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Graph manifolds with boundary are virtually special

Piotr Przytycki and Daniel T. Wise

Abstract

Let M be a graph manifold. We prove that fundamental groups of embedded incompressible
surfaces in M are separable in π1M , and that the double cosets for crossing surfaces are also
separable. We deduce that if there is a ‘sufficient’ collection of surfaces in M , then π1M is
virtually the fundamental group of a special non-positively curved cube complex. We provide
a sufficient collection for graph manifolds with boundary, thus proving that their fundamental
groups are virtually special, and hence linear.

1. Introduction

A graph manifold is an oriented compact connected 3-manifold that is irreducible and has only
Seifert-fibred pieces in its JSJ decomposition. Hempel proved that the fundamental groups of
all Haken 3-manifolds, in particular all graph manifolds, are residually finite [9, Theorem 1.1].
Throughout the article we assume that a graph manifold is not a single Seifert-fibred space
and not a Sol manifold. For background on graph manifolds we refer to the survey article by
Buyalo and Svetlov [3].

We are interested in separability properties of surfaces properly embedded in graph
manifolds. A subgroup F of a group G is separable if, for each g ∈ G− F , there is a finite
index subgroup H of G with g /∈ HF . Let S be an oriented incompressible surface embedded
in a graph manifold M . Then π1S embeds in π1M by the loop theorem.

Theorem 1.1. Let M be a graph manifold (with or without boundary). Let S be an
oriented incompressible surface embedded in M . Then π1S is separable in π1M .

More generally, consider subgroups F1, F2 ⊂ G. The double coset F1F2 is separable if, for
each g ∈ G− F1F2, there is a finite index subgroup H of G with g /∈ HF1F2.

We identify the group of covering transformations of the universal cover M̃ of M with π1M .

Theorem 1.2. Let M be a graph manifold. Let S, P ⊂M be oriented incompressible
surfaces whose intersections with each block are horizontal or vertical (see Section 2). Let
S̃, P̃ ⊂ M̃ be intersecting components of the preimages of S, P . Then Stab(S̃) Stab(P̃ ) is
separable in π1M .

We apply Theorems 1.1 and 1.2 to obtain the following corollary.
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Corollary 1.3. Let M be a graph manifold with non-empty boundary. Then π1M is
virtually the fundamental group of a special cube complex.

A special cube complex is a non-positively curved cube complex that admits a local isometry
into the Salvetti complex of a right-angled Artin group (see [6, 7]). As a consequence, the
fundamental groups of special cube complexes (which are also called special) are subgroups
of right-angled Artin groups. The latter have various outstanding properties. To mention just
a few, they are linear [10] and residually torsion-free nilpotent [5]. Moreover, they virtually
satisfy Agol’s RFRS condition [1].

It was proved that fundamental groups of closed hyperbolic 3-manifolds are virtually
special [2, 18]. A relative version of this theorem says that the fundamental groups of
hyperbolic 3-manifolds with boundary are virtually special as well [18]. Our theorem treats
the complementary case, with an eye towards eventually analysing the case of manifolds with
both hyperbolic and Seifert-fibred pieces [15].

The class of graph manifolds with boundary has been studied by Wang and Yu who prove
[17, Theorem 0.1] that they all virtually fibre over the circle. (Note that we do not exploit that
result in our article.) A closed graph manifold might not virtually fibre [13]. Hence, by Agol’s
virtual fibring criterion [1] such a manifold cannot have virtually special fundamental group.
Thus some restriction is needed in Corollary 1.3.

In fact, we have recently learned that independently Yi Liu has proved [12, Theorem 1.1]
that the graph manifolds with virtually special fundamental groups are exactly the ones that
admit a non-positively curved Riemannian metric. It was proved by Leeb [11, Theorem 3.2]
that graph manifolds with boundary admit a non-positively curved Riemannian metric (with
geodesic boundary). Hence our Corollary 1.3 is a special case of the theorem of Liu.

In order to obtain Corollary 1.3 we prove, using Theorems 1.1 and 1.2, the following criterion
involving a ‘sufficient’ collection of surfaces. (For definitions see Section 2.)

Definition 1.4. Let S be a collection of incompressible oriented surfaces embedded in a
graph manifoldM that are not ∂-parallel annuli and satisfy the property that the intersection of
each surface from S with each block ofM is vertical or horizontal. We say that S is sufficient if:

(1) for each block B ⊂M and each torus T ⊂ ∂B, there is a surface S ∈ S such that S ∩ T
is non-empty and vertical with respect to B;

(2) for each block B ⊂M there is a surface S ∈ S such that S ∩B is horizontal.

Note that property (1) automatically implies property (2). Indeed, let B0 be a block and let
B1 be any adjacent block. Let T ⊂ B0 ∩B1. By (1) there is a surface S ∈ S such that S ∩ T
is vertical in B1. Then S ∩B0 is horizontal.

We have the following criterion.

Theorem 1.5. Assume that a graph manifold M admits a sufficient collection S. Then
π1M is virtually special.

Once we prove Theorem 1.5, in order to derive Corollary 1.3, it remains to construct a
sufficient collection for graph manifolds with boundary.

In the course of his proof [12, Lemma 4.7], Liu constructs a set of cohomology classes
giving rise to a sufficient collection. Hence, combining this with Theorem 1.5, one can get
an alternate argument for Liu’s theorem that all graph manifolds admitting a non-positively
curved Riemannian metric have virtually special fundamental groups. Liu suggests to us that
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cut-and-paste operations on the surfaces obtained in [3, Section 5.5.3] also yield a sufficient
collection.

The article is organized as follows: In Section 2, we discuss notation. In Section 3, we
derive Corollary 1.3 from Theorems 1.1 and 1.2. More precisely, we first prove Theorem 1.5
and then prove that graph manifolds with boundary virtually have a sufficient collection
(Proposition 3.1). In Section 4, we prepare the background for the proofs of Theorem 1.1
in Section 5 and Theorem 1.2 in Section 6.

2. Notation

A graph manifold will be denoted by M . The JSJ tori decompose M into pieces called blocks
(denoted usually by Mv or B). By passing to a finite degree cover [13, Proposition 4.4], we can
assume that all the blocks are products Mv = S1 × Fv, where Fv is an oriented surface with
at least two boundary components and non-zero genus. Then M is called simple. The induced
quotient map π1Mv → π1Fv does not depend on the choice of the product structure.

Let S be an oriented incompressible surface embedded in M . An elevation S′ →M ′ of the
embedding S →M is an embedding of a cover S′ of S into a cover M ′ of M such that the
diagram below commutes. (A lift is an elevation with S′ = S.)

S′ > M ′

S
∨

> M
∨

The surface S can be homotoped so that each component of S ∩Mv (called a piece) is either
vertical (fibred by the circles of the Seifert fibration and essential) or horizontal (transverse to
the fibres thus covering Fv). The only exception is when S is a ∂-parallel annulus. We discuss
this case separately in Remark 6.1.

Since S is embedded, for each block Mv the components of S ∩Mv are either all horizontal
or all vertical, or else S ∩Mv is empty. We accordingly call the block S-horizontal, S-vertical
or S-empty. When the surface S in question is understood, we simply call the block horizontal,
vertical or empty.

We shall consider (possibly non-compact) coversM ′ →M of graph manifolds. The connected
components in M ′ of the preimage of blocks of M will also be called blocks. When a specified
elevation of S crosses a block M ′

v →Mv, then this block will be called horizontal or vertical if
Mv is such. Other blocks of M ′ will be called empty.

3. Cubulation

Proof of Theorem 1.5. Complete the collection S to S ′ by adding all JSJ tori, and adding
a collection of vertical tori in each block Mv whose base curves on the surface Fv fill Fv. With
respect to some hyperbolic metric on Fv this means that the complementary regions of the
union of the geodesic representatives of the base curves are discs or annular neighbourhoods
of the boundary. Note that if we add to that family of curves the base arcs of the annuli
guaranteed by property (1) of a sufficient collection, all the complementary regions become
discs. We call such a family strongly filling.

After a homotopy we can assume that the surfaces in S ′ are pairwise transverse. Each
elevation of an incompressible surface from S ′ to the universal cover M̃ of M splits M̃ into
two components (up to a set of measure 0). This gives M̃ the structure of a ‘space with walls’
(see [4] or [14]). We can consider the action of π1M on the associated dual CAT(0) cube
complex X.
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We claim that π1M acts freely on X. To justify this, pick g ∈ π1M . If g does not stabilize
some block B̃ ⊂ M̃ , then it acts freely on the tree that is the underlying graph of the graph
manifold structure of M̃ . Hence g also acts freely on X, since we have included the JSJ tori
in S ′. Otherwise, suppose that g belongs to the stabilizer of B̃ identified with π1B for some
block B ⊂M . If g is not central in π1B, then by the strong filling property for the vertical
pieces within B, the element g acts freely on the tree that is dual to the preimage in B̃ of one
of the pieces. Since every elevation of a surface in S ′ to M̃ has connected intersection with B̃,
this implies that g acts freely on X. Otherwise, g is central in π1B and the claim follows from
the existence of a horizontal piece in B among the surfaces in S ′ (property (2) of a sufficient
collection). Note that in most cases the action of π1M on X is not cocompact.

We now invoke [7, Theorem 4.1], which is a criterion for π1M \X to be virtually special. In
the case of a cube complex X arising from a collection S ′ of compact π1-injective surfaces in
a 3-manifold M , this criterion is satisfied when:

(1) S ′ is finite;
(2) for each surface S ∈ S ′, in the π1S cover MS = π1S \ M̃ of M , there are only finitely

many elevations of surfaces in S ′ disjoint from S, but not separated from S by another
elevation of a surface from S ′;

(3) for each S ∈ S ′ the subgroup π1S is separable in π1M ;
(4) for each pair of intersecting elevations S̃, P̃ ⊂ M̃ of S, P ∈ S ′, the double coset

Stab(S̃) Stab(P̃ ) is separable in π1M .

Condition (1) is immediate; conditions (3) and (4) are supplied by Theorems 1.1 and 1.2. It
remains to discuss condition (2):

Fix S ∈ S ′ and let PS be an elevation of a surface in S ′ to the π1S cover MS of M . Assume
that PS is disjoint from (the lift of) S but not separated from S by another elevation of a
surface from S ′. Then PS must intersect at least one (of the finitely many) block B of MS

intersecting S ⊂MS (otherwise an elevation of a JSJ torus separates S and PS). We fix the
block B. Assume first that PS ∩B is horizontal and that a component of PS ∩B projects to
a specified piece of the finitely many pieces of S ′. Then there can be at most 2 such PS , since
they are all nested.

Now assume that PS ∩B is vertical. Thus S ∩B is also vertical. The entire configuration
can then be analysed using the base curves on the base surface F of B. For a strongly filling
family of curves, it is easy to check that each pair of their elevations to the universal cover of
F not separated by a third one has to be at a uniformly bounded distance. Hence there are
again only finitely many possible PS . This concludes the argument for condition (2).

Hence all the conditions of the virtual specialness criterion above are satisfied and the cube
complex π1M \X is virtually special.

As an application, we will consider graph manifolds with boundary.

Proposition 3.1. A graph manifold M with non-empty boundary has a finite cover with
a sufficient collection.

Note that combining Proposition 3.1 with Theorem 1.5 yields Corollary 1.3.
In the proof of Proposition 3.1 we will need the following lemma.

Lemma 3.2 (version of [17, Lemma 1.1]). Let T1, . . . , Tn be the boundary components of
a block Mv. Assume that we are given families of disjoint, identically oriented circles C1 ⊂
T1, . . . , Cn−1 ⊂ Tn−1 such that the oriented intersection number between Ci and the vertical
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Figure 1. Bases of Ae in common Mw from different i.

fibre is non-zero and independent of i. Then there is a family of disjoint, identically oriented
circles Cn ⊂ Tn such that

⋃n
i=1 Ci is the boundary of an oriented horizontal surface embedded

in Mv.

Proof of Proposition 3.1. Let Γ be the underlying graph of M , i.e. the graph dual to the JSJ
decomposition. A vertex w of Γ is called a boundary vertex if its blockMw has a torus boundary
component contained in ∂M . Note that a boundary vertex exists since ∂M is non-empty.

We first pass to a finite cover of M that is simple (see Section 2). Moreover, we shall pass
to a finite cover whose underlying graph Γ has the following property:

(antennas): For each pair of adjacent vertices v0, v1 ∈ Γ there is an embedded edge path
(v0, v1, v2, . . . , vn) such that:

(i) the subpath (v1, v2, . . . , vn) is a full subgraph (that is, induced subgraph) of Γ;
(ii) vn is a boundary vertex.

We will first construct a sufficient collection under the assumption that (antennas) property
holds. We later explain how to pass to a cover satisfying (antennas).

As discussed in the introduction, it suffices to obtain property (1) of a sufficient collection.
Let B = Mv0 be a block and T be a torus in its boundary. Let C0 be the circle on T that
is vertical with respect to B. If T is a boundary torus of the whole M , then we put n = 0,
otherwise we define v1 so that Mv1 is the block distinct from Mv0 containing T . Applying
(antennas), we obtain an edge path satisfying (i) and (ii). We will find a properly embedded
surface Sn intersecting T along circles in the direction of C0.

For i = 0 to n, we inductively define surfaces S0 ⊂ · · · ⊂ Si ⊂ · · · ⊂ Sn embedded in M , but
not necessarily properly: Si might have boundary components in Mvi

∩Mvi+1 .
We define the surface S0 to be a vertical annulus inB = Mv0 joining T to itself, not separating

Mv0 (this uses that M is simple). If n = 0, then we are done.
Otherwise, let i � 1 and assume that Si−1 has already been constructed but is not proper.

Let Ci−1 denote one of the boundary circles of Si−1 in Mvi−1 ∩Mvi
. If Ci−1 is vertical in Mvi

,
then we can complete Si−1 immediately to Sn by adding several vertical annuli in Mvi

.
Otherwise, let E be the family of all edges adjacent to vi, distinct from the edges joining it

to vi−1 and vi+1 (if it is defined). Since by (antennas) property the path (vj)n
j=1 is full, all the

edges in E join vi to a vertex outside the path (vj)n
j=1. Similarly as we have done for the edge

(v1, v0), for each edge e = (vi, w) ∈ E we take a vertical annulus Ae in Mw joining the boundary
torus of Mw corresponding to e to itself. We require again that Ae does not separate Mw and
because of that we can take it disjoint from all the annuli in Mw constructed for smaller values
of i, assigned to other boundary components (see Figure 1).

The annuli Ae specify circles Ce on the tori Mw ∩Mvi
. Thus far, for all but one (or all if

i = n) boundary tori of Mvi
that are not in the boundary of M , we have constructed non-

vertical circles Ci−1 or Ce. For all the boundary tori K of M in Mvi
, except for one (call it Q)

when i = n, we pick arbitrary horizontal circles CK .
By Lemma 3.2, if we take appropriate orientations on the circles Ci−1, Ce, CK and we take

appropriately many copies, we can find an oriented circle Ci on the remaining boundary torus
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Figure 2. The surface S2.

Figure 3. The graphs Γ and Γ̂.

of Mvi
(connecting to Mvi+1 , or being Q), such that appropriately many copies of Ci together

with the copies of Ci−1, Ce and CK bound an embedded horizontal surface Hi.
Taking appropriately many copies of Ae, Si−1 and Hi, we form the surface Si. If it is non-

orientable, we replace it by the boundary of its regular neighbourhood.
Inductively, we arrive at the required surface Sn needed for property (1) of a sufficient

collection; see Figure 2.
It remains to explain how to obtain property (antennas). Fullness is automatic if:

(1) Γ has no double edges or edges joining a vertex to itself (this is attained using residual
finiteness of π1Γ) and

(2) the path (vj)n
j=1 is always chosen to be geodesic.

It thus suffices to pass to Γ where, for each vertex v1, there is a geodesic terminating at a
boundary vertex vn that does not pass through a prescribed neighbour v0 of v1.

To do this, we take the following degree 2k cover M̂ of M , where k is the number of blocks of
M . The cover M̂ is defined by the mapping of H1(M,Z) into Zk

2 determined by the cohomology
classes of closed non-separating vertical tori, one in each of the k blocks. Let Γ̂ be the underlying
graph of the graph manifold M̂ ; see Figure 3.

Fix vertices v0, v1 ∈ Γ̂ and let γ be a geodesic path in Γ̂ from v1 to a boundary vertex vn. If γ
passes through v0, then we alter it as follows. Let g denote the non-trivial element of the group
of covering transformations of M̂ fixing v1. Then g maps γ to a geodesic path disjoint from v0
terminating at a boundary vertex. This shows that M̂ satisfies (antennas) and completes the
proof of Proposition 3.1.

We record the following consequence of the proof of Proposition 3.1, which will be
used in [15].

Corollary 3.3. Let M be a graph manifold with non-empty boundary. There exists a
finite cover M̂ of M such that, for each circle C0 in a boundary torus T ⊂ M̂, there is an
incompressible surface S embedded in M̂ that is not a ∂-parallel annulus with S ∩ T consisting
of a non-empty set of circles parallel to C0.
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4. Separability: preliminaries

This section prepares the background for the proofs of Theorems 1.1 and 1.2.

Hempel’s theorem. We begin by discussing consequences of Hempel’s theorem. The results
of this subsection follow also immediately from [8, Theorem 4.1].

Theorem 4.1 (special case of [9, Theorem 1.1]). Fundamental groups of graph manifolds
are residually finite.

Corollary 4.2. If T is an incompressible vertical torus in a block of a simple graph
manifold M, then π1T is separable in π1M . If T is a JSJ or boundary torus, then any finite
index subgroup of π1T is separable in π1M .

The proof of Corollary 4.2 uses characteristic covers. The n-characteristic cover of a manifold
B is the finite cover corresponding to the intersection of all subgroups of π1B of index n. For
example, the n-characteristic cover of a torus T corresponds to nZ × nZ ⊂ Z × Z = π1T . If
B is a simple block, then since it retracts onto its boundary tori, its n-characteristic cover
restricts to n-characteristic covers over its boundary tori.

Proof of Corollary 4.2. The group π1T is separable in π1M since it is a maximal abelian
subgroup and π1M is residually finite. A finite index subgroup H ⊂ π1T = Z × Z contains
some nZ × nZ. Hence it suffices to consider a finite cover M ′ of M formed by gluing
n-characteristic covers of the blocks. Since nZ × nZ is separable in π1M

′, we have that H
is separable in π1M .

We now prove the analogous result for annuli.

Corollary 4.3. Let T be a JSJ or boundary torus in a graph manifold M . Then every
cyclic subgroup of π1T is separable in π1M .

Proof. Let Z be a cyclic subgroup of π1T and let g ∈ π1M − Z. There is a finite index
subgroup H ⊂ π1T containing Z, but not g. We apply Corollary 4.2 to H.

Corollary 4.2 has two further consequences.

Corollary 4.4. Let S ⊂M be an incompressible surface in a graph manifold. Then there
is a finite cover of M where each elevation of S is straight, in the sense that its vertical annular
pieces always join two distinct boundary components of the block.

Corollary 4.5. Let γ be a path in a graph manifold M such that its lift γ̃ to the universal
cover M̃ passes through as few blocks of M̃ as possible in its path-homotopy class. Then there
is a finite cover M ′ of M , where γ′ (the quotient of γ̃) does not pass through the same JSJ
torus more than once.

Omnipotency. In the proof of Theorem 1.2, we will need the following ‘omnipotency’
lemma.
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Figure 4. β, β2 and the lifts of α to Fd and F ∗ with d1 = 1, d2 = 2.

Lemma 4.6. Let F be a surface of non-zero genus. Assign a number ni > 0 to each boundary
component Ci of F . Then there is a finite cover F ∗ of F having degree ni on each component
of the preimage of Ci.

Proof. Since F has non-zero genus, there is a non-separating simple closed curve β ⊂ F .
Take the double cover Fd determined by the cohomology class [β] ∈ H1(F,Z2). Each boundary
component Ci of F lifts to a pair of boundary components C1

i , C
2
i of Fd. Choose a family of

disjoint embedded arcs βi joining C1
i to C2

i . Take the cover F ∗ determined by the mapping of
H1(Fd,Z) to

∏
Zni

determined by the cohomology classes [βi] ∈ H1(Fd,Zni
).

Remark 4.7. There is an extra feature to the construction in the proof of Lemma 4.6. If
α ⊂ F is an arc joining two distinct boundary components of F , then no two lifts of α to F ∗

join the same pair of boundary components; see Figure 4.

Surface-injective covers. In the proof of Theorems 1.1 and 1.2, we will need ‘surface-
injective’ covers. As preparation, we discuss the structure of the following infinite cover. As
usual, we assume that S ⊂M is an incompressible oriented surface embedded in a graph
manifold M , and that each non-empty intersection of S with a block of M is either vertical or
horizontal.

Definition 4.8. Let MS denote the infinite cover π1S \ M̃ of S corresponding to π1S ⊂
π1M . Let us describe the topology of non-empty blocks of MS . For each horizontal component
S0 of S ∩Mv, there is in MS an associated horizontal block MS0

v
∼= S0 × R. Similarly, for each

vertical component S0 of S ∩Mv, there is in MS an associated vertical block MS0
v

∼= S1 × F̃v.
The annulus S0 embeds inside MS0

v as a product of the factor S1 and a proper arc on F̃v.

Definition 4.9. Let S be a surface in M . A finite cover M ′ of M is called S-injective
with respect to the JSJ tori if S lifts to M ′ and S ∩B′ is connected for each block B′ of M ′.
Moreover, we require that each horizontal component of S ∩B′ maps with degree 1 onto the
base surface of B′. We allow M ′ = M .

In particular, M ′ arises from MS by quotienting each non-empty block separately (though
empty blocks are identified). Observe that the intersection of the lift of S with each JSJ
or boundary torus of M ′ is connected. The property of being S-injective is not preserved
under passage to covers. Nevertheless, in Construction 4.12 we provide (high-degree) S-injective
covers. We need the following terminology and lemma.
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Definition 4.10. A semicover of a graph manifold M with respect to the JSJ tori is a
graph manifold M̄ together with a local embedding M̄ →M restricting to a covering map over
each JSJ torus and over each open block. We say that the semicover is finite if M̄ is compact.
Then M̄ →M can only fail to be a covering map at a torus T̄ of ∂M̄ that covers a JSJ torus
of M . We refer to such a T̄ as a halt torus.

Lemma 4.11. Let p : M̄ →M be a finite semicover. Suppose that all halt tori of M̄ map
homeomorphically onto JSJ tori of M . Then we can embed M̄ in a graph manifold M ′ such
that the semicover p extends to a finite cover M ′ →M .

Proof. For each Mv let dv be the degree of the (possibly disconnected) cover p−1(Mv) →
Mv. Similarly, let dv,w be the degree of p−1(T ) → T for the torus T = Mv ∩Mw. Let
D = maxv,w{dv,w}. For each v, take D − dv copies of Mv and glue these copies to M̄ to
form M ′.

Construction 4.12. Let S be a straight incompressible surface in M (see Corollary 4.4)
and letN > 0 be divisible by all the degrees of (possibly disconnected) covering maps S ∩Mv →
Fv. Then there is a finite cover MS

N of M which is

(1) S-injective with respect to the JSJ tori and
(2) such that each JSJ or boundary torus of MS

N intersected by the lift of S maps to a torus
T of M with degree N/|S ∩ T |.

Here |S ∩ T | denotes the number of connected components of S ∩ T . The construction also
works if S is disconnected and we will need this in [16].

Proof. Consider a horizontal block Mv. Let n = |S ∩Mv|. Let S0 be a component of S ∩Mv

(they are all parallel). We take the unique degree N/n cover of Mv to which S0 lifts. It is the
quotient of the MS0

v block of MS (see Definition 4.8) by the N/nth power of the generator of
covering transformations. By the divisibility hypothesis, the result of this over the boundary
of Mv is that: if there are k components of intersection of S with a boundary torus, then,
in the cover, we get k tori components projecting with degree N/k. Hence, for two adjacent
horizontal blocks we have a matching between the elevations of the JSJ tori crossed by (the
lifts of) the various S0.

Now consider a vertical block Mv. Fix a component S0 of S ∩Mv. Let F ′
v be the double cover

of Fv determined by the Z2-cohomology class of a non-separating simple closed curve on Fv.
Each boundary component C of Fv is covered in F ′

v by a pair C1, C2. Suppose that S0 connects
tori T,Q with base boundary circles of Fv denoted by CT , CQ, respectively. Let t = |S ∩ T |
and q = |S ∩Q|. Pick disjoint embedded arcs θ and ω on F ′

v joining CT
1 with CT

2 and CQ
1 with

CQ
2 , respectively. Take N/t− 1 extra copies of F ′

v containing copies of θ and N/q − 1 extra
copies of F ′

v containing copies of ω. Cutting and regluing along these arcs in cyclic order gives
a cover of Fv whose boundary components project homeomorphically, except two degree N/t
covers of CT and two degree N/q covers of CQ. To get a cover of Mv, we form the product
with S1.

We now take one such covering block for each component S0 of S ∩Mv for vertical Mv and
two blocks described above for horizontal Mv. All boundary components match except that
there are some hanging boundary components giving rise to halt tori.

This concludes the construction of a semicover. Note that the lift of S crosses all blocks
of this semicover that cover vertical blocks of M and half of the blocks covering a horizontal
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Figure 5. The intersection q needs to be removed from K.

one. This semicover satisfies the hypothesis of Lemma 4.11. We use it to obtain a (non-unique)
S-injective cover MS

N .

5. Separability of a surface

Proof of Theorem 1.1. We can assume that M is simple (see Section 2) and S is straight
(see Corollary 4.4).

If S is a vertical torus or annulus contained in a single block, then π1S is separable by
Corollaries 4.2 and 4.3. Otherwise, S contains a horizontal piece. Choose the basepoint m̃ of
the universal cover M̃ of M in the interior of a horizontal piece of the elevation S̃ of S to M̃
stabilized by π1S ⊂ π1M . Let g ∈ π1M − π1S and let γ̃ be a path in M̃ representing g, that
is, joining m̃ to gm̃. Then γ̃ does not end on S̃. Our goal is to find a finite cover with the same
property.

We can assume that γ̃ crosses as few elevations of JSJ tori as possible in its homotopy class.
Let B̃ denote the last non-empty block of M̃ entered by γ̃ (when all blocks crossed by γ̃ are
non-empty, we take B̃ to be the last one).

We first consider the case where B̃ is the last block of M̃ entered by γ̃. Then B̃ is horizontal
(by the choice of m̃). In the quotient BS ⊂MS of B̃, the projection of the endpoint of γ̃ is
still disjoint from S and the same is true in a sufficiently large cyclic quotient of the block BS .
This quotient coincides with an appropriate block of the cover MS

N from Construction 4.12.
Hence, for N sufficiently large, the cover MS

N is as desired.
We now consider the case where B̃ is not the last block entered by γ̃, in which case B̃ is

vertical. By Corollary 4.5, we can pass to a finite cover M ′ where the projection γ′ of γ̃ does not
backtrack, that is, γ′ does not cross the same JSJ torus twice. This property will be preserved
under taking further covers.

Let S′ denote the elevation of S to M ′. For the separability of π1S we will prove that γ′

does not end in S′ within M ′ or after passing to a further finite cover.
Let T̃ denote the universal cover of the JSJ torus through which γ̃ leaves B̃. Let T ′ be its

quotient in M ′. Our first step is to guarantee that, in M ′ (or its finite cover), the surface S′

does not cross T ′.
The quotient block B′ ⊂M ′ of B̃ is vertical. Let p and q denote the projections to B′ of the

first and last point of the intersection of γ̃ with B̃. Let S′
0 be the quotient in B′ of S̃ ∩ B̃ (there

might be some other components of S′ ∩B′). Let K be the JSJ torus crossed by S′
0 other than

the one containing p. Any further S′-injective cover (for example, M ′S′
N from Construction 4.12)

satisfies our condition S′ ∩ T ′ = ∅ unless q ∈ K (that is, T ′ = K); see Figure 5. In that case,
we first use Corollary 4.2 to pass to a cover where (keeping the same notation) the point q
does not lie in K, and so S′

0 does not cross T ′. There might still be an accidental component
of S′ ∩B′ intersecting T ′. We can remove it by passing to an S′-injective cover.
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Summarizing, we have constructed a cover M ′ where T ′ is disjoint from S′. It suffices now to
pass to a degree 2 cover determined by the cohomology class [T ′] ∈ H1(M ′,Z2). In that cover
the portion of γ′ after q is contained entirely in the union of empty blocks. In particular, its
end lies outside the appropriate lift of S′, as desired.

6. Separability of intersecting surfaces

Outline of the argument. Let S̃ and P̃ 0 be intersecting elevations of S and P to the universal
cover M̃ of M . We reserve the notation P̃ for a different elevation of P . By our hypothesis,
S̃ ∩ P̃ 0 is non-empty, and so we can choose the basepoint m̃ ∈ S̃ ∩ P̃ 0.

We fix g ∈ π1M − Stab(S̃) Stab(P̃ 0) and take a path γ̃ starting at m̃ representing g in M̃ .
Let P̃ denote the elevation of P through the terminal point gm̃ of γ̃. We aim to find a finite
quotient of M̃ , where the projections of S̃ and P̃ are ‘disjoint’ in the sense that they do not
intersect at a basepoint-translate.

The main object we work with is the ‘core’ M̄ ⊂ M̃ consisting of blocks simultaneously
intersecting S̃ and P̃ . In Step 1, we prove that, for each π1S orbit in M̄ of a core block, we
can quotient it to a finite block with ‘disjoint’ quotients of S̃ and P̃ .

In Step 2, we use Step 1 to show how to simultaneously quotient the whole core (or rather
its extension) to a finite quotient M̂ ′ where the images of S̃ and P̃ are ‘disjoint’ (Step 2(i)).
Moreover, we arrange that the images of S̃ and P̃ never simultaneously intersect the same halt
torus of the semicover (see Definition 4.10) M̂ ′ →M (Step 2(iii)). The semicover M̂ ′ extends
to a finite cover M ′ by Step 2(ii).

Finally, in Step 3, we use Step 2(iii) to pass to a further cover, where the quotients of S̃ and
P̃ can meet only inside the image of the core. But this is excluded by Step 2(i).

Proof of Theorem 1.2. We choose m̃ ∈ S̃ ∩ P̃ 0 as in the outline of the argument. Without
loss of generality, we can assume that if m̃ lies in a vertical piece of P̃ 0, then it also lies in
a vertical piece of S̃. We identify Stab(S̃) ⊂ π1M with π1S. Note that, by Corollary 4.4, by
passing to a finite cover we can assume that S and P are straight. As usual, M can be also
assumed to be simple and S-injective.

Let g /∈ Stab(S̃) Stab(P̃ 0) and let γ̃ be a path representing g in M̃ as in the outline. We can
assume that γ̃ traverses as few blocks of M̃ as possible.

Recall that S̃ is the elevation of S to M̃ passing through the initial point m̃ of γ̃, and P̃ is
the elevation of P to M̃ passing through the terminal point gm̃ of γ̃. Our hypothesis on g says
that S̃ and P̃ do not cross at any translate of the basepoint m̃ (we will refer to such a point
or its quotient in an intermediate cover as a basepoint-translate). Our separability goal is to
find a finite cover of M with the same property.

The core M̄ of M̃ is the union of blocks intersecting both S̃ and P̃ (see Figure 6, but note
that the core might consist of an infinite number of blocks). Assume that the core is non-empty,
we will consider the other case at the very end of the proof.

Let S̄ = S̃ ∩ M̄ and P̄ = P̃ ∩ M̄ . Let M̄S be the manifold obtained from the core by
identifying points in the same orbit of π1S (this is not a genuine action on M̄ , only a partial
one). In this identification, we treat the core as an open manifold, so we do not identify
boundary components whose adjacent core blocks are not identified.

Let PS be the quotient of P̄ in M̄S and let Ŝ be the quotient of S̄ in M̄S . Note that PS and
Ŝ do not go through the same basepoint-translate. The notation Ŝ instead of SS is justified by
the fact that Ŝ is in fact a lift of a ‘core’ subsurface of S. Note that though the map M̄ → M̄S

is not proper in the sense that a boundary component of M̄ might be mapped into the interior
M̄S , its restriction to P̄ → PS is proper (see Figure 7). Equivalently, boundary components of
P̄ are mapped onto boundary components of PS .
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Figure 6. The core of M̃ is shaded.

Figure 7. P̄ → P S is proper.

Step 1: Let BS be a block in M̄S covering a block B of M . Then BS factors through a
finite cover B∗ of B where quotients of PS and Ŝ still do not intersect at a basepoint-translate.
Moreover, in the case where BS is Ŝ-vertical let K1,K2 ⊂ ∂BS denote the cylinders intersected
by Ŝ, and let K∗

1 ,K
∗
2 be their quotients in B∗, respectively. We require that any quotient piece

of PS in B∗ intersecting both K∗
1 and K∗

2 is a quotient of a piece in BS intersecting K1 and K2.

Loosely speaking, in Step 1 we shall achieve separability at a single core block. Note that the
first property of the finite cover B∗ in Step 1 is preserved by passing to a further cover that is
a quotient of BS . In the construction that we will give, in the case where BS is PS-horizontal,
also the property in the second assertion of Step 1 is invariant under passing to a further cover.

Proof of Step 1. First, assume that the block BS is PS-horizontal. Let S0 = Ŝ ∩BS . First
consider the case where S0 is vertical. Then there are only finitely many elevations of P ∩B ⊂
M to BS : their number is bounded by the degree of P ∩B → F , where F is the base surface of
B. The action of covering transformations of B on the universal cover of the block BS factors
to an action on BS . As there are only finitely many elevations of P ∩B to BS , a finite index
subgroup of the group of covering transformations preserves all of them. We quotient by this
subgroup to obtain a desired finite cover B∗ of B.

Now consider the case where S0 is horizontal. Then the action of covering transformations
on the universal cover of the block B factors to Z = 〈c〉 action on BS . The easy subcase is
where one (hence any) elevation of P ∩B to BS is non-compact (see Figure 8). Then, as in
the previous case, there are only finitely many elevations of P ∩B and we can choose a finite
cover B∗ obtained by quotienting by a subgroup 〈ck〉 that maps PS ∩BS onto itself.
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Figure 8. Non-compact components of P S ∩ BS : cross-section by a cylinder.

The interesting subcase is where the elevations of P ∩B to BS are compact. Let P0 be
any component of PS ∩BS . Let P be the maximal connected subsurface of PS containing
P0 consisting uniquely of horizontal pieces. First consider the situation where P0 is properly
contained in P ∩BS . We will show that PS ∩BS is invariant under some ck (as in the case of
non-compact P0).

Note that the pieces of P ∩BS might not lie in one 〈c〉-orbit. However, we can extend this
action to another cyclic action 〈c〉 ⊂ 〈c〉 on BS by homeomorphisms for which all the pieces of
P ∩BS lie in one orbit.

Assume that, for some k �= 0, the translate ckP0 lies in P. Let Bi be a sequence of blocks
of M̄S with Pi ⊂ Bi a sequence of pieces in P connecting P0 to ckP0. The action of c extends
to all blocks Bi crossed by P (some might be Ŝ-vertical). Hence, for any n there is a sequence
of pieces that are translates of Pi joining cnP0 to ck+nP0. Thus cnP0 lies in PS if and only if
ck+nP0 does; in other words, PS ∩B is ck-invariant. Then, for some k′ we have that PS ∩B
is ck

′
-invariant, as desired.

It remains to consider the situation where P0 equals P ∩BS . Then, by the c-action argument
above, the same is true for any choice of P0 in PS ∩BS . Moreover, since there are only finitely
many vertical pieces of PS in M̄S with both boundary components in the interior of M̄S ,
only finitely many translate copies of P are joined together contributing to PS ∩BS . We
conclude that PS ∩BS is compact. Then, for any sufficiently large k, no element of 〈ck〉 maps
a basepoint-translate in S0 onto a point in PS . This completes the argument for Step 1 under
the assumption that the block BS is PS-horizontal. If BS is PS-vertical and Ŝ-horizontal, then
we can take any cyclic quotient, since BS does not contain a basepoint-translate.

Finally, assume that BS is both PS-vertical and Ŝ-vertical. Let K1,K2 be the boundary
cylinders of BS crossed by Ŝ. By the definition of the core, except for the exceptional situation
where the core is a single block and hence PS ∩BS has just one component, each piece of
PS ∩BS intersects some Ki. By the c-action argument applied to adjacent (PS-horizontal)
blocks of BS , for each i = 1, 2, the intersection PS ∩Ki is either compact or periodic. Then,
after quotienting BS by finite index subgroups of one, both or none of the stabilizers of Ki we
obtain B̌, in which the quotient of PS is compact and still does not intersect Ŝ in a basepoint-
translate. Let F̌ → F be the cover induced between the base surfaces of B̌ → B. Let Ci ⊂ ∂F
be the images of Ki under BS → B → F . By the separability of π1F̌ and π1Ciπ1F̌ in π1F , the
cover B̌ quotients further to a desired cover B∗. This completes the argument for Step 1.

Let M̂ denote the quotient of M̄ (and hence M̄S) in M . However, if there is a JSJ torus K in
M outside the image of the interior of M̄ but with both of its adjacent blocks within the image
of M̄ , then we put in M̂ two copies of K, each compactifying one of the adjacent blocks. In
other words, M̂ is contained in M only in the sense of manifolds open at the boundary. Since
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M is S-injective, each block of M̂ is covered by exactly one block of M̄S . We note, however,
that M̄S → M̂ is only an infinite semicover.

Step 2: There is a finite semicover M̂ ′ of M̂ through which the map M̄ → M̂ factors, with
the following properties. Let Ŝ′, P̂ ′ ⊂ M̂ ′ be the extensions of the quotients of S̄, P̄ in M̂ ′ to
properly embedded connected surfaces mapping to S ∩ M̂ and P ∩ M̂ .

(i) Each block B′ of M̂ ′ is a further cover of a cover B∗ satisfying Step 1. Moreover, the
images of Ŝ′ ∩B′, P̂ ′ ∩B′ in B∗ are contained in the quotients of PS and Ŝ.

(ii) Over all boundary tori the semicover M̂ ′ → M̂ is n!-characteristic (for some uniform
n), that is, it corresponds to the subgroup n!Z × n!Z ⊂ Z × Z.

(iii) Each halt torus of the semicover M̂ ′ →M intersects at most one of Ŝ′, P̂ ′.

Moreover, M̂ ′ is Ŝ′-injective.

Note that in view of Step 1, Step 2(i) implies immediately that Ŝ′ and P̂ ′ do not intersect
at a basepoint-translate.

Proof of Step 2. The value n is the maximum of n needed to execute the following
construction over each of the finitely many blocks of M̂ .

First suppose that B ⊂ M̂ is P -horizontal and S-horizontal. Take the cyclic cover B∗

guaranteed by Step 1. It may be taken with any degree n! for n sufficiently large. To make the
quotient to B characteristic on the boundary tori, we pass from B∗ to a cover B′ induced by
any cover of S ∩B of degree n! on each boundary component (use Lemma 4.6).

Now assume that B ⊂ M̂ is P -horizontal but S-vertical. Again take the cover B∗ guaranteed
by Step 1. By Lemma 4.6, it may be chosen to be degree n! on boundary tori for n sufficiently
large. In order to make the quotient to B characteristic on the boundary tori, we pass
from B∗ to a cyclic cover B′ of degree n! determined by an arbitrary degree 1 horizontal
surface.

In the case where the block B ⊂ M̂ is both P -vertical and S-vertical, finding convenient
B∗ will involve several steps. First of all, there is a cover B∗ of B satisfying Step 1. Since we
still want to replace B∗ by a particular finite cover, in order to simplify the notation, we will
assume that B already has the properties from Step 1.

By Lemma 4.6, for sufficiently large n we get a finite quotient B∗ of BS of degree n! on all
boundary components over B. By Remark 4.7, the cover B∗ satisfies the second assertion in
Step 1. As before, to get a characteristic cover over the boundary tori, we pass to a cover B′ of
B∗, determined by an arbitrary element of H1(B∗,Zn!) dual to a degree 1 horizontal surface
in B∗.

The last case is where a block B is P -vertical and S-horizontal. Here n is arbitrary. We first
take the degree n! cyclic cover B∗ of B determined by [S0] ∈ H1(B∗,Zn!), where S0 = S ∩B.
Next we pass to a cover B′ induced by any cover S′

0 → S0 of degree n! on each boundary
component (use Lemma 4.6).

We take n sufficiently large for both the construction in Step 1 and various applications
of Lemma 4.6 with the above data to work. Then all blocks B have covers B′ that are n!-
characteristic on the boundary. Now we will take several copies of each B′. In each of these
copies we distinguish one elevation Σc of (connected) S ∩B. In the case where B is S-horizontal,
the surface Σc is of degree 1 over the base surface of B′. Hence the intersection of Σc with each
boundary torus is at most a single curve. We take the right number of copies of each B′ so
that the degree of the disconnected cover from the union of the copies of Σc to S ∩B does not
depend on B. We match up these blocks along boundary tori intersected by Σc, also matching
the Σc, to form a connected semicover M̂ ′ of M̂ . We pick any of the maps M̄ → M̂ ′ mapping
S̄ to the union Σ of the Σc. We will now verify that all the required properties of M̂ ′ hold.
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Figure 9. Finding p.

Property (ii) is clear from the construction. Note that M̂ ′ is Ŝ′-injective, since Ŝ′ = Σ.
Moreover, obviously, for each copy Bc in M̂ ′ of a block B′ that covers the quotient B∗ of BS

in M̄S , we have the following. Under the identification of Bc with B′, the projection to B∗

of the intersection Ŝ′ ∩Bc is contained in the projection to B∗ of Ŝ ∩BS . We now claim the
same for P̂ ′: the projection to B∗ of the intersection P̂ ′ ∩Bc is contained in the projection to
B∗ of PS ∩BS .

Before we justify the claim, we note that although the map M̄ → M̂ factors through M̂ ′,
the image of P̄ in M̂ ′ might be smaller than P̂ ′. It is a priori unclear where the extension P̂ ′

is located. We look for a surface Π for P̂ ′ which replaces Σ for Ŝ′ in the argument above.
Property (i) follows from the claim since B∗ was chosen as in Step 1.
To justify the claim, let H be the set of elements h ∈ π1S preserving the elevation of Ŝ to

M̃ containing S̄. In other words, H = π1Ŝ. Let Π ⊂ M̂ ′ be the union of the projections of hP̄ ,
over h ∈ H. Obviously Π has the property that, for each Bc � B′ as above, the projection to
B∗ of the intersection Π ∩Bc is contained in the projection of PS ∩BS . Since the projection
of P̄ is contained in Π, in order to justify the claim, it remains to prove that Π is a surface
properly embedded in M̂ ′:

The quotient in M̂ ′ of a translate hP̄ with h ∈ H might fail to be proper only at a quotient
of a boundary line hπ of hP̄ . Then π lies in the boundary of an S̄-vertical block B̄. In one
of the two planes of ∂B̄ crossed by S̄ there is a boundary line ψ of the piece containing π.
Denote by σ the boundary line of S̄ ∩ B̄ in the plane not containing ψ. The only boundary
component of the quotient of hB̄ in M̂ ′ that is possibly in the interior of M̂ ′, besides the one
containing the quotient of hψ, is the one containing the quotient of hσ. Assume then that hπ
and hσ, hence also π and σ are mapped into the same JSJ torus of M̂ ′. Let KS ⊂ ∂BS be the
cylinder containing the quotient of σ. By the second assertion in Step 1, there is in BS a piece
p of PS with a component of p ∩KS identified with π upon passing to B∗; see Figure 9. In
the piece of P̄ mapped to p let πp be the boundary component identified with π in B∗. Note
that we chose B′ → B∗ so that π1B

∗ = π1B
′π1S0 where S0 is the lift of S ∩B to B∗. Hence

there is f ∈ H such that fπ and πp are identified in one of the copies of B′ ⊂ M̂ ′ as well. By
the definition of the core, the line πp is in the interior of P̄ . Hence the quotient in M̂ ′ of hπ is
in the interior of the quotient of hf−1P̄ ⊂ Π. This completes the argument for the claim and
hence for property (i).

As for property (iii), we also need to use the second assertion in Step 1. Let K ′ be a halt
torus of M̂ ′ in a copy of a block B′. Let BS ⊂ M̄S be the block mapped to the same B∗ as B′

and let KS be that elevation from B∗ to BS of the quotient of K ′, which crosses Ŝ. Then KS

lies also in the boundary of M̄S . Hence PS is disjoint from KS by the definition of the core.
In view of Step 1, the quotient of P̄ in P̂ ′ is disjoint from K ′. The same is true for hP̄ over
h ∈ H (H as in the proof of the claim above), and hence for the whole P̂ ′. Thus we have proved
property (iii), that Ŝ′ and P̂ ′ do not cross K ′ simultaneously. This completes the argument for
Step 2.
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The graph manifold M̂ ′ is a semicover of M . By Step 2(ii), we can complete it to a cover M ′

by taking an appropriate number of disjoint copies of any finite covers of blocks in M that are
n!-characteristic on the boundary. We require that M̂ ′ embed in M ′ as a closed submanifold:
we do not allow accidental matching of boundary components of open M̂ ′. By choosing those
covers correctly, we keep M ′ to be S′-injective, where S′ ⊂M ′ is the appropriate elevation
of S. It remains to perform the following:

Step 3: There is a finite cover M ′′ of M ′, whose blocks B′′ intersecting simultaneously the
quotients S′′, P ′′ of S̃, P̃ project to B′ ⊂ M̂ ′ so that S′′ ∩B′′ maps into Ŝ′ and P ′′ ∩B′′ maps
into P̂ ′.

Proof of Step 3. Let P ′ ⊂M ′ be the quotient of P̃ . Let M̌ be a P ′-injective cover of M ′. We
keep the notation P ′ for the lift of P ′ to M̌ (quotient of P̃ ) and denote by Š the appropriate
elevation of S (quotient of S̃). Let τ be the union of the JSJ tori of M̌ containing the boundary
components of P̂ ′ which are not in the boundary of P ′.

We consider the degree 2 cover M ′′ of M̌ defined by the Z2-cohomology class [τ ]. The union
of tori τ is disjoint from Š, by Step 2(iii). On the other hand, by P ′-injectivity, τ separates
P ′ into P̂ ′ and its complement. Hence both Š and P ′ lift to M ′′ and any piece of the lifted
P ′ \ P̂ ′ is in an Š-empty block of M ′′. This implies that M ′′ satisfies Step 3.

Conclusion. By Step 3, if surfaces S′′ and P ′′ intersect in a block B′′ of M ′′, then they
project to surfaces Ŝ′ and P̂ ′ in a block B′ of M̂ ′. By Step 2(i), the surfaces Ŝ′ and P̂ ′ do not
intersect in a basepoint-translate. Then the same is true for S′′ and P ′′.

This concludes the proof of the main theorem except for the case where the core is empty,
which we shall now discuss. First, applying Corollary 4.5, we pass to a cover M , where the
path γ representing g does not go through the same block twice. By possibly passing to a
further cover, we also assume that M is S-injective. Then, instead of the core we consider
the minimal connected graph submanifold of M̃ crossed by both S̃ and P̃ . Its blocks are in
correspondence with some of the blocks of M crossed by γ. Steps 1 and 2 are now immediate.
The surface Ŝ′ is contained in a single block of the semicover M̂ ′. We extend M̂ ′ to a cover
M ′ that is S′-injective and such that S′ ∩ M̂ ′ = Ŝ′. We finally perform Step 3 as in the main
argument.

Remark 6.1. Theorems 1.1 and 1.2 also hold when S and P are allowed to be ∂-parallel
annuli. Theorem 1.1 follows directly from Corollary 4.3.

For Theorem 1.2, if P or S are ∂-parallel annuli, we homotope them into the boundary before
we determine if their elevations S̃, P̃ 0 intersect. Without loss of generality we can assume that
S is a ∂-parallel annulus, parallel to a boundary torus T . We identify Stab(S̃),Stab(P̃ 0) with
π1S, π1P for an appropriate basepoint.

If P is also a ∂-parallel annulus, then it is also parallel to T , and it suffices to use Corollary 4.2
for the separability of the finite index subgroup π1S π1P of π1T in π1M .

If P is not a ∂-parallel annulus, we can assume that π1S is not contained in π1P ∩ π1T .
Let H ⊂ π1T be the finite index subgroup generated by π1S and π1P ∩ π1T . Then Hπ1P =
π1S π1P . By the separability of H in π1M (Corollary 4.2), there is a finite cover M ′ of M
with boundary torus T ′ with fundamental group H. By Theorem 1.2 applied to T ′ and an
appropriate elevation P ′ of P to M ′, we have that Hπ1P

′ is separable in π1M
′. Hence Hπ1P

is separable in π1M , as desired.
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