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Abstract: We establish that Gaussian thermostats are geodesic flows of special metric
connections. We give sufficient conditions for hyperbolicity of geodesic flows of metric
connections in terms of their curvature and torsion.

1. Introduction

Let M be a compact manifold with a Riemannian metric g, whose scalar product will
be denoted by 〈·, ·〉. Denote by ∇ the Levi–Civita connection of the metric g. Let E be
a vector field on M .

A Gaussian thermostat is the dynamical system on T M defined by the equations

du

dt
= v,

Dv

dt
= E − 〈E, v〉v

〈v, v〉 , (1)

where u(t) ∈ M, v(t) ∈ Tu(t)M , and D
dt = ∇v is the covariant derivative, [G-R].

Since v2 is a first integral of the system we can restrict our attention to one level
set. Although the dynamics is quite different for different values of v2, there is no
loss of generality in considering the Gaussian thermostat on the unit sphere bundle
SM = {v ∈ T M : |v| = 1}. Indeed the change in the value of v2 is equivalent, up to
parameterization, to the rescaling of E . On SM we can write Eqs. (1) as equations of a
spray,

du

dt
= v,

Dv

dt
= v2 E − 〈E, v〉v. (2)

Every spray can be viewed as a geodesic flow of a canonical symmetric linear connection
∇s , [A-P-S], defined in this case as

∇s
X Y = ∇X Y − 〈X, Y 〉E +

1

2
〈X, E〉Y +

1

2
〈Y, E〉X.

� Reproduction of the entire article for non-commercial purposes is permitted without charge.
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It is not the only linear connection that can be used for that purpose. We want to argue
that there are indeed two more useful linear connections with the same geodesics up to
parameterization. First of all the trajectories of a Gaussian thermostat are geodesics of
the Weyl connection, [W1],

̂∇X Y = ∇X Y − 〈X, Y 〉E + 〈X, E〉Y + 〈Y, E〉X.

The advantage of the Weyl connection over the spray connection ∇s is that its parallel
transport is conformal. However the parameterization of the trajectories of (1) are unre-
lated to the Weyl connection. Moreover the geodesic flow of a Weyl connection on T M
is not in general complete. The geodesics on M can be extended indefinitely but their
velocity may go to infinity in finite time. Dynamical systems obtained from geodesic
flows of Weyl connections by the parameterization with the arclength of a background
riemannian metric were called W -flows in [W1]. The starting point of the paper was that
Gaussian thermostats are W -flows. In this paper we propose to consider the equations
of a Gaussian thermostat as the geodesic flow of the linear connection ˜∇,

˜∇X Y = ∇X Y − 〈X, Y 〉E + 〈Y, E〉X.

This connection is nonsymmetric but it has isometric parallel transport, i.e., it is a metric
connection. The torsion of ˜∇ is

˜T (X, Y ) = ˜∇X Y − ˜∇Y X − [X, Y ] = 〈Y, E〉X − 〈X, E〉Y.

Metric connections are uniquely determined by their torsions. We prove the following
theorem.

Theorem 1. For a Gaussian thermostat system (1) on SM the connection ˜∇ is the only
linear connection on T M satisfying the following properties:

i) the trajectories of the system are geodesics for ˜∇,
ii) parallel transport defined by ˜∇ is isometric,

iii) the torsion ˜T (X, Y ) of the connection has values in span{X, Y }.
The use of ˜∇ rather than the Weyl connection ̂∇ will allow us to obtain in a simpler,
more transparent way the basic results of [W1, W2] on hyperbolic properties of Gaussian
thermostats.

The linearization of geodesic flows is provided by Jacobi equations. For nonsym-
metric connections the Jacobi equations involve both the curvature tensor ˜R(X, Y ) =
˜∇X ˜∇Y − ˜∇Y ˜∇X − ˜∇[X,Y ] and the torsion ˜T . With a chosen metric g we introduce the
sectional curvature ˜K (�) and the sectional torsion ˜T (�) of a connection in the direction
of a plane � by the formulas

˜K (�) = 〈˜R(X, Y )Y, X〉, T̃ (�) = 1

4

∣

∣˜T (X, Y )
∣

∣

2
,

where (X, Y ) is an orthonormal frame in the plane �.
We get the following generalization of a result from [W1].

Theorem 2. If for every plane the sum of the sectional curvature and the sectional
torsion of a metric connection is negative then the geodesic flow is Anosov.

This theorem is formulated for an arbitrary metric connection. For special metric connec-
tions related to Gaussian thermostats, where ˜T (X, Y ) = ϕ(Y )X − ϕ(X)Y , for some
linear form ϕ, the following theorem was proven in [W1].
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Theorem 3. If all the sectional curvatures of the metric connection are negative then
the geodesic flow has a dominated splitting with exponential growth/decay of volumes.

The dominated splitting (also called the exponential dichotomy) is the property of the
linearized equations to have two subspaces of solutions E+ and E− such that the expo-
nential rates of growth in E+ dominate those in E−. We refer the reader to [M] and [W3]
for detailed formulations and discussions. It is a much weaker property than Anosov. In
our case we have the additional property that there is uniform growth in E+, and uniform
decay in E−, of volumes. In particular in the case of two dimensional manifolds M the
subspaces E+ and E− are one dimensional, the volume becomes length, and we obtain
the Anosov property. This theorem applies to Gaussian thermostats studied by Bonetto,
Gentile and Mastropietro, [B-G-M], and it gives Anosov property for electrical fields E
of any strength. Dairbekov and Paternain, [D-P], showed recently that on two dimen-
sional manifolds, if a Gaussian thermostat is Anosov then its SRB measure is singular,
except when E has a global potential (i.e., ϕ is exact).

It remains an open problem to decide if in higher dimensions one gets the Anosov
property from negative sectional curvatures alone, either in the general case of a metric
connection or in the Gaussian thermostat case.

The plan of the paper is the following. In Sect. 2 we introduce the Jacobi equations
of a metric connection ˜∇ and prove Theorems 2 and 3.

In Sect. 3 we study the class of linear connections on M whose geodesics coincide
with the trajectories of the system (2), which leads us to the special role played by ˜∇
and the proof of Theorem 1.

In Sect. 4 we discuss the interpretation of Gaussian thermostats as geodesic flows
and explore the role of the conformal class of the background metric.

Finally in Sect. 5 we show that the antisymmetric tensor ˜T appears again in the
interpretation of Gaussian thermostats as generalized hamiltonian systems, obtained in
[W-L] and [W4].

2. The Curvature, Torsion and Hyperbolic Properties of Geodesic Flows
of Linear Metric Connections

We consider the geodesic flow � t : SM → SM of a metric connection ˜∇.
Let u(s) be a fixed geodesic of the connection ˜∇, and let u(s, a) ∈ M be a family

of geodesics, u(s) = u(s, 0), where s is the arclength parameter on a geodesic, and a is
some real parameter, taken from a small interval around 0. Define the unit velocity field
v = v(s) and the Jacobi field ξ = ξ(s) along the geodesic u(s) by

v = du

ds
, ξ = ∂u

∂a
∣

∣a=0
∈ Tu M.

The velocity field v is a special Jacobi field.
Jacobi fields form a vector space which can be naturally identified with the tangent

spaces of SM along the chosen geodesic.
If we introduce χ = ˜∇ξ v ∈ Tu M we get the following Jacobi equations

˜∇vξ = χ + ˜T (v, ξ),

˜∇vχ = ˜R(v, ξ)v,

where ˜R and ˜T are the curvature and the torsion tensors respectively. These equations
are completely general and they follow immediately from the definitions of the tensors
˜T and ˜R. Indeed
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˜∇vξ = ˜∇ξ v + ˜T (v, ξ) = χ + ˜T (v, ξ),

˜∇vχ = ˜∇v
˜∇ξ v = ˜R(v, ξ)v + ˜∇ξ

˜∇vv = ˜R(v, ξ)v.

Due to the restriction of the geodesic flow to SM we have that 〈χ, v〉 = 0.
The dynamical significance of the Jacobi equations is that they provide a convenient,

and geometrically meaningful, linearization of the geodesic flow.
More specifically a Jacobi field ξ is uniquely determined by the Cauchy data (ξ(s), χ(s))

for the Jacobi equations. Hence the pair (ξ(s), χ(s)) can be thought of as a tangent vec-
tor to the phase space SM , that is we have that (ξ(s), χ(s)) ∈ Tv (SM). With this
identification we get that

D�s((ξ(0), χ(0)) = (ξ(s), χ(s)).

Thus the Jacobi equations give us a way to study the hyperbolic properties of the geodesic
flow. In particular its Lyapunov exponents are the exponential rates of growth of the
Jacobi fields.

We introduce a quadratic form J on SM by

J (ξ) = 〈ξ, χ〉 = 〈ξ, ˜∇vξ 〉 − 〈ξ, ˜T (v, ξ)〉.
For a fixed Jacobi field ξ the evaluation of J on ξ along the geodesic becomes the
function of the arclength parameter s, namely J (ξ)(s) = 〈ξ(s), χ(s)〉. Following [W3]
we introduce the definition

Definition 1. We say that the geodesic flow �s is

a) strictly J -monotone if for every Jacobi field ξ which is not colinear with the velocity
field v we have d

ds J (ξ)(s) > 0,
b) strictly J -separated if for any Jacobi field ξ which is not colinear with the velocity

field v, and for which J (ξ)(0) = 0, we have that d
ds J (ξ)(s)|s=0 > 0.

Clearly if a geodesic flow is strictly J -monotone then it is strictly J -separated. The
interest in this definition comes from the following

Theorem 4 ([W3]). If a flow is strictly J -separated then it has a dominated splitting.
If a flow is strictly J -monotone then it is Anosov.

Proof of Theorem 2. Using the fact that the connection ˜∇ is metric we get

d

ds
J = d

ds
〈ξ, χ〉 = 〈˜∇vξ, χ〉 + 〈ξ, ˜∇vχ〉.

The Jacobi equations give us that the last expression is equal to

χ2 + 〈˜T (v, ξ), χ〉 + 〈ξ, ˜R(v, ξ)v〉
=

∣

∣

∣

∣

χ +
1

2
˜T (v, ξ)

∣

∣

∣

∣

2

− 〈ξ, ˜R(ξ, v)v〉 − 1

4

∣

∣

∣

˜T (v, ξ)

∣

∣

∣

2
. (3)

Theorem 2 follows now from Theorem 4 and the second part of 3. ��
In the special case of Weyl connections the equivalent of Theorem 2 was formulated

in [W1].
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In the Riemannian case there is a codimension one subspace of Jacobi fields which
are orthogonal to the velocity field v. That is not the case in general, unless the values
of ˜T (v, ·) are orthogonal to v. For lack of invariant subspaces transversal to the flow we
need to consider the quotient of the tangent space to SM by the velocity field. One way
to do it is to consider the projection of the Jacobi field on the subspace perpendicular to
the velocity, that is for a given Jacobi field ξ we consider the field ζ = ξ − 〈ξ, v〉v.

In particular the form J factors to the quotient space, that is its value depends only
on ζ . In the rest of the section we restrict ourselves to the special case of the torsion
˜T (X, Y ) = ϕ(Y )X − ϕ(X)Y , for some 1-form ϕ. In this case we get from the Jacobi
equations the following quotient equations for the field ζ :

˜∇vζ = χ − ϕ(v)ζ,

˜∇vχ = ˜R(v, ζ )v. (4)

The proof of Theorem 3 can be extracted from [W1]. For completeness we provide
it here in detail in the new setup.

Proof of Theorem 3. For our special form of ˜T we get 〈˜T (v, ξ), χ〉 = ϕ(ξ)〈v, χ〉 −
ϕ(v)〈ξ, χ〉.

We have always that 〈v, χ〉 = 0, because 〈v, v〉 = 1. Under the assumption that
J (ξ)(0) = 〈ξ(0), χ(0)〉 = 0 we get from the first part of 3,

d

ds
J (ξ)(s)∣

∣s=0
= χ2 − 〈ξ, ˜R(ξ, v)v〉.

We get that the geodesic flow is strictly J -separated and the first part of our theorem
follows from Theorem 4.

To prove the second part we choose an orthonormal frame at an initial point on our
geodesic such that the first vector of the frame is the velocity vector. We transport the
frame parallely along the geodesic using the connection ˜∇. With these frames fixed we
can consider ζ(s) and χ(s) as vectors in R

n−1 and the quotient equations (4) become

d

ds
ζ = χ − ϕ(v)ζ,

(5)
d

ds
χ = ˜R(v, ζ )v.

The dominated splitting property gives us two invariant subspaces E+ and E−. We
will establish exponential growth of volume on E+. The exponential decay of volume
on E− follows then from the reversibility of the geodesic flow. To prove the exponential
growth we will introduce a special volume element in E+.

We represent the subspace E+ ⊂ R
n−1 ×R

n−1 as a graph of an operator U : R
n−1 →

R
n−1, that is E+ = {(ζ, Uζ ) | ζ ∈ R

n−1}. The evolution of U follows from (5) and it is
described by the following Riccatti equation:

d

ds
U = ϕ(v)U − U 2 − R, where Rζ = ˜R(ζ, v)v. (6)

Since by the construction of E+ the quadratic form J = 〈ζ, χ〉 is positive definite on E+,
we get that the symmetric part of U is positive definite. In contrast to the Riemannian
case we are not guaranteed that U itself is symmetric, because the operator R is not
in general symmetric. Let us split the operators U = Us + Ua and R = Rs + Ra into
symmetric and antisymmetric parts respectively. By the assumption of negative sectional
curvatures everywhere we get that −Rs is positive definite. (Using the formula for the
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curvature tensor from [W1] it can be calculated that 〈Raζ, η〉 = 1
2 dϕ(ζ, η).) We also

have that U 2
a is negative semidefinite. We get from (6),

d

ds
Us = ϕ(v)Us − U 2

s − U 2
a − Rs . (7)

We introduce new linear coordinates κ ∈ R
n−1 by the formula κ = Usζ . We will show

that in these coordinates the standard volume has uniform exponential growth. Indeed
we get from (5) and (7),

d

ds
κ =

(

−Us + UsUU−1
s + (−U 2

a − Rs)U
−1
s

)

κ.

Since tr(UsUU−1
s ) = tr Us we get that the trace of the operator in the right hand

side of the equation is equal to tr(−U 2
a − Rs)U−1

s . It is positive since a product of
two symmetric positive definite operators has positive trace. It follows that the standard
volume in the coordinates κ is uniformly exponentially expanded. ��

3. Linear Connections Determined by the Family of Geodesics

Let us recall that two linear connections on a manifold differ by a tensor. We consider
two such connections ∇1 and ∇2,

∇2
X Y = ∇1

X Y + A(X, Y ) + B(X, Y ),

where A is a symmetric and B an antisymmetric tensor. Clearly the equations of geodesics
are not effected by the antisymmetric tensor B. The following proposition is the classical
theorem of H. Weyl.

Proposition 1. The linear connections ∇1 and ∇2 have the same geodesics up to para-
meterizations if and only if A(X, Y ) = α(X)Y + α(Y )X for some linear form α.

In the proof we will need the following elementary lemma.

Lemma 1. For a bilinear map C : R
n × R

n → R
n the following are equivalent

(a) C(X, Y ) ∈ span{X, Y }, for every X, Y ∈ R
n,

(b) there are linear forms α and β such that C(X, Y ) = α(X)Y + β(Y )X.

Proof. If C satisfies (a) then both its symmetric and antisymmetric parts satisfy (a).
Hence it is enough to establish (b) separately for symmetric and antisymmetric maps C .
We give the proof here only for the symmetric case. The antisymmetric case is somewhat
more involved and we leave it to the reader.

Let us assume that a symmetric bilinear map C satisfies (a). Then C(X, X) must be
colinear with X . Let (x1, x2, . . . , xn) be linear coordinates in R

n . If x1 = 0 then we get
that also the first coordinate of C(X, X) has to vanish. It follows that the first coordinate of
C(X, X) is a quadratic form all of whose terms must contain x1. The same can be repeated
for other coordinates. Hence we obtain that C(X, X) = (α1(X)x1, . . . , αn(X)xn) for
some linear forms αk, k = 1, . . . , n. Since C(X, X) must be colinear with X it follows
immediately that the linear forms must coincide, which gives us (b). ��
Proof of Proposition 1. Let γ (t) be a geodesic of ∇1, and let us assume that there is a
change of time t = t (u) such that γ (t (u)) is a geodesic of ∇2. We have

dγ

dt
= v,∇1

v v = 0 and
dγ

du
= w,∇2

ww = 0.
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Further w = t ′v and

0 = ∇2
ww = t ′′v + (t ′)2∇2

v v = t ′′v + (t ′)2 A(v, v).

It follows that A(v, v) ∈ span{v}. Using Lemma 1 we obtain the desired conclusion.
The converse is straightforward. ��
As a corollary of Proposition 1 we obtain that the trajectories of a Gaussian thermostat

can be obtained by integrating the system dx
dt = v, Dv

dt = v2 E , in which v2 is not
preserved. This may be simpler than the integration of the original equation as in the
following example.

Example 1. Let M be the two dimensional flat torus with coordinates (x1, x2) and E =
(1, 0) be a constant vector field. The trajectories of the Gaussian thermostat satisfy
dv1
dt = v2

1 + v2
2, dv2

dt = 0. Integrating the first equation for a constant v2 
= 0 we get
v1 = v2 tan(v2t +c) which yields trajectories x1 = − ln cos(x2 +c1)+c2. The remaining
trajectories are horizontal lines (v2 = 0).

Proposition 2. The linear connections ∇1 and ∇2 define the same parallel transport up
to dilation if and only if ∇2

X Y − ∇1
X Y = α(X)Y for some linear form α.

Proof. As we observed before C(X, Y ) = ∇2
X Y − ∇1

X Y is a tensor.
Let us assume that the parallel transports of the two connections differ only by

dilations. Let Y be a vector field parallel in direction X with respect to ∇2 and let f be
a positive function such that f Y is parallel in the same direction with respect to ∇1. We
have

C(X, f Y ) = ∇2
X ( f Y ) − ∇1

X ( f Y ) = d f (X)Y.

In view of the arbitrariness of X and Y the claim follows now from Lemma 1.
The proof in the other direction is straightforward. ��

In view of Proposition 1 we consider the family of all linear connections that share the
same geodesics up to parameterization,

˜∇X Y = ∇X Y − 〈X, Y 〉E + α(X)Y + α(Y )X + B(X, Y ), (8)

where α is a linear form and B(X, Y ) is an antisymmetric tensor.
We will say that a linear connection from this family is compatible with the conformal

class (of the Riemannian metric) if the parallel transport along a geodesic of vectors
perpendicular to the geodesic results in perpendicular vectors.

Proposition 3. A linear connection from the family (8) is compatible with the conformal
class if and only if there is a linear form β such that B(X, Y ) = β(X)Y − β(Y )X +
B1(X, Y ), B1(X, Y ) is perpendicular to span{X, Y }, and α(Y ) − β(Y ) = 〈E, Y 〉.
Proof. Let ˜∇ be a linear connection from the family (8) compatible with the conformal
class and let γ (t) be one of its geodesics. We have for v = dγ

dt ,

0 = ˜∇vv = ∇vv − v2 E + 2α(v)v.

Let further Y be a parallel vector field along γ (t) so that

0 = ˜∇vY = ∇vY − 〈v, Y 〉E + α(v)Y + α(Y )v + B(v, Y ).
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If Y is perpendicular to the geodesic then

0 = d

dt
〈v, Y 〉 = 〈∇vv, Y 〉 + 〈v,∇vY 〉 = v2〈E, Y 〉 − v2α(Y ) − 〈B(v, Y ), v〉

We get

〈B(v, Y ), v〉 = (〈E, Y 〉 − α(Y ))v2 = −β(Y )v2, (9)

where β(Y ) = α(Y )−〈E, Y 〉 is a linear form. We conclude that if the parallel transport
takes perpendicular vectors into perpendicular vectors then (9) holds for any orthogonal
vectors v, Y .

Let us consider the antisymmetric tensor B1(X, Y ) = B(X, Y ) − β(X)Y + β(Y )X .
It follows from (9) that if X and Y are orthogonal then

〈B1(X, Y ), X〉 = 0, and 〈B1(X, Y ), Y 〉 = −〈B1(Y, X), Y 〉 = 0.

It follows that B1(X, Y ) is orthogonal to span{X, Y } for any X and Y .The “only if” part
of the proposition is proven. The other implication is straightforward. ��

Guided by Proposition 3 we will restrict our attention to the family of linear
connections

˜∇X Y = ∇X Y − 〈X, Y 〉E + 〈E, Y 〉X + 〈E, X〉Y − γ (X)Y, (10)

where γ is a linear form. The fact that we dropped the antisymmetric tensor B1 comes
from our inability to make an advantageous choice different from zero.

In view of Proposition 2 all of these connections share the same parallel transport up
to dilation and hence their curvature tensors ˜R(X, Y ) = ˜∇X ˜∇Y − ˜∇Y ˜∇X − ˜∇[X,Y ] have
the same antisymmetric part.

Let us note that we are using a Riemannian metric to describe the family of connections.
Let us examine the role of the conformal class of the metric. For a linear connec-
tion (10) and a parallel field Y defined along a path we have ˜∇X Y = 0, that is
∇X Y = 〈X, Y 〉E − 〈E, Y 〉X − 〈E, X〉Y + γ (X)Y . This leads us to

d

dt
〈Y, Y 〉 = 2〈∇X Y, Y 〉 = 2 (γ (X) − 〈E, X〉) 〈Y, Y 〉. (11)

We have established that the parallel transport with respect to any of the connections
is conformal. For γ = 0 we obtain the symmetric connection ̂∇X Y = ˜∇X Y = ∇X Y −
〈X, Y 〉E + 〈E, Y 〉X + 〈E, X〉Y . A linear symmetric connection with conformal parallel
transport is called a Weyl connection [F].

The only connection in the family (10) with isometric parallel transport is obtained
for γ (X) = 〈E, X〉. We will reserve the notation ˜∇ for the resulting metric connection.

We are ready to prove Theorem 1.

Proof of Theorem 1. By Proposition 1 the connection ˜∇ satisfies i). The property ii)
follows from (11) and the property iii) is checked by direct calculation.

To prove the converse we need to invoke again Proposition 1 to get the restriction to
connections of the form (8). The torsion of the connection (8) is equal to 2B(X, Y ). If the
connection is metric, that is with isometric parallel transport, then it is clearly compatible
with the conformal class and hence is covered by Proposition 3. Now the property iii)
implies that the tensor B1 from Proposition 3 vanishes, so that our connection belongs
to the family (10). Finally by (11) the only connection of that family with isometric
parallel transport is the one with the form γ dual to the vector field E . ��
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4. Gaussian Thermostats as Geodesic Flows and the Role of the Conformal
Class of the Metric

We have two ways of interpreting the Gaussian thermostat system (2) defined by a
background metric g and a tangent vector field E . One way is to introduce the Weyl
connection ̂∇.

From the point of view of a Weyl connection there is nothing special about the
background metric used in the definition of a Gaussian thermostat. Weyl connections
are defined in terms of the conformal class of metrics, [F]. For a chosen metric g in the
conformal class the Weyl connection ̂∇ is uniquely determined by the linear form ϕ,
ϕ(X) = 〈E, X〉, i.e., ϕ is the dual of the vector field E . The defining property of the Weyl
connection is that ̂∇X g = −2ϕ(X)g. If we change the metric g to e−2U g we get that the
Weyl connection defined by the pair (g, ϕ) is also defined by the pair (e−2U g, ϕ + dU ).

For a fixed Weyl connection ̂∇ as we change the metric and use it to parameterize the
Weyl geodesics by the arc length we get a family of Gaussian thermostats which are flow
equivalent by the obvious identification of the respective unit tangent bundles, via the
rescaling. Certain hyperbolic properties, e.g. Anosov property or dominated splitting,
are shared by flow equivalent systems.

Our new point of view is that the Gaussian thermostat defined by a pair (g, ϕ) is the
geodesic flow of the unique metric connection ˜∇ with the torsion ˜T (X, Y ) = ϕ(X)Y −
ϕ(Y )X . The pairs (g, ϕ) and (e−2U g, ϕ + dU ) define flow equivalent systems. Indeed
as the torsion ˜T changes, so does the connection ˜∇X Y = ̂∇X Y − ϕ(X)Y . However by
Proposition 1 all of these connections share the same geodesics, albeit parameterized
differently by the respective arclength parameters.

Moreover by Proposition 2 the parallel transports of ̂∇ and any ˜∇ differ by dilations
only. The curvature operator of a linear connection represents infinitesimal parallel
transport. Hence the curvature tensor of ˜∇ is equal to the antisymmetric part of the
curvature tensor of the Weyl connection. In particular it does not change when we
change the background metric g, in the conformal class, to e−2U g. However the sectional
curvature of the new metric connection does change; it is obviously equal to e2U

˜K (�).
We see that the negativity of the sectional curvature is the property of the Weyl connection
alone and holds simultaneously for all the metric connections. It is consistent with
Theorem 3 and the fact that the presence of a dominated splitting is not destroyed by the
change of time in a flow.

For the special torsion ˜T (X, Y ) = ϕ(X)Y − ϕ(Y )X we get the sectional torsion
˜T (�) = 1

4

∣

∣ϕ|�
∣

∣

2. Hence as the metric g and the form ϕ change to e−2U g and ϕ + dU
respectively, the sectional torsion changes to

e2U 1

4

∣

∣(ϕ + dU )|�
∣

∣

2
,

where the norm | · | is determined by the old Riemannian metric.
These formulas allow the optimization of the sufficient condition for the geodesic

flow to be Anosov from Theorem 3. Again the Anosov property is not affected by the
parameterization of geodesics so it is enough to establish it for a conveniently chosen
metric. As we change the metric in the conformal class the sum of the sectional curvature
and the sectional torsion is equal to

e2U
(

˜K (�) +
1

4

∣

∣(ϕ + dU )|�
∣

∣

2
)

.
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Hence we would like to minimize
∣

∣(ϕ + dU )|�
∣

∣

2 over all possible functions U . One way
to fine tune the function U is to use the Hodge theory. It allows the minimization of the
L2 norm of ϕ + dU over the whole manifold by the orthogonal projection of the form
ϕ on the subspace of “divergence free” forms. If our original vector field E has zero
divergence this optimization is void; we already have the optimal metric.

Let us note that in general the resulting optimal form ϕ + dU does not have zero
divergence with respect to the new Riemannian metric. That brings us to another way of
optimization by requesting that the new form is divergence free with respect to the new
metric. By the result of Gauduchon ([G]), it can be achieved on a compact manifold and
there is a unique way to do it.

Applications of Theorem 3 hinge on the understanding of sectional curvatures of
the metric connection ˜∇. Although the difference between the curvature tensors of the
metric connection and the Levi-Civita connection of the underlying metric contains
many terms, the difference between the respective sectional curvatures simplifies to the
following transparent formula in terms of the vector field E ([W1]),

˜K (�) = K (�) − (E2 − E2
�) − 〈∇X E, X〉 − 〈∇Y E, Y 〉,

where for any orthonormal basis (X, Y ) of the plane � the vector E� = 〈X, E〉X +
〈Y, E〉Y is the orthogonal projection of E on the plane � and K (�) denotes the Gaussian
sectional curvature of the background metric. We have also

˜T (X, Y )2 = (〈E, Y 〉X − 〈E, X〉Y )2 = E2
�.

In particular we see that in dimension 2 the curvature of a metric connection is
negative if and only if the respective Gauduchon metric has negative curvature.

These formulas allow to obtain the Anosov property for the Gaussian thermostats
with divergence free fields E on surfaces of negative curvature, studied in [B-G-M].

They were also used to study Weyl connections with nonpositive sectional curvatures
on tori, [W4].

5. The Torsion and the Hamiltonian Formulation

The torsion comes in an interesting way into the generalized hamiltonian formulation
of the problem, [W-L, W4].

Using the background metric g we will identify a tangent space to T M at (u, v)

with Tu M ⊕ Tu M . Namely for a tangent vector defined by a parameterized curve
(u(a), v(a)), u(a) ∈ M, v(a) ∈ Tu(a)M, |a| < ε, we use (ξ, η) ∈ Tu(0)M ⊕ Tu(0)M ,

ξ = du

da |a=0
, η = ∇ξ v|a=0,

as coordinates.
Take the hamiltonian function H = v2

2 on T M and the symplectic form on T M given
by

ω
(

(ξ1, η1), (ξ2, η2)
) = 〈

η1, ξ2
〉 − 〈

η2, ξ1
〉

.

We are looking for an antisymmetric 2-form γ on T M , such that the Gaussian ther-
mostat (2) becomes the generalized hamiltonian flow with respect to the form � = ω−γ .
More precisely we want the vector field

−→
H (u, v) =

(

v, v2 E − 〈E, v〉v
)
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to satisfy

�(
−→
H , ·) = −d H(·).

It turns out that γ is given by

γ
(

(ξ1, η1), (ξ2, η2)
) = 〈

˜T (ξ1, ξ2), v
〉

.

Indeed:

−d H(ξ, η) = −〈η, v〉 and

�(
−→
H , (ξ, η)) = ω(

−→
H , (ξ, η)) − γ (

−→
H , (ξ, η))

=
〈

v2 E − 〈E, v〉v, ξ
〉

− 〈η, v〉
− 〈〈E, ξ 〉v − 〈E, v〉ξ, v〉 = −〈η, v〉.

The form � is always nondegenerate. It was shown in [W-L] that it is conformally
symplectic if ϕ is closed.
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