphic to Hi for infinitely many i. Note that H is virtually a free 
product of some number of Z and Z2, and thus it is residually finite. Moreover, H is 
finitely generated, so it is Hopfian. It follows that if H ∼= Hi, Hi+k, then Hi � Hi+k is 
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an isomorphism, and hence, for every j = i, i + 1, . . . , i + k − 1, the map Hj � Hj+1 is 
an isomorphism. Therefore, the sequence (1) stabilises and G = H is as required.

If X is not countable, we consider the collection Xλ of all connected G-c.s. containing 
a given connected G-c.s. X1, which form a directed set under inclusion. We define ap-
propriate Gλ, Hλ as before, and we have again G = lim−−→Hλ. There is still H such that for 
every Xλ there is Xλ′ ⊃ Xλ with Hλ′ ∼= H, and then replacing X1 by such Xλ′ we obtain 
that all maps in our directed system are isomorphisms and consequently G = H. �
Lemma 3.3. Let Z ⊆ X be a connected essential subcomplex in a connected simplicial 
complex X. If π1Z → π1X is not injective, then Z is contained in a thick subcomplex 
Z ′ ⊆ X with Z ′ − Z finite.

Before we give the proof, we record the following consequences.

Corollary 3.4. Let Z ⊆ X be a connected essential G-c.s. in a connected simplicial com-
plex X. If π1Z → π1X is not injective, then Z is contained in a thick G-c.s.

Proof. Apply Lemma 3.3 to Z. Then GZ ′ is a thick G-c.s. �
For a subcomplex Z ⊆ X and a triangle T of Z let galZ(T ) denote the gallery con-

nected component of Z containing T . That is, galZ(T ) is the subcomplex of Z consisting 
of T and all the triangles in Z that can be reached from T by passing from a triangle to 
a triangle adjacent along an edge.

Corollary 3.5. Let X be a simply connected simplicial complex that does not contain 
simplicial 2-spheres. Let Z ⊆ X be an essential G-c.s. that is not contained in a thick 
G-c.s. Then for each triangle T of Z, galZ(T ) is a simplicial plane.

Proof. Since Z is essential and not thick, galZ(T ) is a 2-dimensional pseudomanifold. 
Thus galZ(T ) is homeomorphic with a connected surface with possibly some identifica-
tions on a discrete set of points. By Corollary 3.4, galZ(T ) is simply connected, so it is 
homeomorphic with S2 or R2. �

We now pass to the proof of Lemma 3.3. A disc diagram D is a compact contractible 
simplicial complex with a fixed embedding in R2. Its boundary path is the attaching map 
of the cell at ∞. If X is a simplicial complex, a disc diagram in X is a nondegenerate 
simplicial map ϕ : D → X, and its boundary path is the composition of the boundary 
path of D and ϕ. We say that ϕ is reduced if it maps triangles sharing an edge to two 
distinct triangles. The area of ϕ is the number of triangles of D.

Remark 3.6. Let γ be a closed edge-path in a simplicial complex X. If γ is contractible 
in X, then there is a reduced disc diagram in X with boundary path γ. For γ embedded, 
this is [13, Lem 1.6]. For γ not embedded, attach a triangulated annulus A to X along 
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γ to obtain X ′. Applying the embedded case to the second boundary component γ′

of A we obtain a reduced disc diagram ϕ′ : D′ → X ′. Then ϕ′ −1(X ′ − X) is the open 
combinatorial 1-ball around ∂D′. Consequently, ϕ′ restricted to D = D′−ϕ′ −1(X ′−X)
is a reduced disc diagram with boundary path γ.

Proof of Lemma 3.3. Let ϕ : D → X be a minimal area reduced disc diagram with 
boundary path in Z representing a nontrivial element of π1(Z). Note that D cannot 
have area 0. Let Z ′ = Z ∪ ϕ(D). Observe that Z ′ is essential, since Z is essential and ϕ
is reduced. Furthermore, let T be a triangle of D adjacent to a boundary edge e. By the 
minimality of area, ϕ(e) has degree ≥ 3 in Z ′. �
Proposition 3.7. Let X be a simply connected 2-dimensional simplicial complex that con-
tains no simplicial 2-spheres with a finitely generated group G acting almost freely and 
without inversions. If X contains no thick G-c.s., then G is virtually cyclic, or virtually 
Z2, or contains a nonabelian free group.

Proof. Consider possible essential G-c.s. Z ⊆ X. By Corollary 3.5, for each triangle T of 
Z we have that Y = GalZ(T ) is a simplicial plane. If any such Y is not a flat, then it is a 
hyperbolic simplicial plane. Consequently, the stabiliser StabG(Y ), which acts properly 
and cocompactly on Y , contains a nonabelian free group (by e.g. [8, Thm 8.37]). If Y and 
Y ′ are two such intersecting flats, then by Corollary 3.4, the connected component W
of Z containing Y ∪ Y ′ is an infinite valence tree of flats and thus StabG(W ) contains a 
nonabelian free group. It remains to consider the case where each Z is a disjoint union of 
flats. Then by Lemma 3.2 we have that G is virtually cyclic, or virtually Z2, or contains 
a nonabelian free group. �
Proof of the Main Theorem. If X contains a simplicial 2-sphere Σ, then there is no 
triangle T0 in Σ with an a0 ∈ A in some lkx0T0. Indeed, otherwise using Definition 2.1(ii) 
and (iii) we could construct in A an infinite sequence a0, a1, . . . such that for all i ≥ 0
we have ai+1 ∈ H(I(ai)), with ai in some lkxi

Ti and Ti ⊂ Σ. This would contradict 
Definition 2.1(i) or (v). Consequently, by Definition 2.1(iv) each edge of Σ has degree 2 
in X. We can thus remove all triangles and edges of each Σ and replace them by a cone 
over the vertex set Σ0. After this operation X is still simply connected. We can thus 
assume that X does not contain simplicial 2-spheres.

If X contains a thick G-c.s. Z, then by Remark 2.2 the triangle complex Z is recurrent 
with respect to G. Since G acts cocompactly on Z, we have that A/G is finite. Moreover, 
since G acts properly on Z, all edges of Z have finite degree in Z. Thus by Lemma 2.10
we have that G contains F2. If X does not contain a thick G-c.s., then the Main Theorem 
follows from Proposition 3.7. �
Remark 3.8. The assumption in Proposition 3.7 that X contains no simplicial 2-spheres 
could be removed at the cost of allowing, instead of flats, trees of 2-spheres and trees of 
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Fig. 4. The set A for the barycentric subdivision of the regular octagon.

a flat and 2-spheres in the statement of Lemma 3.2. This would complicate slightly the 
proof of Lemma 3.2, so we decided to keep this assumption.

4. More applications

Example 4.1. Let X be a 2-dimensional combinatorial complex with all edges of length 1
and all 2-cells regular Euclidean 2n-gons, where n might vary. Suppose that all cells 
embed in X. Then the barycentric subdivision X ′ of X is a triangle complex satisfying 
Definition 2.1(i)-(iv) w.r.t. any automorphism group of X. Indeed, we define A in the 
triangles forming a given polygon as the directions coming from the union of line segments 
perpendicular to opposite edge pairs and dividing them in the ratio 1: 3, see Fig. 4.

Here we study two classes of complexes, where we have also Definition 2.1(v), and 
consequently X ′ is recurrent w.r.t. any automorphism group of X.

4.1. B(6) complexes

The following notion was introduced by Wise [26]. Let X be a 2-dimensional combi-
natorial complex. X satisfies the B(6) (small cancellation) condition if for each 2-cell 
R, and for each path S → ∂R which is the concatenation of at most 3 pieces, we have 
|S| ≤ |∂R|/2, where | · | denotes the number of edges in a path. (See [26] for defini-
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tions of paths, pieces, and further details.) In particular, B(6) complexes satisfy the 
combinatorial C(6) small cancellation condition [26, Prop 2.11].

Example 4.2. Suppose that X is simply connected and satisfies B(6). By subdividing 
each edge into two, we can assume that for every 2-cell R of X the length |∂R| is even. A 
hypergraph in X is then a connected component Λ of a graph whose vertices correspond 
to edges of X and whose edges correspond to pairs of antipodal edges in R, with the 
obvious map Λ → X [26, Def 3.2 and Rem 3.4]. Equip the barycentric subdivision X ′ of 
X with the metric and A of Example 4.1. Note that all the 2-cells of X embed by [26, 
Cor 2.9].

Observe that any sequence a0, a1, . . . , an of elements of A, with ai+1 ∈ H(I(ai)) for 
0 ≤ i < n extends to such a sequence with a0 ∈ lkxT, an ∈ lkx′T ′ with x, x′ in the 
edges of X (and dividing them in the ratio 1: 3). Joining consecutive ai by geodesics we 
obtain a local geodesic segment γ → X, which factors (up to a distance 1

4 translation) 
through a hypergraph Λ → X. Since Λ → X is an embedding [26, Cor 3.12] we have 
Definition 2.1(v), and thus X ′ is recurrent with respect to any automorphism group of 
X. Consequently the Main Theorem applies to X ′, implying Theorem C.

Our arguments do not extend directly to C(6)-small cancellation complexes because, 
as shown in [26, §3.5], in that case a hypergraph might not embed. It is an open question 
(see e.g. [26, Prob 1.4]) whether one can define any reasonable ‘walls’ in that case.

4.2. Artin groups of extra-large type

Let Γ be a finite simple graph with each of its edges labelled by an integer ≥ 2. Let 
V Γ be the vertex set of Γ. The Artin group AΓ is given by the following presentation, 
where pm(a, b) denotes the word aba · · ·︸ ︷︷ ︸

m

:

〈V Γ | pm(a, b) = pm(b, a) for each edge ab labelled by m〉.

We call the presentation above the standard presentation for AΓ. The Artin group AΓ

is of extra-large type if all the labels satisfy m ≥ 4. The Coxeter group WΓ is obtained 
from AΓ by adding the relations a2 = 1 for all a ∈ V Γ.

Let X be the Cayley complex of AΓ for the standard presentation. It consists of 
cells that are 2m-gons with m the labels of Γ. A hypergraph Λ → X is defined as in 
Example 4.2. Note that Λ → X is an embedding, since it projects to a hypergraph in 
the Cayley complex of WΓ, which is embedded. Similarly, X − Λ has two connected 
components.

Proposition 4.3. Suppose that AΓ is of extra-large type. Then each hypergraph Λ in X is 
a tree.
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By Example 4.1 and Proposition 4.3, the Main Theorem applies to X ′ implying The-
orem B for finitely generated subgroups of G.

The remaining part of the section is devoted to the proof of Proposition 4.3.

Lemma 4.4. Let Γ be a single edge ab with label m ≥ 3, and let Λ ⊂ X be a hypergraph. 
Suppose that we have an edge-path γ in X with only the first and the last edge corre-
sponding to vertices of Λ. Then γ is not labelled by a word of the form akbal, bkabl or 
akbl with k, l ∈ Z − {0}.

Proof. Let w ∈ WΓ denote the element represented by the longest word pm(a, b). Con-
sider an edge of Λ. Its vertices correspond to opposite edges e, e′ in a 2-cell D of X. 
Thus e and e′ are labelled by the same (resp. distinct) letters for m even (resp. odd) 
and oriented towards the same side of Λ. A path in ∂D starting with e and ending with 
(e′)−1 is labelled by a word projecting to wa or wb in WΓ. If we consider another edge 
of Λ with vertices corresponding to e′, e′′, a path starting with e and ending with (e′′)−1

is labelled by a word projecting to 1 ∈ WΓ. Consequently, a concatenation of such paths 
that is starting with (an edge labelled by) a and ending with a−1 is labelled by a word 
projecting to 1 or possibly to wa for m even, which is distinct from the possible projec-
tions aba, ab, ba, b of akbal. Similarly, if such a concatenation of paths is starting with a
and ending with b−1, then m is odd, and the path is labelled by a word projecting to 
wb, which is distinct from the possible projections ab, a, b, 1 of akbl. �
Lemma 4.5. Let Γ be a single edge ab with label m ≥ 3. Let u be a cyclically reduced 
word representing 1 ∈ AΓ. Then, possibly after a cyclic permutation of u, there are two 
subwords w1, w2 of u of forms pm(a, b), pm(a, b)−1, pm(b, a), or pm(b, a)−1, none of whose 
letters lie in the same syllable of u, nor any of the cyclic permutations of u.

In the proof we will use the small cancellation techniques of [1]. Here we recall only 
the notions that are less standard and we refer the reader to [1] for more details. An 
R-diagram M is a van Kampen diagram, with the boundary path of each 2-cell (called 
a region) labelled by a word in a set of relators R. If we ignore the labelling, M is just 
called a diagram. A spike of M is a boundary vertex of valence 1. The interior degree
i(D) of a region D is the number of interior edges of ∂D (after forgetting vertices of 
valence 2). D is a simple boundary region if its outside boundary ∂D ∩ ∂M is nonempty, 
and M −D is connected. A singleton strip is a simple boundary region with i(D) ≤ 1. A 
compound strip is a subdiagram R of M consisting of regions D1, . . . , Dn, with n ≥ 2 with 
Dk−1 ∩Dk a single interior edge of R (after forgetting vertices of valence 2), satisfying 
i(D1) = i(Dn) = 2, i(Dk) = 3 for 1 < k < n and M −R connected.

We will use the following [1, Lem 2], where case (ii) needs to be added to account for 
a minor error in the third paragraph of their proof where the singleton strip D might be 
glued to a region contained in two distinct strips of M ′.
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Lemma 4.6. Let M be a simply connected diagram with no spikes and more than one 
region. If M satisfies C(4) and T (4), then

(i) M contains two singleton strips, or
(ii) M contains one singleton strip and two compound strips, or
(iii) M contains four compound strips.

Proof of Lemma 4.5. Let M be a minimal R̂ab-diagram for u, where R̂ab is the sym-
metrised set obtained from the relator pm(a, b)(pm(b, a))−1. Each region of M has 
two separating vertices separating the paths in its boundary labelled pm(a, b) and 
(pm(b, a))−1. We prove inductively on the number of regions of M a slight strength-
ening of Lemma 4.5 where we add the requirement that each wi labels a path in the 
outside boundary of a region of M (which joins its separating vertices).

If M has a single region, then (after possibly a cyclic permutation and/or an inversion) 
we have u = pm(a, b)(pm(b, a))−1 and we are done. Otherwise we can apply Lemma 4.6, 
since by [1, Lem 3], M satisfies C(4) and T (4).

In cases (ii) and (iii) we claim that there are regions D1, D2 in the strips of M with 
both of their separating vertices on their outside boundaries (we will call such regions 
exposed), and such that the outside boundaries of D1, D2 are separated in ∂M by outside 
boundaries of other simple boundary regions of interior degree at most 2.

To justify the claim, by [1, Lem 5] each strip S has an exposed region D. Consequently, 
in case (ii), if we denote by Ds the singleton strip and by S, S′ its consecutive (clockwise 
and counterclockwise) compound strips, there are exposed regions D in S and D′ in S′. 
We can take D1 = Ds and D2 to be D or D′ unless D and D′ are the regions consecutive 
to Ds among the interior degree 2 regions of M lying in S and S′. But then we can take 
D1 = D, D2 = D′ instead. Finally, in case (iii), if we call any exposed region Ds, we 
have two strips S, S′ disjoint from Ds and the same procedure as in case (ii) yields the 
required D1, D2. This justifies the claim.

Choose w1, w2 labelling the paths in the outside boundaries of D1, D2 between their 
separating vertices. Note that each simple boundary region of interior degree at most 2
has outside boundary of length at least 2, and hence witnesses a syllable change in u. 
Thus by the claim the letters of w1, w2 do not lie in the same syllable.

It remains to consider case (i). Let D be a singleton strip and let M ′ be the diagram 
obtained from M by removing D and possibly a spike or a sequence of spikes, so that M ′

has cyclically reduced boundary word u′. By induction hypothesis, u′ has appropriate 
subwords w′

1, w
′
2 in the outside boundaries of single regions. We can choose w1 = w′

1, w2 =
w′

2 for u, unless the intersection β of D or the final spike with M ′ contains an interior 
vertex of the path α labelled by one of the w′

i, say w′
1. There is an endpoint x of β that 

is not an endpoint of α. Let w2 = w′
2. For the choice of w1, suppose first that β is not a 

single vertex. Then x is a separating vertex of D. Thus we can take w1 to be the word 
labelling the length m subpath of ∂D− β starting at x. It remains to consider β = x. In 
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that case we can take w1 to be the word labelling any path (there might be two) in the 
outside boundary of D joining its separating vertices. �

We are finally ready for the following.

Proof of Proposition 4.3. We first focus on the case where Γ is a single edge. (For future 
reference in the proof of Proposition A.1, note that the following argument works also 
for m = 2, 3.) Suppose that there is a cycle γ in Λ with edges corresponding to 2-cells 
D0, D1, . . . , Dk = D0 and vertices corresponding to edges e0, e1, . . . , ek = e0 of X with 
ei−1, ei opposite in Di for i = 1, . . . , k. Let ui be the labels on the length m − 1 paths 
joining in ∂Di either the initial vertices or the terminal vertices of the directed edges 
ei−1, ei. Then u = u1u2 · · ·uk represents the trivial element in AΓ and hence there is 
an R̂ab-reduced diagram M for u. Suppose that M has minimal possible number n of 
regions among all cycles γ of Λ.

Attach to M along its boundary all the Di, and glue Di to Di+1 along ei, to form 
a diagram M ′. Note that M ′ is still reduced, since if Di would cancel with a region D
of M , we would have (using the observation that Λ does not self-intersect) a cycle γ′ of 
Λ inside M , contradicting the minimality of n. Furthermore, Di cannot cancel with Dj , 
since this would also contradict the minimality of n. By Lemma 4.6 and [1, Lem 5], there 
is Di with its outside boundary of length at least m, which contradicts the definition of 
a hypergraph. This finishes the case where Γ is a single edge.

Now we consider arbitrary Γ. By [23] for each edge ab of Γ the group Aab embeds in 
AΓ. Thus we have in X copies of the Cayley complex Xab of Aab, which we call blocks, 
corresponding to the cosets of Aab in AΓ. Given a cycle γ in Λ, define ei, Di as before. 
Let B0, B1, B2, . . . , Bm = B0 be the consecutive blocks visited by (Di). Note that m > 0
by the case of Γ a single edge. For j = 1, . . . , m, let Dij ⊂ Bj−1, Dij+1 ⊂ Bj be the 
cells where we transition from Bj−1 to Bj . Let Lj be the line that is the connected 
component of Bj−1 ∩ Bj containing eij (in fact Lj = Bj−1 ∩ Bj but we do not need 
that). Consider closed immersed edge-paths δ = δ1δ2 · · · δm in X such that each δj is a 
path in Bj from Lj to Lj+1 (where Lm+1 = L1). Note that each δj is nontrivial since 
otherwise a path in Lj ∪ Lj+1 labelled by akbl would contradict Lemma 4.4. The word 
v = v1v2 · · · vm, with vj the label of δj , represents the trivial element in AΓ and hence 
there is an R-reduced diagram M for v, where R is the symmetrised set obtained from 
the standard presentation of AΓ. Choose δ so that M has the minimal possible number 
of regions.

By [1, Lem 8] M satisfies C(6), and so if M has more than one region, it has a 
simple boundary region D with interior degree at most 3. Suppose w.l.o.g. that ∂D is 
labelled by a word in a and b. Since the words labelling the intersections of ∂D with 
its adjacent regions cannot exceed one syllable, by Lemma 4.5 there is an occurrence of 
pm−1(a, b) or pm−1(b, a) in the outside boundary of D. Since m ≥ 4, this shows that v
has a syllable consisting of a single letter a or b, say b. Suppose that this b occurs in vj . 
By the minimality of M , we have that Bj is not a copy of Xab and so δj consists of a 
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single edge. This contradicts Lemma 4.4 applied to Bj . If M is a single region, the proof 
is analogous. �
5. Infinitely generated groups

In this section we explain when we can extend the Main Theorem to infinitely gener-
ated G.

Let G be a group acting on a CAT(0) triangle complex X with finitely many isometry 
types of simplices. By [5, I.7.19], we have that X is complete, and so by [5, II.2.8] every 
finite subgroup of G fixes a cell of X. Consequently, if G acts almost freely, then there 
is a bound on the order of finite subgroups of G. Since G acts properly in the sense of 
[5, I.8.2], the following lemma is an immediate consequence of [5, II.7.5 and II.7.7(2)].

Lemma 5.1. Let G be a group acting almost freely on a CAT(0) triangle complex with 
finitely many isometry types of simplices. Then every sequence G1 < G2 < · · · of virtually 
abelian subgroups of G stabilises, that is, there is n such that for all i ≥ n the inclusion 
Gi < Gi+1 is an isomorphism.

In view of Corollaries 2.6 and 2.7, the following completes the proof of Theorem A.

Corollary 5.2. If X is a CAT(0) triangle complex with finitely many isometry types of 
simplices, then the Main Theorem holds also for infinitely generated G.

Proof. Consider the family of finitely generated subgroups Gλ of G. If any Gλ contains 
F2, then we are done. Otherwise, by the Main Theorem every Gλ is virtually Z2 or 
virtually cyclic. It remains to observe that for some λ we have Gλ = G. Indeed, otherwise 
we can inductively define a sequence Gλ1 � Gλ2 � · · · contradicting Lemma 5.1. �

In [25] Wise presents a procedure of constructing a systolic complex associated to every 
simply connected B(6) complex (in fact, to every simply connected C(6) complex). This 
construction is described in details in [19] and we follow the notation from there. Without 
loss of generality we may assume that X is the union of its 2-cells: otherwise we attach 
equivariantly a 2-cell to every edge of degree 0. Then, the Wise complex W (X) of X is 
defined as the nerve of the covering of X by closed 2-cells. The Wise complex of a simply 
connected C(6) complex is systolic, see [25, Thm 6.7] and [19, Thm 7.10].

Lemma 5.3 ([20, Lem 2.2]). Let G be a group acting properly on a uniformly locally 
finite systolic complex. Suppose that there is a bound on the order of finite subgroups of 
G. Then every sequence G1 < G2 < · · · of virtually abelian subgroups of G stabilises.

Similarly as in the CAT(0) setting, finite subgroups of isometries of systolic complexes 
fix points [6]. Therefore, a group acting almost freely on a systolic complex has a bound 
on the order of finite subgroups. Consequently, Lemma 5.3 implies the following:
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Corollary 5.4. If X is a simply connected B(6) complex with uniformly locally finite 
W (X), then Theorem C holds also for infinitely generated subgroups of G.

We believe that Theorem C holds for infinitely generated subgroups of G without the 
assumption of the uniform local finiteness of W (X). The reason for that assumption in 
Lemma 5.3 is that it is deduced from the systolic Flat Torus Theorem proved at the 
moment only for uniformly locally finite systolic complexes [7, Thm 6.1].

Finally, we complete the proof of Theorem B. By [11, Thm 5.6], a group acting properly 
on the Cayley complex for the standard presentation of an Artin group of extra-large 
type acts properly on a uniformly locally finite systolic complex. Therefore, we can also 
apply Lemma 5.3 to deduce the case of infinitely generated subgroups in Theorem B
from the finitely generated case covered in Section 4.2.

Appendix A. When hypergraphs are trees for 2-dimensional Artin groups, by Jon 
McCammond, Damian Osajda, and Piotr Przytycki

In this appendix, we generalise Proposition 4.3 to the following. Here X is the Cayley 
complex for the standard presentation of an Artin group AΓ.

Proposition A.1. Suppose that AΓ is a 2-dimensional Artin group. Then each hypergraph 
Λ in X is a tree if and only if Γ has no triangle with an edge labelled by 2.

By Example 4.1 and Proposition A.1, the Main Theorem applies to X ′ implying the 
following.

Theorem A.2. Let AΓ be a 2-dimensional Artin group such that Γ has no triangle with an 
edge labelled by 2. Suppose that G acts almost freely on X. Then any finitely generated 
subgroup of G is virtually cyclic, or virtually Z2, or contains a nonabelian free group.

Note that if additionally Γ has no square with at least three edges labelled by 2, 
then by [11, Thm 5.6] G acts properly on a uniformly locally finite systolic complex and 
therefore we can apply Lemma 5.3 to show that Theorem A.2 holds also for G infinitely 
generated.

We first justify the ‘only if’ part of Proposition A.1.

Example A.3. Suppose that Γ has a triangle abc with the edge ab labelled by 2. Consider 
the following R-reduced diagram M consisting of 12 regions. The 4 central regions have 
boundaries labelled by aba−1b−1. The 4 top and bottom regions have boundaries labelled 
by a and c, and the 4 left and right regions have boundaries labelled by b and c (see 
Fig. 5). M contains a cycle of Λ, which is thus not a tree.

For the ‘if’ part of Proposition A.1, we need the following.
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Fig. 5. Example A.3. A cycle in Λ is marked by the dashed line.

Lemma A.4. Let Σ be the Cayley complex of the Coxeter group WΓ such that Γ has no 
triangle with an edge labelled by 2. Then for any 2-cells σ, τ of Σ sharing an edge, and 
a hypergraph Λσ intersecting σ, there is a hypergraph Λτ intersecting τ that is disjoint 
from or equal to Λσ.

Proof. Denote e = σ ∩ τ . Note that we can assume that Λσ is disjoint from e, since 
otherwise we can take Λτ = Λσ.

Suppose first that τ is a square. Then take Λτ to be the hypergraph intersecting τ
but not e. Let f be an edge of σ sharing a vertex v with e. If Λσ intersects f , then let α
be the path obtained by concatenating at v a half-edge of f and a half-edge in τ ending 
at Λτ . Note that α is a geodesic in the Moussong metric on Σ, by the assumption that Γ
has no triangle with an edge labelled by 2. Moreover, the Alexandrov angle between the 
endpoints of α and Λσ and Λτ are π2 . Consequently Λσ and Λτ are disjoint. Analogously, 
for the hyperplane Λ′

σ intersecting the other edge of σ sharing a vertex with e, we have 
that Λ′

σ and Λτ are disjoint. Consequently, Λτ is contained in the same component of 
Σ −Λσ ∪Λ′

σ as e. Then Λτ is also disjoint from all other hyperplanes intersecting σ but 
not e.

If σ is a square, then the same argument shows that we can take Λτ to be any 
hyperplane intersecting τ but not e.

It remains to consider the case where neither of σ, τ are squares. We modify the 
Moussong metric on Σ in the following way. Every square remains a Euclidean square of 
side length 1. Every 2-cell that is not a square is subdivided into triangles by (Moussong) 
geodesic segments joining vertices with the centre and we turn each triangle into the 
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Euclidean equilateral triangle of side length 1. Note that because Γ has no triangle with 
an edge labelled by 2, this metric is still CAT(0). As before, let f be an edge of σ sharing 
a vertex v with e. Let g be the edge of τ sharing a vertex with e distinct from v, and 
let α be the path obtained by concatenating at v a half-edge of f and the geodesic 
segment from v to the centre of τ . If Λσ intersects f , then take Λτ to be the hypergraph 
intersecting g. Again α is a geodesic meeting Λσ and (since we modified the metric) Λτ

at Alexandrov angle π2 . Consequently Λσ and Λτ are disjoint.
Finally, consider a hyperplane Λ′

σ intersecting σ but none of its edges sharing vertices 
with e. Let w be the centre of σ, and let λσ be the component of Λσ − w intersecting 
f . Let λ′

σ be the component of Λ′
σ − w intersecting ∂σ earlier if we traverse it starting 

from e and ending with f . Since we modified the metric, Λ′′ = λσ ∪ w ∪ λ′
σ is convex. 

Using the path α we obtain that Λ′′ is disjoint from Λτ . Since Λ′
σ is contained in the 

closure of the component of Σ − Λ′′ that does not contain e, we have that Λ′
σ and Λτ

are disjoint. �
Proof of Proposition A.1. The ‘only if’ part follows from Example A.3. For the ‘if’ part, 
given a cycle γ in Λ, define Di, Bj , δj and M as in the proof of Proposition 4.3. Note 
that δj are still nontrivial, since Lemma 4.4 obviously holds for m = 2 and the word 
akbl.

We claim that M has no 2-cells. Indeed, otherwise let τX be a 2-cell of X in the image 
of M containing an edge e of some δj , and let σX be a 2-cell of Bj containing e. Let σ, τ
be the projections of σX , τX to the Cayley complex Σ of WΓ. Let Λσ be the projection to 
Σ of Λ, which intersects σ since Dij+1 lies in the same block as σX , and hence projects 
also to σ. By Lemma A.4 there is a hypergraph Λτ intersecting τ that is disjoint from or 
equal to Λσ. Let M ′ be a diagram obtained from M by attaching along δj diagrams in 
Bj and such that γ traverses consecutively its boundary 2-cells. The component of the 
preimage of Λτ in M ′ intersecting τX forms a cycle contradicting the minimality of M . 
This justifies the claim.

Thus M is a tree. Each leaf of that tree is a trivial δj , which is a contradiction. �
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