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ABSTRACT. Let p be a puncture of a punctured sphere, and let
Q be the set of all other punctures. We prove that the maximal
cardinality of a set A of arcs pairwise intersecting at most once,
and that start at p and end inQ, is |χ|(|χ|+1).We deduce that
the maximal cardinality of a set of arcs with arbitrary endpoints
pairwise intersecting at most twice is |χ|(|χ| + 1)(|χ| + 2).

1. INTRODUCTION

Let S be a punctured sphere with Euler characteristic χ < 0. We consider collec-
tions of essential simple arcs A on S that are pairwise non-homotopic.

Theorem 1.1. The maximal cardinality of a set A of arcs pairwise intersecting
at most twice is |χ|(|χ| + 1)(|χ| + 2).

Remark 1.2. We conjecture that the formula also holds for any connected,
oriented surface with χ < 0. The proof we provide here, however, applies only to
the case of spheres.

We will reduce Theorem 1.1 to the following result.

Theorem 1.3. Let p be a puncture of S, and Q be the set of all other punctures.
The maximal cardinality of a set A of arcs pairwise intersecting at most once, which
start at p and end in Q, is |χ|(|χ| + 1).

Previous results. Initially, cardinality questions were asked about sets C of
essential and nonperipheral simple closed curves on an arbitrary surface. Juvan,
Malnič, and Mohar proved that, given k bounding the number of intersections
of any two curves in C, there is an upper bound on |C| [JMM96]. For k fixed, a
polynomial upper bound of order k2+ k+ 1 in |χ| was obtained in Corollary 1.6
of [Prz15]. This was recently improved by Aougab, Biringer, and Gaster [ABG17]
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to an upper bound of order |χ|3k/(log |χ|)2.1 They further proved that if the
genus of the surface is fixed, and we vary the number of punctures n, then |C| ≤
O(n2k+2).

Farb and Leininger asked for the precise asymptotics in the case where k = 1.
For S a torus, we have |C| ≤ 3. For S a closed genus 2 surface, Malestein, Rivin,
and Theran proved that the maximal cardinality of C is 12 [MRT14]. They also
produced a lower quadratic and exponential upper bound on maximal |C| in terms
of |χ|, which was obtained independently by Farb and Leininger [Lei11]. This was
later improved to a cubic upper bound in [Prz15, Theorem 1.4] and recently to an
upper bound of order |χ|3/(log |χ|)22 by Aougab, Biringer, and Gaster [ABG17].

It seems that corresponding questions about arcs are easier to tackle. By
[Prz15, Theorem 1.2], the maximal cardinality of a set A of arcs pairwise in-
tersecting at most once is 2|χ|(|χ| + 1). If S is a punctured sphere, then by
[Prz15, Theorem 1.7], given two distinguished (but not necessarily distinct) punc-
tures p,p′, the maximal cardinality of a setA of arcs pairwise intersecting at most
once which start at p and end at p′ is 1

2 |χ|(|χ| +1). Theorem 1.3 is a very useful
addition to this, but note that it is much more difficult to prove than any of the
theorems in [Prz15].

Recently, A. Bar-Natan proved that if in Theorem 1.1 the arcs in A are re-
quired to start and end at a distinguished puncture p, then the maximal cardinality

of A is 1
6 |χ|(|χ| + 1)(|χ| + 2) [BN17].3

Organisation. In Section 2 we construct collections of arcs of appropriate
size satisfying the conditions of Theorems 1.1 and 1.3. We also provide a coun-
terexample showing that Theorem 1.3 cannot be generalised to a 3-punctured
torus. In Section 3 we show how Theorem 1.3 implies Theorem 1.1. In Section
4 we provide the bulk of the definitions and proof of Theorem 1.3 up to two
propositions which are proven in Sections 5 and 6.

2. EXAMPLES

2.1. Preliminaries. Given a punctured sphere S (or, in Subsection 2.3, a
3-punctured torus), an arc on S is a map from (0,1) to S that is proper. A proper
map induces a map between topological ends of spaces, and in this sense each
endpoint of (0,1) is sent to a puncture of S. We will say that the arc starts and
ends at these punctures. An arc is simple if it is an embedding. In that case we can
and will identify the arc with its image in S. A homotopy between arcs α and β
is a proper map (0,1) × [0,1] → S which, restricted to (0,1) × 0 equals α, and
restricted to (0,1)× 1 equals β. In particular, α and β start at the same puncture
and end at the same puncture. We often identify the punctured sphere S with

1Very recently Joshua Evan Greene improved this to |χ|k+1 log |χ| [Gre18].
2Improved in [Gre18] to |χ|2 log |χ|.
3Very recently Sami Douba obtained the same formula for arcs starting at p and ending at a

different distinguished puncture q [Dou19].
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the interior of the punctured disc D whose boundary circle ∂D corresponds to
a distinguished puncture p of S. Then, each arc ending (or starting) at p can
be homotoped to an arc that converges to a point on ∂D, and we will be only
considering such arcs. Note that homotopic arcs ending at p might converge to
different points of ∂D. We occasionally also identify S with a punctured annulus
A whose boundary circles correspond to p and another distinguished puncture r ,
where we also restrict our focus to arcs with limit points.

An arc α is essential if it cannot be homotoped into a puncture in the sense
that there is no proper map (0,1) × [0,1) → S which, restricted to (0,1) × 0,
equals α. Unless otherwise stated, all arcs in the article are simple and essential.

We say that arcs α and β are in minimal position, if the number of intersection
points |α ∩ β| cannot be decreased by a homotopy. A bigon (respectively, half-
bigon) between arcs α and β is an embedded closed disc B ⊂ S (respectively,
properly embedded half-disc B = [0,1]× [0,1) ⊂ S) such that B ∩ (α∪ β) = ∂B
and both ∂B ∩ α and ∂B ∩ β are connected. It is a well known fact, which we
will frequently use, that α and β are in minimal position if and only if they are
transverse and there is no bigon or half-bigon between them.

2.2. Lower bound in Theorem 1.3. First, we show an example of a collec-
tion of |χ|(|χ|+1) arcs satisfying the conditions of Theorem 1.3. We identify the
n-punctured sphere with the interior of a punctured disc whose boundary corre-
sponds to the distinguished puncture p, and whose other punctures Q lie on a
smaller circle in the interior of the disc (see Figure 2.1). Note that |Q| = n− 1.
From each puncture r ∈ Q, we draw n − 2 disjoint arcs that are straight line
segments dividing the disc into n − 2 regions, each containing one puncture in
Q \ {r}. We obtain (n− 1)(n− 2) arcs that pairwise intersect at most once. As
|χ| = n− 2, we have (n− 1)(n− 2) = |χ|(|χ| + 1).

FIGURE 2.1. On the 5-punctured sphere, for each r ∈ Q we
draw three disjoint arcs, for a total of 12 arcs.

2.3. Theorem 1.3 cannot be generalised. Now, we provide a counterexam-
ple demonstrating that Theorem 1.3 does not hold in the case of a 3-punctured



160 CHRISTOPHER SMITH & PIOTR PRZYTYCKI

torus. We model the 3-punctured torus as a regular ideal octagon with edges iden-
tified as shown in Figure 2.2. After this identification we have three punctures,
{a,b,p} with Q = {a,b}, and we consider arcs connecting a or b to p.

After the identifications in Figure 2.2, two of the edges connect p to the
puncture a; these will be the first two arcs in our collection. To these we add
the 8 diagonals which run from the vertices labelled a or b to one of the vertices
labelled p. Finally, we add the three depicted arcs to the collection, for a total of
13 arcs. Since |χ| = 3, the formula from Theorem 1.3 yields 12, showing that
this theorem does not hold in general for non-spheres.

p

a b

a

p

ab

a

FIGURE 2.2. The 11th to 13th arcs lying on a 3-punctured
torus. Notice that no diagonal from either a or b to p twice
intersects any of these three arcs.

2.4. Lower bound in Theorem 1.1. Finally, we show an example of a col-
lection of |χ|(|χ| + 1)(|χ| + 2) arcs satisfying the conditions of Theorem 1.1.
To this end, consider an n-punctured sphere constructed in the following fashion.
Let P be an ideal n-gon, and glue two copies of P together along their correspond-
ing edges. We will think of the two copies of P as the front and back faces of the
sphere.

Our collection A will consist of three types of arcs. First, let E be the set
of all n edges along which the polygons are glued. Second, let D be the set of
the n(n− 3)/2 diagonals between vertices on each of the two faces, for a total of
n(n− 3) arcs of this form.

Finally, we form a set C of arcs which cross between faces of the sphere. For
each edge e of the polygons, consider the midpoint m of e, and every ordered
pair (u,v) of punctures outside e, with u and v not necessarily distinct. For each
such choice of e and (u,v), we include in C the arc whose first half is the straight
line segment from u tom on the front face, and whose second half is the straight
line segment fromm to v on the back face (see Figure 2.3). For each edge e, there
are (n− 2)2 such arcs, and we have n edges, giving us a total of n(n− 2)2 arcs of
this form.
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FIGURE 2.3. An example of two of the arcs in C on a 6-
punctured sphere. The dashed lines indicate where the arc lies
on the back face.

u u
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FIGURE 2.4. The disc obtained by cutting the 5-punctured
sphere along each edge other than e.

Recalling that n = |χ| + 2, we obtain that n + n(n − 3) + n(n − 2)2 =
|χ|(|χ| + 1)(|χ| + 2).

It remains to verify that these arcs satisfy the conditions of Theorem 1.1. It is
clear that each of the edges in E and the diagonals inD are homotopically distinct
from one another, and as they are straight line segments on their respective faces,
they can pairwise intersect at most once.

Consider the arcs in C. First, we wish to show that arcs in C are homotopically
distinct from each other, and from arcs in D or E. Since each of the arcs in C
intersects exactly one of the edges, the latter is clear. If we have two arcs in C with
the same (u,v) but differing midpoint m, they must be homotopically distinct,
because we know that these arcs must intersect the edge e, and do not intersect
any other edge.

Now consider the case where two arcs in C have u, v, and m in common.
Consider Figure 2.4. We cut along the edges other than e to obtain a disc. The
two arcs intersect exactly once without creating any half-bigons. As a half-bigon on
the n-punctured sphere would survive the cutting, we conclude that the two arcs
cannot be homotopic. Thus, all arcs in C, D, and E are homotopically distinct.

Finally, we wish to show that arcs in C pairwise intersect at most twice with
arcs in C∪D∪E. Note that the arcs inD are diagonals, each lying on exactly one
face of S, and the arcs in C each consist of two straight line segments, one lying
on each face. As such, two arcs in C may pairwise intersect at most twice (at most
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once on each face), and arcs in D and E pairwise intersect at most once with arcs
in C.

Remark 2.1. Since any surface of Euler characteristic χ < 0 is obtained by
appropriately gluing two ideal |χ|+2 gons, the analogous construction ofA gives
a lower bound in Remark 1.2.

3. REDUCTION TO THEOREM 1.3

In this section we adapt a proof from [Prz15] and use Theorem 1.3, whose proof
is postponed, in order to obtain the upper bound on |A| in Theorem 1.1. We
begin with some definitions.

We equip S with an arbitrary complete hyperbolic metric, and we realise all
arcs as geodesics. It is well known that they are then pairwise in minimal position.
Around each puncture the metric is that of a hyperbolic cusp, inside which the
arcs are disjoint and appear in a cyclic order.

Definition 3.1 ([Prz15, Definition 2.1]). A tip τ of A is a pair (α,β) of ori-
ented arcs in A starting at the same puncture and consecutive in the cyclic order.
That is, there is no other arc in A issuing from this puncture in the clockwise
oriented cusp sector from α to β.

Let τ = (α,β) be a tip, and let Nτ be an open abstract ideal hyperbolic trian-
gle with vertices a, t, b. The tip τ determines a unique local isometry
ντ : Nτ → S sending ta to α and tb to β and mapping a neighbourhood of
t to the clockwise oriented cusp sector from α to β. We call ντ the nib of τ (see
Figure 3.1).

Proposition 3.2. Suppose that the arcs inA pairwise intersect at most twice. Let
ν : N =

⊔
τ Nτ → S be the disjoint union of all the nibs ντ . Then, for each point

p ∈ S, the preimage ν−1(p) consists of at most (|χ| + 1)(|χ| + 2) points.

In order to prove Proposition 3.2, we require some further results from [Prz15].

Definition 3.3 ([Prz15, Definition 2.4]). Let n ∈ Nτ be a point in the do-
main of a nib. The slit at n is the restriction of ντ to the geodesic ray in Nτ
joining t with n (see Figure 3.1).

Lemma 3.4 ([Prz15, Lemma 2.5]). A slit is an embedding.

Lemma 3.5 ([Prz15, Lemma 3.2]). Suppose that the arcs inA pairwise intersect
at most k ≥ 1 times. If for distinct n,n′ ∈ N we have ν(n) = ν(n′), then the images
in S of slits at n,n′ intersect at most k− 1 times outside the endpoint.

Proof of Proposition 3.2. Let p ∈ S be an arbitrary point. Let S′ be the sphere
obtained from S by introducing a puncture at p. By Lemma 3.4, the slit at any
n ∈ ν−1(p) is embedded in S, so it is a simple arc on S′. By Lemma 3.5, for any
two points n,n′ ∈ ν−1(p), the slits at n and n′ intersect at most once. Therefore,
on S′, we have a collection of simple arcs which start at p and end at punctures of
S, and these arcs pairwise intersect at most once.
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FIGURE 3.1. A tip, its nib and a slit

If χ is the Euler characteristic of S, then χ − 1 is the Euler characteristic
of S′, and so by Theorem 1.3 the maximal size of a collection of such slits is
|χ − 1|(|χ − 1| + 1) = (|χ| + 1)(|χ| + 2). Since each point in the preimage
ν−1(p) contributes an arc to this collection, this gives us the desired bound on
the size of ν−1(p). ❐

Proof of Theorem 1.1. Each arc in A is the first arc of exactly two tips, de-
pending on its orientation, so the area of N is 2|A|π . The area of the punctured
sphere S is 2π|χ|. The map ν : N → S is then at most (|χ| + 1)(|χ| + 2)-to-1,
by Proposition 3.2, and so we have

2|A|π ≤ 2π|χ|(|χ| + 1)(|χ| + 2). ❐

4. OUTLINE OF THE PROOF OF THEOREM 1.3

For the remainder of the paper, let p be the distinguished puncture of the punc-
tured sphere S. We will represent S as the interior of a punctured disc D with
boundary associated with p, and with a collection of remaining punctures Q. Let
A be as stated in Theorem 1.3. We will consider the arcs to be oriented from a
puncture in Q to the puncture p. We assume without loss of generality that arcs
in A are pairwise in minimal position.

If for each puncture r ∈ Q the arcs in A starting at r are disjoint, then
Theorem 1.3 is easy to prove: there can be at most |Q| − 1 arcs in A from each
puncture on D (refer back to Figure 2.1), and there are |Q| punctures on the disc,
giving us |Q| · (|Q| − 1) = |χ| · (|χ| + 1) arcs, recalling |χ| = |Q| − 1. It makes
sense then to begin by considering some properties of arcs starting at the same
puncture r which intersect.

4.1. Fish. In this subsection we introduce our main tool to account for
intersecting arcs starting at the same puncture r .

Definition 4.1. Let r ∈ Q. A fish F with nose r is a pair of arcs α,β ∈ A
from r to p which intersect (see Figure 4.1).



164 CHRISTOPHER SMITH & PIOTR PRZYTYCKI

β
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FIGURE 4.1. A fish (α,β)

The arcs α and β divide the discD into three regions. The head of F , denoted
by head(F), is the region adjacent to r , but not to p. The tail of F , denoted by
tail(F), is the region adjacent to p, but not to r . The remaining region is thought
of as being outside the fish. We write F = (α,β) as an ordered pair whenever
head(F) covers the counterclockwise oriented cusp sector between α and β.

We denote by h(F) the subset of the punctures Q which are in head(F), and
by t(F) the set of punctures which are in tail(F). We do not consider the nose of
the fish to be contained in the head. If q ∈ t(F), then we say that F is a q-fish.

Note that if S has only 3 punctures, then there are no fish.

γ β

α

r s q

FIGURE 4.2. A minimal fish (β, γ) and a non-minimal fish
(α, γ). In this picture we have r ∼q s.

Definition 4.2. For each puncture r ∈ Q, consider the collection of arcs in
A starting at r . Recall that we assign these arcs a cyclic order (based on their inter-
section points with a sufficiently small circle about the puncture r ). Here and in
the remainder of the article, unlike in Section 3, we order them counterclockwise
(this convention gives better figures).

A fish F = (α,β) with nose r is minimal if α and β are consecutive in the
cyclic order around r . Equivalently, in A there is no arc from r which begins in
head(F).
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Denote by Fr the set of minimal fish with nose r , and by Fq the set of
minimal q-fish.

Definition 4.3. Let q ∈ Q. The equivalence relation ∼q on Q \ {q} is the
equivalence relation generated by setting r ∼q s whenever there is a q-fish F (not
necessarily minimal) with nose r such that s ∈ h(F) (see Figure 4.2). Define cq
to be the number of equivalence classes of ∼q.

4.2. Proof of Theorem 1.3. Recall our previous discussion that the inter-
esting case for proving Theorem 1.3 was when arcs from the same puncture r
intersect. Clearly, if we allow arcs from r to intersect one another, we will be able
to include more arcs from r in our collection. We can think of this as a positive
contribution to |A| at r . What we will show is that this positive contribution is
balanced out by a matching negative contribution.

Each of these extra arcs from r will cause punctures in Q \ {r} to lie in the
tails of fish with nose r . If a puncture q lies in the tail of some fish, then this
will reduce the number of equivalence classes of ∼q. In turn, this will reduce the
number of arcs in our collection which may begin at q.

The following lemma, propositions, and corollary can be thought of as prov-
ing that each positive contribution at one puncture must be matched by a negative
contribution at some combination of other punctures.

We postpone the proofs of Propositions 4.4 and 4.5 to Sections 5 and 6,
respectively. Here, we start by deducing Corollary 4.6 from Proposition 4.5. We
then show that Proposition 4.4 and Corollary 4.6 imply Theorem 1.3.

Proposition 4.4. Let q ∈ Q. Then, |χ| ≥ |Fq| + cq.
Proposition 4.5. Let r ∈ Q. If A contains kr arcs from r to p, then

kr ≤ |χ| +
∑

F∈Fr
|t(F)|.

Corollary 4.6. Under the hypotheses of Proposition 4.5,

kr ≤ cr +
∑

F∈Fr
|t(F)|.

To prove this corollary, we first need the following lemma.

Lemma 4.7. For each q-fish F , no arc in A from q to p may pass through the
region head(F).

Proof. Let F = (α,β), and let γ ∈ A be an arc from q to p. Observe that
q ∈ tail(F) by hypothesis. For the arc γ to pass through head(F), it must first exit
the tail, then enter the head, and finally exit the head, before arriving at p. This
would cause a total of three intersections between γ and either α or β, which is a
contradiction. Note that even if γ passes directly through the intersection point
α∩β from tail(F) to head(F), we still have two intersections there, and one more
upon leaving head(F). ❐
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Proof of Corollary 4.6. By Lemma 4.7 for q = r , no arcs from r can pass
through head(F) for any r -fish F . Consider the modified disc D′ obtained in
the following way. Remove head(F) from D for each r -fish F , and let D′ be the
connected component of the resulting surface which contains the boundary p.
From the definition of ∼r we see that D′ will be homeomorphic to an at-most
(cr + 2)-punctured sphere: one way to see this is to observe that the punctures
of each equivalence class of ∼r become a single puncture in D′, and the punc-
tures r and p each remain as well, giving at most cr + 2 total punctures. From
Proposition 4.5, it follows that

kr ≤ |χ(D
′)| +

∑

F∈Fr
|t(F)| ≤ cr +

∑

F∈Fr
|t(F)|. ❐

Proof of Theorem 1.3. Begin by summing the inequalities obtained in Propo-
sition 4.4 and Corollary 4.6 over Q. Recall that |Q| = |χ| + 1. From Proposi-
tion 4.4, we get

|χ|(|χ| + 1) =
∑

q∈Q

|χ| ≥
∑

q∈Q

|Fq| +
∑

q∈Q

cq.

From Corollary 4.6 we get

|A| ≤
∑

r∈Q

cr +
∑

r∈Q

∑

F∈Fr
|t(F)|.

Putting these together, we obtain

|χ|(|χ| + 1) ≥
∑

q∈Q

|Fq| −
∑

r∈Q

∑

F∈Fr
|t(F)| + |A|.

Now, observe that the first two terms on the righthand side are actually counting
the same objects. The first term is counting for each puncture q, the number of
minimal fish with q in their tail. The second term is counting for each minimal
fish, the number of punctures in that fish’s tail. These two values therefore cancel
out, and we obtain |χ|(|χ| + 1) ≥ |A|. ❐

5. EQUIVALENCE CLASSES

5.1. Proof of Proposition 4.4. We keep the notation from Section 4. The
first supporting lemma has a technical proof postponed to the next subsection.

Lemma 5.1. Let q ∈ Q. Then, there exists a puncture v ∈ Q, v ≠ q such that
v is not the nose of a q-fish.

Lemma 5.2. Let q ∈ Q. If F, F ′ are q-fish with intersecting heads, then one of
F, F ′ has its nose lying in the head of the other.
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FIGURE 5.1. The four intersections caused by the intersection
of the heads prevent the tails of these fish from intersecting.

Proof. Suppose by contradiction that the nose of each of F, F ′ is outside the
head of the other. Let x = head(F) ∩ tail(F) and y = head(F ′) ∩ tail(F ′). If
x ∉ head(F ′) and y ∉ head(F), then we have the configuration from Figure 5.1.
Since the figure already accounts for the intersections of all the arcs involved, the
tails of F, F ′ are disjoint, which is a contradiction.

If exactly one of x,y , say x, lies in the head of the other fish F ′, then all
the intersections between the arcs involved lie in head(F ′). Moreover, y lies out-
side tail(F) ∩ head(F ′). Hence, again the tails of F, F ′ are disjoint, which is a
contradiction.

Since the arcs in A pairwise intersect at most once, we therefore cannot have
x ∈ head(F ′) and y ∈ head(F) (even if we allowed F, F ′ to have disjoint tails). ❐

To prove Proposition 4.4 we argue by induction. First, consider as the base
case the three-punctured sphere where Q = {q, r}. Then, the only equivalence
class of ∼q is {r}, and there are clearly no fish possible, so |χ| = 1 = |Fq|+ cq, as
desired.

Now, consider the case |χ| ≥ 2. By Lemma 5.1, there exists a puncture v
other than q which is not the nose of a q-fish. To apply induction, define D̃ to
be D with the puncture v removed. Let p̃ = ∂D̃. For each arc α ∈ A that does
not start at v, let α̃ denote the arc that is the image of α under the embedding
D ⊂ D̃. Let Ã be the family of all such α̃, possibly after a homotopy putting all
of them pairwise in minimal position.

For a puncture q of D distinct from v, we denote by q̃ its image in D̃. Let Q̃
be the set of all such q̃. ByFq̃ we denote the set of minimal q̃-fish on D̃ formed by
the family Ã. Let ∼q̃ be the equivalence relation on the punctures of D̃ generated
by r̃ ∼q̃ s̃ whenever there is a q̃-fish F̃ formed by the family Ã, with nose r̃ such
that s̃ ∈ h(F̃). By cq̃ we denote the number of equivalence classes of ∼q̃. For the
induction step it suffices to show that |Fq̃| + cq̃ ≥ |Fq| + cq − 1.
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Remark 5.3. Observe that if for q, r , s ≠ v we have r 6∼q s, then certainly
r̃ 6∼q̃ s̃, as the removal of v does not introduce any new fish. In other words, under
the obvious identification of Q \ {v} with Q̃, the relation ∼q̃ is a refinement of
the restriction of ∼q to Q \ {v}.

Definition 5.4. Let F = (α,β) be a fish formed by arcs α,β ∈ A. We say

that F vanishes if α̃ and β̃ are no longer in minimal position (they bound a half-
bigon). Equivalently, v is either the only tail puncture or the only head puncture
of F .

Note that if F does not vanish, then (α̃, β̃) is a fish on D̃ formed by the family

Ã. If F is minimal, the fish (α̃, β̃) does not have to be minimal, since the arcs
in Ã might have been homotoped and their order around the nose might have
changed. However, we have the following lemma, whose proof is also postponed
to a separate subsection.

Lemma 5.5. For q ≠ v, let F ′
q be the set of non-vanishing minimal q-fish

formed by the family A. Then, there is a one-to-one map ϕ : F ′
q → Fq̃.

Proof of Proposition 4.4. The proof splits into two cases:

(i) {v} is an equivalence class of ∼q.
(ii) {v} is not an equivalence class of ∼q.

Let us first consider case (i). Since {v} is an equivalence class of ∼q, by
Remark 5.3 we have cq̃ ≥ cq − 1. Because {v} is an equivalence class of ∼q, we
know that v is not in the head of any q-fish. Furthermore, v cannot be the only
puncture in the tail of a q-fish, as every q-fish contains q in its tail by definition.
Thus, no q-fish vanishes. Consequently, |Fq| = |F ′

q|. By Lemma 5.5, we have
|F ′
q| ≤ |Fq̃|. Hence, |Fq̃| + cq̃ ≥ |Fq| + cq − 1 as required.

We now consider case (ii). Since {v} is not an equivalence class of ∼q, by
Remark 5.3 we have cq̃ ≥ cq. Thus, to prove Proposition 4.4, it remains to prove
that |Fq̃| ≥ |Fq| − 1. This will follow from Lemma 5.5 once we show that at
most one minimal q-fish vanishes.

Suppose for contradiction there exist two distinct vanishing minimal q-fish F
and F ′. Let F = (α,β) and F ′ = (γ, δ). Then, {v} = h(F) = h(F ′).

We consider two possibilities:

(a) F and F ′ have distinct noses.
(b) F and F ′ have a common nose r .

We first consider possibility (a). The nose of one fish cannot be contained in
the head of the other, as each head contains only the puncture v. This contradicts
Lemma 5.2.

It remains to consider possibility (b).

Remark 5.6. Note that two distinct minimal fish whose tails intersect cannot
be formed with only three arcs (one shared between them); three arcs forming two
minimal fish (α,β) and (β, γ) will always have disjoint tails (see Figure 5.2).
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FIGURE 5.2. If three consecutive arcs form two minimal fish,
those fish have disjoint tails.

By Remark 5.6, in possibility (b) we can assume that α,β, γ, δ are all distinct.
Moreover, since F, F ′ are minimal, the heads of F, F ′ are disjoint in a neighbour-
hood of their common nose r . We can thus add a puncture r ′ close to r and
move the head of F ′ to have nose r ′ without creating new intersections. This
reduces possibility (b) to possibility (a), and finishes case (ii) and the entire proof
of Proposition 4.4. ❐

5.2. Proof of Lemma 5.1. We start with a rough outline of the proof. If the
conclusion of the lemma fails, there is a cycle of q-fish Fi, where the head of Fi
contains the nose of Fi+1. In Step 1 of the proof, we will inscribe in this fish cycle
an embedded polygon P formed of the arcs ai in each head(Fi). In Step 2 and
Step 3, we will gain control on how the arcs gi forming Fi exit P . Some of these
arcs form regions Ri, where q cannot lie (this will be shown in the final step of the
proof ). In Step 4, we will show that the union R of Ri contains the entire outside
E of P , and hence q cannot lie outside P . In Step 5, we will show that q cannot
lie inside P . We now proceed with a proper proof.

Definition of Fi. Suppose toward contradiction that, for every puncture
qi ∈ Q\{q}, there is a q-fish Fi with nose qi. Every Fi has at least one head punc-
ture which, by hypothesis, is also the nose of a q-fish, so we can choose a finite
sequence of such punctures (q1, . . . , qk) such that qi+1 ∈ h(Fi) and q1 ∈ h(Fk).
Furthermore, we may choose that sequence to be one of minimal length. It can be
easily seen that k ≠ 2 (see Figure 5.3), so we have k ≥ 3. As we are dealing with a
cycle, it will be convenient to write qk+1 = q1.

Since the sequence (qi) is of minimal length, qi ∉ h(Fj) for all j ≠ i−1. Note
that if we remove all punctures other than q and the qi fromD, the punctures (qi)
and the fish (Fi) still give us a minimal length sequence of q-fish with the above
properties, and so we may assume without loss of generality that there are no other
punctures onD. Since q cannot be in the head of a q-fish, we have h(Fi) = {qi+1}
for all i.

For each i, let ai be an arc lying in head(Fi) \ head(Fi+1) connecting qi to
qi+1 (see Figure 5.4), and in minimal position with respect to the arcs of A. Such
an arc exists, as head(Fi) \ head(Fi+1) is connected.
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FIGURE 5.3. Two fish cannot produce such a sequence, as their
tails could not intersect.

q1

q2

q3

q

FIGURE 5.4. The arcs a1 and a2 drawn as dashed lines.

Step 1. We have head(Fi) ∩ head(Fj) = ∅ for all i ≠ j − 1, j, j + 1. In
particular, all arcs ai are disjoint.

Proof. For the second assertion, suppose ai and aj intersect. Since aj lies in
head(Fj) \ head(Fj+1), we have i ≠ j +1. Similarly, i ≠ j− 1. Thus, to complete
the proof, it remains to verify the first assertion. Since qi ∉ h(Fj) and qj ∉ h(Fi),
the heads of Fi and Fj intersect in such a way that the nose of each is not contained
in the head of the other. This contradicts Lemma 5.2. ❐

Definition of P . By Step 1, the concatenation of the arcs ai forms an em-
bedded ideal polygon in D that we will call P (it is still possible that q lies inside
P). For each i, the fish Fi consists of the outer arc f out

i which begins outside P ,
and the inner arc f in

i which begins inside P . Without loss of generality, we may
assume that P is oriented as in Figure 5.5.

Step 2. For any i, suppose that the first intersection of f in
i with P lies on aj .

Then, f in
i intersects f in

j prior to its first point of intersection with P .
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f in
1 fout

1

a1

a2

a3

a4 q1

q2q3

q4

FIGURE 5.5. Inner and outer arcs of a fish in the sequence.

fout
j

f in
j

qj

FIGURE 5.6. Example: The dashed line aj, marked with an
arrow, cannot be crossed first in the indicated direction by an arc
from any puncture outside head(Fj) which intersects f out

j prior

to f in
j .

Proof. First, recall that ai is contained in head(Fi), and hence the arcs which
Fi consists of do not intersect ai. Therefore, j ≠ i. Additionally, ai−1 is contained
in head(Fi−1)\head(Fi), and so the arcs which Fi consists of do not intersect ai−1.
Therefore, j ≠ i− 1. Thus, f in

i starts outside head(Fj).
Because the edge aj is contained entirely within head(Fj), crossing aj re-

quires crossing both f in
j and f out

j . Now, refer to Figure 5.6. For f in
i to cross aj

in the indicated direction, it is not possible for it to first cross f out
j , then aj , then

f in
j . Therefore, it must intersect f in

j first, then aj , and finally f out
j . ❐

Definition of gi. For each arc f in
i , consider the edge aj of P with which it

has its first intersection, and define a map s(i) = j. Then, there exists a minimal
length sequence j1, . . . , jm with s(ji) = ji+1 and s(jm) = j1. Define gi = f

in
ji

.
By Step 2, these gi each intersect the successive gi+1 prior to leaving P .

Step 3. gi intersects gi−1 prior to leaving P .
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Proof. Consider Figure 5.7. The arc gi−1 divides head(Fji) into two regions,
one of which is adjacent to qji and does not contain qji+1 or, hence, any other
puncture. The arc aji further subdivides this into two more regions, one of which
lies inside P . Let K be that region (the upper right quarter of head(Fji) in Fig-
ure 5.7).

If gi leaves P prior to intersecting gi−1, then gi intersects aji+1 before the
intersection with gi−1. Thus, aji+1 enters the region K via the arc gi. It must
then proceed to leave K, but it cannot cross aji by Step 1, and it cannot cross gi−1

prior to gi−1 intersecting aji or it would contradict the definition of gi. Thus,
aji+1 must both enter and exit K by crossing gi, forming a bigon in K between
aji+1 and gi, and contradicting minimal position. ❐

giaji

gi−1

qji

FIGURE 5.7. If gi leaves P prior to intersecting gi−1, then there
is an intersection between gi and aji+1 indicated by the arrow.

Definition of R. Two consecutive arcs gi and gi+1 in the cycle divide D into
two regions. Let Ri ⊂ D be the closed region bounded by gi and gi+1 which does
not contain the punctures qji and qji+1 (see Figure 5.8). Define R =

⋃
Ri. The

polygon P also divides the disc into two regions. Let E ⊂ D be the exterior of P ,
the region adjacent to p.

Step 4. E ⊂ R.

Proof. Since E is connected, it suffices to show that E ∩ R is both open and
closed in E. Each Ri is closed by definition, so certainly E ∩ R is closed in E. Let
x ∈ E ∩R. If x does not lie on one of the arcs gi, then x lies in the interior of Ri
for some i, and therefore x has an open neighbourhood in R.

Suppose x lies on gi for some i. By Step 2 and Step 3, the arc gi intersects
both gi−1 and gi+1 prior to leaving P for the first time. Since x ∈ E, its position
on the arc gi is after the intersections of gi with gi−1 and gi+1. Therefore, a
sufficiently small neighbourhood of x lies in the union Ri−1 ∪ Ri ⊂ R. It follows
that E ∩ R is open in E, and hence E ⊂ R. ❐

Step 5. E contains the puncture q.

Proof. We suppose the contrary. Then, q lies inside the polygon P . By
Lemma 4.7, no arc from q may pass through the head of any fish with q in
its tail. In particular, no arc from q may pass through Fi for any i. However,
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g1

g2

g3

g4

R1

R2

R3

R4

FIGURE 5.8. The arcs gi, and the regions Ri that they form. In
more complicated examples, these Ri may overlap.

ai ∈ head(Fi) for each i, and so no arc from q may cross P . It follows that there
are no arcs in A from q to p. For the same reason, it would not be possible to
add an arc from q to p to the collection A.

Now consider the space obtained by removing every arc in A from D, and let
C be the component of that space which contains the puncture q. Let α be an
embedded arc in C from q to the boundary of C. The point x ∈ C where α ends
lies on some arc γ ∈A. Let β be the subarc of γ running from x to p. Then, up
to homotopy, the arc obtained by concatenating α and β is an arc from q to p on
D which intersects each arc in A at most once. Therefore, it is possible to add an
arc from q to p to the collection A, a contradiction. ❐

Final contradiction. By Step 5, the puncture q lies in some Ri. Without
loss of generality, assume q ∈ R1, the region bounded by g1 and g2 (see Figure
5.8). Recall that qj2 ∉ R1. We claim that qj2+1 ∈ R1. Indeed, the arc g1 by def-
inition intersects aj2 when first leaving P . Since g2 cannot intersect aj2 , because
aj2 ∈ head(Fj2), the region R1 contains the half of aj2 which ends at qj2+1.

Now consider the arc f out
j2

. It starts at qj2 , and must be positioned such that
qj2+1 ∈ head(Fj2). For this to be possible, f out

j2
must enter R1 by crossing g1, then

exit by intersecting g2. After this, it is not possible for f out
j2

to reenter R1 without
any double intersections, and so tail(Fj2) ∩ R1 = ∅. Therefore, q ∉ tail(Fj2), a
contradiction. This finishes the proof of Lemma 5.1.

5.3. Proof of Lemma 5.5. To prove Lemma 5.5, we start from the following
result.

Lemma 5.7. Let r ∈ Q \ {v} and consider arcs in A from r to p satisfying
α1 < α2 < · · · < αm < α1 in the cyclic order about r . If there is no fish F =
(αi, αj) with h(F) = {v}, then α̃1 ≤ α̃2 ≤ · · · ≤ α̃m ≤ α̃1.

We recall that α̃i is the image if αi under the embedding D̃ ⊂ D. Here,
the cyclic order on α̃i is the one that is obtained after putting them in minimal
position on D̃.
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Proof. We first note that if the arcs α̃i are in minimal position, then the order
of arcs is unchanged by the removal of v (though some of them might become
homotopic). We may thus assume that α̃i are not in minimal position. We will
perform a series of homotopies of the arcs α̃i with support away from r̃ , and with
each homotopy reducing the total number of intersections among the collection
{α̃i} by one. Hence, after finitely many such homotopies, the arcs will be in
minimal position, and because every homotopy has support away from r̃ , the
order of the arcs about r̃ will remain unchanged.

For an intersecting pair (α̃i, α̃j) (we will not call it a fish since the arcs might
become disjoint after homotopy), let tail(α̃i, α̃j) be the region they bound adja-
cent to p̃. In order to perform our homotopy, we first show the existence of a pair
(α̃i, α̃j) whose T = tail(α̃i, α̃j) is a half-bigon with the property that, for every
other arc α̃k with k ≠ i, j, if α̃k enters T , then it exits before arriving at p̃.

Since α̃i are not in minimal position, there is a half-bigon formed by some
α̃i1 , α̃i2 . Such a half-bigon is not adjacent to r̃ , because then F = (αi1 , αi2)
would satisfy h(F) = {v}, violating our assumption. Thus, the half-bigon is
T1 = tail(α̃i1 , α̃i2).

Suppose (α̃i1 , α̃i2) above is not the desired pair, that is, there is some arc
α̃i3 which enters T1 and does not exit it prior to arriving at p̃. Without loss of
generality, suppose α̃i2 is the arc which α̃i3 intersects upon entering T1. Then,
T2 = tail(α̃i3 , α̃i2) is properly contained in T1. If the pair (α̃i3 , α̃i2) is still not
the desired pair, we repeat the process, at each step obtaining Tk ⊊ Tk−1. As there
are only finitely many arcs in the collection, eventually we must terminate at the
desired pair (α̃i, α̃j).

Let U ⊂ D̃ be a small open neighbourhood of T , not containing any punc-
tures, and not intersecting any arc other than α̃i, α̃j , and arcs which intersect T .
We homotope α̃i within U so that α̃i ∩ α̃j = ∅, and such that for each k ≠ i, j,
the value |α̃k ∩ α̃i| remains unchanged. We note that after applying this homo-
topy, there are still no half-bigons adjacent to r̃ , and we can repeat the process. ❐

Corollary 5.8. Let (α,β) and (γ, δ) be two non-vanishing minimal q-fish with
common nose r . Then, α̃ < β̃ ≤ γ̃ < δ̃ ≤ α̃.

Proof. Since (α,β) and (γ, δ) are minimal q-fish, we have α < β < γ < δ < α
in the cyclic order about r , by Remark 5.6. We will prove that the four arcs
α,β, γ, δ satisfy the condition of Lemma 5.7 that there is no fish F formed by
these four arcs with h(F) = {v}.

We identify the interior of D with the interior of a punctured annulus A
whose boundary circles correspond to r and p. Consider the infinite cyclic cover
Ā of A corresponding to the kernel of the map π1A → Z induced by removing
all the punctures of A (except r and p). We represent Ā as an infinite strip with
boundary lines r̄ , p̄ corresponding to r ,p as depicted in Figure 5.9. If ᾱ, β̄ are
intersecting lifts of α,β to Ā, we denote by head(ᾱ, β̄) the region they bound in
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r̄

p̄

ᾱ β̄ γ̄ δ̄

FIGURE 5.9. Since β̄ and γ̄ intersect, we have tail(ᾱ, β̄) ∩
tail(γ̄, δ̄) ⊂ head(β̄, γ̄).

Ā adjacent to r̄ (the lift of head(α,β)), and by tail(ᾱ, β̄) the region they bound
in Ā adjacent to p̄ (the lift of tail(α,β)).

Let q̄ be a lift of q to Ā. Consider the lifts ᾱ, β̄, γ̄, δ̄ such that ᾱ intersects β̄, γ̄
intersects δ̄, and q̄ is in both tail(ᾱ, β̄) and tail(γ̄, δ̄). Without loss of generality,
they are ordered ᾱ < β̄ < γ̄ < δ̄ in Ā according to their starting points at r̄ .
Since q̄ is to the left of ᾱ and to the right of δ̄, we have that ᾱ intersects δ̄.
Consequently, (α, δ) is a fish, with β,γ starting in head(α, δ).

We claim that if there is some fish F formed by α,β, γ, δ, with h(F) = {v},
then in particular (β, γ) is such a fish. To justify the claim, suppose first that
we have any three arcs α1, α2, α3 such that (α1, α3) is a fish, and α2 begins in
head(α1, α3). Observe that if h(α1, α3) = {v}, then either (α1, α2) is a fish with
h(α1, α2) = {v}, or (α2, α3) is a fish with h(α2, α3) = {v}.

Now, we can apply this observation to the configuration in the claim. If
h(α,δ) = {v}, then one of (α,β) or (β, δ) is a fish F with h(F) = {v}. By
assumption, (α,β) is a non-vanishing fish, so we must have h(β,δ) = {v}. Re-
peating the same argument for the triple β,γ, δ, we conclude that (β, γ) is a fish,
and h(β, γ) = {v}, as desired. Analogously, if (α, γ) is a fish with h(α,γ) = {v},
then also (β, γ) is a fish with h(β, γ) = {v}, as desired.

Finally, if (γ, β), (γ,α), or (δ, β) were a fish F with h(F) = {v}, then, argu-
ing analogously as in the preceding paragraph, the same would be true for (δ,α),
which is not even a fish (wrong order of arcs). This justifies the claim. Thus, the
arcs β̄ and γ̄ intersect (see Figure 5.9).

In Ā, observe that tail(ᾱ, β̄) lies to the right of β̄. Similarly, tail(γ̄, δ̄) lies
to the left of γ̄. Hence their intersection, and q̄ which lies within it, lies in the
region which is both right of β̄ and left of γ̄. This region is head(β̄, γ̄). Therefore,
h(β, γ) ≠ {v}, since it must at least contain q, and we have a contradiction.

This proves that no fish F formed by α,β, γ, δ has h(F) = {v}, and allows us
to apply Lemma 5.7. The strict inequalities follow from the fact that (α,β) and
(γ, δ) are non-vanishing. ❐

We are now ready for the following.
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q̃

α̃ β̃ α̃ β̃

ε̃ε̃

FIGURE 5.10. On the left, ε̃ intersects only α̃, and this forms

a q̃-fish “smaller” than (α̃, β̃). On the right, ε̃ also intersects β̃

and, depending on which puncture is q̃, either (α̃, ε̃) or (ε̃, β̃) is

the desired q̃-fish ϕ(α̃, β̃).

Proof of Lemma 5.5. Let F = (α,β) ∈ F ′
q with any nose r . In the case where

the fish F̃ = (α̃, β̃) is minimal, we simply define ϕ(F) = F̃ .

Suppose now that the fish F̃ is not minimal. This implies α̃ and β̃ are no
longer consecutive (after putting the arcs in D̃ in minimal position), so there must
be an arc ε̃ ∈ Ã that emanates from r̃ in head(F̃). The arc ε̃ must intersect either
α̃ or β̃ before proceeding to p̃. Without loss of generality, suppose it intersects α̃
when leaving head(F̃).

If ε̃ does not intersect β̃, then (α̃, ε̃) is a q̃-fish. If ε̃ does intersect β̃, then
either (α̃, ε̃) or (ε̃, β̃) is a q̃-fish (see Figure 5.10). If this resulting fish is minimal,
then we finish our process. If it is not minimal, then we note that there are fewer

arcs in Ã originating in the head of either (α̃, ε̃) or (ε̃, β̃) than there were in

(α̃, β̃). Therefore, if we continue this process, it will terminate after finitely many
steps with a minimal q̃-fish that we define to be ϕ(F).

Let F = (α,β) and F ′ = (γ, δ) be two distinct non-vanishing minimal q-fish.
Clearly, if they have distinct noses, then ϕ(F) and ϕ(F ′) will have also distinct
noses; in particular, they will be distinct. Thus, we consider only the case where F
and F ′ have the same nose r .

By Corollary 5.8, we have α̃ < β̃ ≤ γ̃ < δ̃ ≤ α̃. Moreover, by construction
ϕ(α,β) (respectively, ϕ(γ,δ)) is a fish whose head intersects a neighbourhood of

r between α̃ and β̃ (respectively, between γ̃ and δ̃). Hence, ϕ(α,β) ≠ ϕ(γ,δ),
as required. ❐

6. COUNTING EXCESS ARCS USING TAIL PUNCTURES OF FISH

Proof of Proposition 4.5. For simplicity of notation, we let k = kr . Let also
α1 < α2<. . .< αk< α1 be the cyclic order about r of the arcs in A with nose r .

We identify the interior ofD with the interior of a punctured annulus Awhose
boundary circles correspond to r and p. Consider the infinite cyclic cover Ā of
A corresponding to the kernel of the map π1A → Z induced by removing all the
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α1

α2

α3

α4

α5

r

r̄

p̄

ᾱ1

ᾱ2 ᾱ3 ᾱ4 ᾱ5 ᾱ6

FIGURE 6.1. An example lifting of arcs from a punctured an-
nulus to the infinite strip. Here, ᾱ6 is a second lift of α1.

punctures of A. Let Q̄ be the punctures of Ā. We represent Ā = R × (0,1) \ Q̄,
where Z acts as horizontal translations.

Let V be the set of homotopy classes of arcs in Ā that are lifts of arcs from

r to p in A. We define the following function d : V × V → Z. Let Â be the
space obtained from Ā by introducing two points r∞, p∞ at infinity. We declare

that the basis neighbourhoods in Â of r∞, p∞ are the unions of these points with
horizontal strips R× (1,1− ε), R× (0, ε) disjoint from Q̄.

Let ψ : H1(Â,Z) → Z be the map on homology determined by the property
that, for each counterclockwise oriented circle c around a single puncture in Q̄, we

have ψ(c) = 1. For each pair γ,δ ∈ V we define d(γ, δ) as follows. Let γ̂, δ̂ be

1-chains in Â obtained from γ,δ by compactifying using r∞ and p∞. Then, γ̂− δ̂

is a 1-cycle. We set d(γ, δ) = ψ(γ̂ − δ̂). Since ψ is a homomorphism, we have
an additivity property: for any β,γ, δ ∈ V we have d(β, γ)+ d(γ, δ) = d(β,δ).

We lift the arcs in A with nose r to Ā. Each such lift is an arc from r̄ to
p̄. Choose ᾱ1 to be one of the lifts of α1. Notice that consecutive arcs along r̄
in Ā are lifts of consecutive arcs in A about r . Hence, we may label arcs in Ā by
(. . . , ᾱ1, ᾱ2, . . . , ᾱk+1, . . . ) where ᾱmk+i is a lift of αi for 1 ≤ i ≤ k and m ∈ Z.
In particular, ᾱk+1 is a lift of α1 (see Figure 6.1).

Note that for i < j the value d(ᾱi, ᾱj) can be easily described in the following
way. If ᾱi and ᾱj are disjoint, then d(ᾱi, ᾱj) is the number of punctures in Q̄
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lying in the bounded region of Ā between ᾱi and ᾱj . If ᾱi and ᾱj intersect, then
d(ᾱi, ᾱj) = |h(ᾱi, ᾱj)| − |t(ᾱi, ᾱj)|. Since α1 does not self-intersect, we have
that its two lifts ᾱ1 and ᾱk+1 are disjoint, and it is easy to see that d(ᾱ1, ᾱk+1) =
|Q \ {r}| = |χ|.

For 1 ≤ i ≤ k, if the arcs αi and αi+1 are disjoint (and hence do not form
a minimal fish), then d(ᾱi, ᾱi+1) ≥ 1, as there must be at least one puncture
between them. If αi and αi+1 intersect, then they form a minimal fish Fi, and we
have d(ᾱi, ᾱi+1) ≥ 1 − |t(Fi)|, as there must be at least one puncture in h(Fi).
Using the additivity of d, and the convention |t(Fi)| = 0 whenever there was no
fish Fi, we obtain

k∑

i=1

(1− |t(Fi)|) ≤
k∑

i=1

d(ᾱi, ᾱi+1) = d(ᾱ1, ᾱk+1) = |χ|.

Equivalently,
k ≤

∑

F∈Fr
|t(F)| + |χ|. ❐
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