TAIL EQUIVALENCE OF UNICORN PATHS

PIOTR PRZYTYCKI† AND MARCIN SABOK‡

Abstract. Let S be an orientable surface of finite type. Using Pho-On’s infinite unicorn paths, we prove the hyperfiniteness of orbit equivalence relations induced by the actions of the mapping class group of S on the Gromov boundaries of the arc graph and the curve graph of S. In the curve graph case, this strengthens the results of Hamenstädt and Kida that this action is universally amenable.

1. Introduction

An equivalence relation E on a standard Borel space X is Borel if E is a Borel subset of $X \times X$. An equivalence relation is countable (resp. finite) if every equivalence class is countable (resp. finite). Given a Borel action of a countable group on a standard Borel space X, the induced orbit equivalence relation is a countable Borel equivalence relation. A Borel equivalence relation E is hyperfinite if E can be written as an increasing union of a sequence of finite Borel equivalence relations.

Let S be an oriented surface of genus $g \geq 0$ with $n \geq 0$ punctures, of negative Euler characteristic. We denote by $\mathcal{A}(S)$ (for $n \geq 1$) and $\mathcal{C}(S)$ its arc graph and its curve graph, which are Gromov hyperbolic (see Section 2). The actions of the mapping class group $\text{Mod}(S)$ on $\mathcal{A}(S)$ and $\mathcal{C}(S)$ by automorphisms extend to actions on their Gromov boundaries by homeomorphisms. Our main result is:

Theorem 1.1. The orbit equivalence relation on $\partial \mathcal{A}(S)$ induced by the action of $\text{Mod}(S)$ is hyperfinite.

As a consequence we will derive:

Corollary 1.2. The orbit equivalence relation on $\partial \mathcal{C}(S)$ induced by the action of $\text{Mod}(S)$ is hyperfinite.

This strengthens the results of Hamenstädt [Ham09, Cor 2] and Kida [Kid08, Thm 1.4(ii)] that this equivalence relation is universally amenable.

Universal amenability. Let μ be a Borel probability measure on a standard Borel space X. A countable Borel equivalence relation

†‡ Partially supported by NSERC and National Science Centre, Poland UMO-2018/30/M/ST1/00668.

† Partially supported by AMS.
on X is μ-amenable if there is a map assigning to each equivalence class $[x]$ a finitely additive probability measure $\Phi_{[x]}$, defined on all subsets of $[x]$, such that for each bounded Borel map $F : X^2 \to \mathbb{R}$, the function $f : X \to \mathbb{R}$ given by $f(x) = \int F(x, y) d\Phi_{[x]}(y)$ is μ-measurable (see [Kec93, §3]). An equivalence relation is *universally amenable* if it is μ-amenable for every Borel probability measure μ.

Suppose now that we have a Borel action of a countable group G on X with amenable stabilisers. This action is universally amenable, if its induced orbit equivalence relation is universally amenable. (See [AEG94, Thm 5.1], for the original definition of universally amenable action see e.g. [Zim84].) In particular, the orbit equivalence relation induced by a Borel action of an amenable group is universally amenable.

Boundary actions have been studied extensively from the point of view of amenability. Connes, Feldman, and Weiss [CFW81] and, independently, Vershik [Ver78], showed that the induced action of the finitely generated free group F_n on its Gromov boundary ∂F_n is universally amenable. This was later generalised by Adams [Ada94] to all hyperbolic groups. Bestvina, Horbez, and Guirardel proved that the action of $\text{Out}(F_n)$ on the Gromov boundary of its free factor complex is universally amenable, see [BGH17, Thm 6.4] and [GHL20, Prop 7.2] (which uses the description of the Gromov boundary of the free factor complex in [BR15] and [Ham14]).

Hyperfiniteness. As shown independently by Weiss and Slaman–Steel [Gao09, Thm 7.2.4], a Borel equivalence relation E is hyperfinite if and only if there is a Borel action of \mathbb{Z} inducing E as its orbit equivalence relation. Since \mathbb{Z} is amenable, the hyperfiniteness of an equivalence relation implies its universal amenability. It is a well-known open problem, whether the converse holds, i.e. whether a universally amenable equivalence relation is always hyperfinite.

The relative complexity of Borel equivalence relations is measured by Borel reducibility. Given two equivalence relations E and F on standard Borel spaces X and Y, respectively, a function $f : X \to Y$ is a *Borel reduction* from E to F if f is a Borel function and for every $a, b \in X$ we have $a \sim_E b$ if and only if $f(a) \sim_F f(b)$. A relation E is *Borel reducible* to F, if there exists a Borel reduction from E to F. The relation E_0 is defined on $\{0, 1\}^\mathbb{N}$ (with the product topology) as $(a_i)_{i=0}^\infty \sim_{E_0} (b_i)_{i=0}^\infty$ if $a_i = b_i$ for all i sufficiently large. It is easy to see that E_0 is hyperfinite. In fact, a countable Borel equivalence relation is hyperfinite if and only if it is Borel reducible to E_0 [Gao09, Thm 7.2.2].

Let Ω be a countable set with discrete topology. The *tail equivalence relation* E_t on $\Omega^\mathbb{N}$ is defined as $(a_i)_{i=0}^\infty \sim_{E_t} (b_i)_{i=0}^\infty$ if there exists $k \in \mathbb{Z}$ such that $a_i = b_{i+k}$ for all i sufficiently large. Dougherty, Jackson, and Kechris showed that E_t is Borel reducible to E_0, and so it is hyperfinite [DJK94, Cor 8.2]. It is not hard to see that the orbit equivalence relation induced by the action of F_n on ∂F_n is Borel reducible to E_t with
finite Ω. Hence that orbit equivalence relation on ∂F_n is hyperfinite, which we will shortly express by saying that the boundary action of F_n is hyperfinite.

More recently, Huang, Sabok, and Shinko [HSS19] showed that for cocompactly cubulated hyperbolic groups, their boundary actions are hyperfinite. The proof relied on a study of geodesic ray bundles in hyperbolic groups. While Touikan [Tou18] showed that that approach does not work for arbitrary hyperbolic groups, Marquis [Mar19] used it to prove the hyperfiniteness of boundary actions of groups acting cocompactly on locally compact hyperbolic buildings with trivial chamber stabilisers. Very recently, Marquis and Sabok [MS20] showed the hyperfiniteness of the boundary action of an arbitrary hyperbolic group.

Organisation. In Section 2 we recall the basics on arcs, laminations, and unicorn paths. In Section 3 we prove a pair of key lemmas: the local characterisation of Pho-On’s infinite unicorn paths, and the tail equivalence for asymptotic infinite unicorn paths. This allows for the proofs for Theorem 1.1 and Corollary 1.2 in Section 4.

Acknowledgements. We thank Camille Horbez for the input on the $\text{Out}(F_n)$ case.

We thank Antoni Sabok-Przytycki for encouragement.

2. Unicorn paths

2.1. Arcs and laminations. As in the introduction, S is obtained from a closed oriented surface of genus g by removing n points. Thus S has n topological ends, which are called punctures. An oriented arc on S is a map from $(0, 1)$ to S that is proper. A proper map induces a map between topological ends of spaces, and in this sense each endpoint of $(0, 1)$ is sent to a puncture of S. We will say that the oriented arc starts and ends at these punctures. A homotopy between oriented arcs a and b is a proper map $(0, 1) \times [0, 1] \to S$ whose restriction to $(0, 1) \times \{0\}$ equals a and whose restriction to $(0, 1) \times \{1\}$ equals b. In particular, a and b start at the same puncture and end at the same puncture. A curve on S is a map from a circle S^1 to S.

An oriented arc or a curve is simple if it is an embedding. In that case we can and will identify the oriented arc or the curve with its image in S. We record, however, the orientation of the arc, while for the curve we discard it. A curve is essential if it is not homotopically trivial. A curve $c: S^1 \to S$ is non-peripheral if it cannot be homotoped into the puncture in the sense that there is no proper map $S^1 \times [0, 1) \to S$ whose restriction to $S^1 \times \{0\}$ is c. An oriented arc $a: (0, 1) \to S$ is essential if there is no proper map $(0, 1) \times [0, 1) \to S$ whose restriction to $(0, 1) \times \{0\}$ is a. Unless otherwise stated, all oriented arcs in the article are simple and essential, and all curves are simple, essential and non-peripheral.
Suppose that the Euler characteristic \(\chi = 2 - 2g - n \) of \(S \) is negative. If \(n \geq 1 \), the arc graph \(\mathcal{A}(S) \) is the graph whose vertex set \(\mathcal{A} \) is the set of homotopy classes of oriented arcs on \(S \). Two vertices in \(\mathcal{A} \) are connected by an edge if they can be realised disjointly. Note that since our arcs are oriented, our \(\mathcal{A}(S) \) differs from the usual arc graph by replacing each vertex by two.

Allow now \(n = 0 \), but suppose that we are not in one of the exceptional cases where \(g = 0 \) and \(n = 3 \) or 4, or \(g = 1 \) and \(n = 1 \). Then the curve graph \(\mathcal{C}(S) \) is the graph whose vertices are the homotopy classes of curves on \(S \). Again, two vertices are connected by an edge if they can be realised disjointly. In the exceptional cases the edges of \(\mathcal{C}(S) \) are defined differently, but we will not be appealing to that definition in our article. By [MM99] and [MS13], the graphs \(\mathcal{C}(S) \) and \(\mathcal{A}(S) \) are Gromov-hyperbolic.

We fix an arbitrary complete hyperbolic metric on \(S \). A geodesic lamination on \(S \) is a closed subset of \(S \) that is a disjoint union of leaves that are geodesic lines and circles in \(S \) that do not self-intersect. A geodesic lamination \(L \) is minimal if its every leaf is dense in \(L \). Let \(Y \subset S \) be a subsurface whose all boundary components are geodesic circles. We say that a geodesic lamination \(L \subset Y \) fills \(Y \) if every curve on \(Y \) intersects \(L \). Analogously, a pair of oriented arcs \(a, b \subset Y \) fills \(Y \) if every curve on \(Y \) intersects the geodesic representative of \(a \) or \(b \).

A peripherally ending lamination is a minimal geodesic lamination that fills a subsurface \(Y \) containing all the punctures of \(S \). An ending lamination is a minimal geodesic lamination that fills the entire \(S \). Let \(\mathcal{EL}(S) \subset \mathcal{EL}_0(S) \) denote the sets of ending, and peripherally ending laminations on \(S \), respectively, with the topology given by the following coarse Hausdorff convergence. Namely, \(L_n \rightharpoonup \text{CH} L \) if for any subsequence \(L_{n_i} \), Hausdorff converging to a geodesic lamination \(L' \), we have \(L \subset L' \) (see [Ham06]). By [Kla99] and [Sch13] (see also Theorem 3.2 in Section 3), the spaces \(\mathcal{EL}(S), \mathcal{EL}_0(S) \) can be equivariantly identified with the Gromov boundaries of \(\mathcal{C}(S) \) and \(\mathcal{A}(S) \).

2.2. Unicorns

Definition 2.1. Let \(a, b \in \mathcal{A} \), and keep the notation \(a, b \) for the geodesic oriented arcs representing them. A unicorn arc for \(a \) and \(b \) is the homotopy class of an oriented arc that is a concatenation \(a' \cup b' \) for \(a' \) an initial segment of \(a \), and \(b' \) a terminal segment of \(b \), possibly \(a' = a, b' = \emptyset \), or \(a' = \emptyset, b' = b \). Note that orienting the arcs replaces the choice of endpoints in [HPW15, Def 3.1].

The set of all oriented arcs that are such concatenations \(a' \cup b' \) can be ordered into a sequence \((a'_i \cup b'_i)_{i=0}^{n-1} \) so that for all \(0 \leq i < n \) we have \(a'_{i+1} \supset a'_i \) and \(b'_{i+1} \supset b'_i \). We denote by \(c_i \in \mathcal{A} \) the homotopy class of \(a'_i \cup b'_i \) and we call the sequence \(P(a, b) = (c_i)_{i=0}^{n} \in \mathcal{A}^{n+1} \) the unicorn path from \(a \) to \(b \).
Remark 2.2 ([HPW15, Rm 3.2]). For each $0 \leq i < n$, the unicorn arcs c_i, c_{i+1} are adjacent in $A(S)$.

Let L_0 be a peripherally ending lamination. Let l be a geodesic line on S that does not self-intersect and ends at a puncture in the sense that l contains a geodesic ray properly embedded in S. We say that l is asymptotic to L_0, if $l \subset S \setminus L_0$. Since each puncture of S lies in once-punctured ideal polygon of $S \setminus L_0$, the number of such l is bounded by the total number of their ideal vertices, which is at most $2|\chi|$.

Definition 2.3 ([PO17, §3.1]). Let $a \in A$ and keep the notation a for the geodesic oriented arc representing it. Let l be a geodesic line asymptotic to $L_0 \in \mathcal{EL}_0(S)$. A unicorn arc for a and l is the homotopy class an oriented arc that is a concatenation $a' \cup l'$ for a' an initial segment of a, and l' a terminal segment of l, possibly $a' = a$ and $l' = \emptyset$.

The set of all oriented arcs that are such concatenations $a' \cup l'$ can be ordered into a sequence $(a'_i \cup l'_i)_{i=0}^{\infty}$ so that for all $i \geq 0$ we have $a'_{i+1} \subset a'_i$ and $l'_{i+1} \supset l'_i$. We denote by $c_i \in A$ the homotopy class of $a'_i \cup l'_i$ and we call the sequence $P(a,l) = (c_i)_{i=0}^{\infty} \in A^\mathbb{N}$ the infinite unicorn path from a to l.

3. Key lemmas

Definition 3.1. Let $n \in \{3, 4, \ldots, \infty\}$. A sequence $(c_i)_{i=0}^{n} \in A^{n+1}$ is a locally unicorn path if for each $0 \leq j < k \leq n$ with $j + 3 \leq k < \infty$, the sequence $(c_i)_{i=j}^{k}$ is the unicorn path from c_j to c_k.

By Remark 2.2, a locally unicorn path is an edge-path in $A(S)$. Moreover, by [HPW15, Lem 3.5] each finite unicorn path of length ≥ 3 is a locally unicorn path. Furthermore, by [PO17, Lem 3.4] an infinite unicorn path is also locally unicorn.

By [HPW15, Prop 4.2] there is a universal constant C such that each finite unicorn path $P(a,b)$ is at Hausdorff distance $\leq C$ from a geodesic edge-path in $A(S)$ from a to b. Consequently, each locally unicorn path is bounded or converges w.r.t. the Gromov product (see [GdlH90, §7.2]) to a point in $\partial A(S)$. This leads to the following result of Pho-On (the existence of an equivariant homeomorphism was announced earlier by Schleimer [Sch13]).

Theorem 3.2 ([PO17, §3.2-3]). Let $a \in A$. Let $L_0 \in \mathcal{EL}_0(S)$ and let l be a geodesic line asymptotic to L_0. Then $P(a,l)$ is not bounded and its limit $F(L_0) \in \partial A(S)$ w.r.t. the Gromov product depends only on L_0. Furthermore, $F: \mathcal{EL}_0(S) \rightarrow \partial A(S)$ is a $\text{Mod}(S)$-equivariant homeomorphism.

In fact, the local condition characterises infinite unicorn paths:
Lemma 3.3. Let P be a locally unicorn path that is not bounded in $\mathcal{A}(S)$. Then P is an infinite unicorn path.

Proof. Denote $P = (c_i)_{i=0}^{\infty} \in \mathbb{A}^{\mathbb{N}}$, and keep the notation c_i for the geodesic oriented arcs representing them. Since P is not bounded in $\mathcal{A}(S)$, it converges to some point $F(L_0) \in \partial \mathcal{A}(S)$. By [PO17, Lem 3.9], we have that c_i coarse Hausdorff converge to $L_0 \in \mathcal{EL}_0(S)$. Denote $c_0 = c_0$. We claim that for each $n \geq 1$ there is a geodesic line l asymptotic to L_0 such that for each $i \leq n$ the unicorn arc a_i on the infinite unicorn path from c to l coincides with c_i. Since there are only finitely many l asymptotic to L_0, the lemma follows from the claim.

To justify the claim, note that since P is a locally unicorn path, all c_i with $i \geq 1$ end at a common puncture p. Let D be the ideal polygon of $S \setminus L_0$ containing p. Let l be a geodesic line asymptotic to L_0 ending at p. Let $c' \cup l'$ represent the n-th unicorn arc on the unicorn path from c to l, let $x' = c' \cap l'$, and let d' be the segment of c that is the component of $D \cap c$ containing x'. See Figure 1. Let D_p be the component of $D - \bigcup d'$ containing p, where the union is taken over all the geodesic lines l asymptotic to L_0 and ending at p. Let $\alpha > 0$ be the minimum possible angle that makes with L_0 a geodesic ray in D_p starting on L_0 and ending at p. Since $(c_i)_{i=0}^{\infty} \overset{\text{CH}}{\rightarrow} L_0$, there is $N \geq n$ such that c_N does not intersect L_0 at angle $\geq \alpha$. Consequently, the component c'_N of $c_N \cap D_p$ ending at p starts on d' for some l (see Figure 1).

Let q be the puncture at which c starts. We have a bijection $h: l' \cap c \rightarrow c'_N \cap c$ such that each pair $x, h(x)$ lies in the same component of $D_p \cap c$. Furthermore, for each $x \in l' \cap c$, the segments $q x \subset c$ and $xp \subset l$ intersect only at x if and only if the segments $qh(x) \subset c$ and $h(x)p \subset c_N$ intersect only at $h(x)$. In other words, the concatenation $qx \cup xp$ represents a unicorn arc for c and l if and only if the concatenation $qh(x) \cup h(x)p$ represents a unicorn arc for c and c_N. Moreover, these two oriented arcs are homotopic. Finally, this correspondence preserves the
order of unicorn arcs. Thus, for $0 \leq i \leq n$, we have $a_i = c_i$, justifying the claim. □

Let $L_0 \in \mathcal{EL}_0(S)$. We define an equivalence relation \sim_{L_0} on A, by declaring $a \sim_{L_0} b$ if the geodesic representatives of a, b start at the same puncture and their first points in L_0 lie on the same side of the ideal polygon of $S \setminus L_0$ containing that puncture. Note that \sim_{L_0} has at most $2|\chi|$ equivalence classes.

We now prove a tail equivalence lemma that will later allow us to reduce the orbit equivalence on $\partial A(S)$ to E_t.

Lemma 3.4. Let $L_0 \in \mathcal{EL}_0(S)$, and let $a, b \in A$ with $a \sim_{L_0} b$. Then for each geodesic line l asymptotic to L_0, the unicorn path $(a_i)_{i=0}^{\infty}$ from a to l and the unicorn path $(b_i)_{i=0}^{\infty}$ from b to l satisfy $a_i = b_{i+k}$ for some $k \in \mathbb{Z}$ and all i sufficiently large.

Proof. Let $a, b \in A$ with $a \sim_{L_0} b$ and keep the notation a, b for the geodesic oriented arcs representing them. Let x, y be the first points on a, b in L_0. Since $a \sim_{L_0} b$, there is a geodesic segment $xy \subset L_0$. Furthermore, since L_0 is minimal, there are segments xx', yy' in a, b such that $x'y'$ is a geodesic segment in L_0, and $xx'y'y$ bounds a topological disc B embedded in S. See Figure 2.

Consequently, the components of the intersection $B \cap l$ are geodesic segments joining xx' to yy', which yields a bijection $h: xx' \cap l \to yy' \cap l$. Let $a' \subset a$ be an initial segment of a ending in $z \in xx' \cap l$, and let b' be the initial segment of b ending in $h(z)$. Furthermore, let l', l'' be the terminal segments of l starting in $z, h(z)$, respectively. Assume without loss of generality $l'' \subset l'$, as in Figure 2.

Note that xz intersects $zh(z) \subset l'$ only at z. Furthermore, xz is disjoint from l'' if and only if $yh(z)$ intersects l'' only at $h(z)$. Consequently, the concatenation $a' \cup l'$ represents a unicorn arc if and only if $b' \cup l''$ represents a unicorn arc. Moreover, these two oriented arcs are homotopic. Finally, this correspondence preserves the order of unicorn arcs, and all a_i for i sufficiently large are accounted for in this way. □

![Figure 2. Rectangle B](image)
4. Hyperfiniteness

We fix a basepoint \(a_0 \in A \).

Definition 4.1. Let \(\mathcal{P} \subset A^\mathbb{N} \) be the set of infinite unicorn paths from \(a_0 \) to any geodesic line asymptotic to any \(L_0 \in \mathcal{E}L_0(S) \). Let \(f: \mathcal{P} \to \partial A(S) \) be the map assigning to such path its limit \(F(L_0) \in \partial A(S) \) w.r.t. the Gromov product (see Theorem 3.2).

Note that \(f \) is finite-to-one, since \(a_0 \) is fixed and there are finitely many geodesic lines asymptotic to a given \(L_0 \in \mathcal{E}L_0(S) \).

Remark 4.2. We equip the countable set \(A \) with the discrete topology and \(A^\mathbb{N} \) with the product topology. Then the set \(\mathcal{P} \subset A^\mathbb{N} \) is Borel. Indeed, by Lemma 3.3, \(\mathcal{P} \) is the set of locally unicorn paths that are not bounded. The set of locally unicorn paths is closed in \(A^\mathbb{N} \), since each of the conditions on \((c_i)_{i=j}^k \) to be a unicorn path is closed. Furthermore, for each \(n \geq 0 \), the set of sequences in \(A^\mathbb{N} \) at distance \(\leq n \) from \(a_0 \) is closed, so the set of sequences in \(A^\mathbb{N} \) at bounded distance from \(a_0 \) is a countable union of closed sets. Consequently, \(\mathcal{P} \) is a countable intersection of open sets.

Since locally unicorn paths are uniformly Hausdorff close to geodesic edge-paths, and the function \(f \) assigns their limits in \(\partial A(S) \), we have that \(f \) continuous w.r.t. the metric on \(\partial A(S) \) defined using the Gromov product.

Let \(\mathcal{T} \) be the countable set of finite length edge-paths in \(A(S) \), up to the action of \(\text{Mod}(S) \), equipped with the discrete topology. For an infinite unicorn path \(P = (c_i)_{i=0}^\infty \), given \(i \geq 0 \) and \(j = i + 1, \ldots \), the subsurfaces \(\Sigma_{i,j} \subseteq S \) filled by \(c_i \) and \(c_j \) form an ascending sequence \(\Sigma_{i,j} \subseteq \Sigma_{i,j+2} \subseteq \cdots \) that stabilises with some subsurface which we call \(\Sigma_i \subseteq S \). For each \(i \geq 0 \), let \(m(i) > i + 1 \) be minimal satisfying \(\Sigma_{i+1,m(i)} = \Sigma_{i+1} \). Let \(T_i = (c_j)_{j=i}^{m(i)} \), and let \([T_i]\) be the equivalence class of \(T_i \) in \(\mathcal{T} \). Let \(g: \mathcal{P} \to \mathcal{T}^\mathbb{N} \) be the map defined by \(g(P) = ([T_i])_{i=0}^\infty \). Let \(E_i \) be the tail equivalence relation on \(\mathcal{T}^\mathbb{N} \) described in Section 1 (with \(\Omega = \mathcal{T} \)).

Note that the definition of \(g \) can be analogously extended to infinite unicorn paths \(P \notin \mathcal{P} \) (i.e. to infinite unicorn paths that start at points distinct from \(a_0 \)), which we will make use of later on.

Remark 4.3. We equip \(\mathcal{T}^\mathbb{N} \) with the product topology. Then the map \(g: \mathcal{P} \to \mathcal{T}^\mathbb{N} \) is Borel. Indeed, for all \(0 \leq i < j \), the maps \(P \to \Sigma_{i,j} \) are continuous maps from \(\mathcal{P} \) to the countable discrete set of subsurfaces of \(S \), and hence their limits \(P \to \Sigma_i \) are Borel. Thus, for all \(0 \leq i < j \), the subset of \(\mathcal{P} \) defined by the identity \(\Sigma_{i,j} = \Sigma_i \) is Borel, and so the maps \(m(i): \mathcal{P} \to \mathbb{N} \) are Borel. Consequently, all the maps \([T_i]: \mathcal{P} \to \mathcal{T} \) are Borel, as desired.
Lemma 4.4. Let \(P, P' \in \mathcal{P} \). If \(g(P) \sim_{E_t} g(P') \), then there is \(\psi \in \text{Mod}(S) \) satisfying \(\psi f(P) = f(P') \). Conversely, for each orbit \(\omega \) of the action of \(\text{Mod}(S) \) on \(\partial \mathcal{A}(S) \), there are finitely many equivalence classes of \(E_t \) on \(\mathcal{T}^N \) containing all \(g(P) \) for \(P \in \mathcal{P} \) with \(f(P) \in \omega \).

Proof. Denote \(P = (c_i)_{i=0}^\infty \), \(P' = (c'_i)_{i=0}^\infty \). Let \(T'_i \) be defined for \(P' \) analogously as \(T_i \) was for \(P \). If \(g(P) \sim_{E_t} g(P') \), then there are \(k \in \mathbb{Z}, j \in \mathbb{N} \) such that \([T'_i] = [T'_{i+k}] \) for all \(i \geq j \). In particular, there is \(\psi \in \text{Mod}(S) \) with \(\psi T_j = T'_j \). We will show inductively that \(\psi T_i = T'_{i+k} \) for all \(i \geq j \), so in particular \(\psi c_i = c'_i + k \) implying \(\psi f(P) = f(P') \).

Suppose that we have established \(\psi T_i = T'_{i+k} \) for some \(i \geq j \). If \(m(i + 1) \leq m(i) \), then \(\psi T_{i+1} = T'_{i+1+k} \) is immediate, so we can assume \(m(i + 1) > m(i) \). Let \(\rho \in \text{Mod}(S) \) be such that \(\rho T_{i+1} = T'_{i+1+k} \). Then \(\rho^{-1} \psi \) fixes all \(c_{i+1}, \ldots, c_{m(i)} \). Thus the restriction of \(\rho^{-1} \psi \) to the subsurface \(\Sigma_{i+1} \subseteq S \), which \(c_{i+1} \) and \(c_{m(i)} \) fill, is the identity map. By the definition of \(\Sigma_{i+1} \), we have that \(c_{m(i)+1}, \ldots, c_{m(i)+1} \) all lie in \(\Sigma_{i+1} \). This implies that \(\rho^{-1} \psi \) fixes them and so \(\psi T_{i+1} = T'_{i+1+k} \), completing the induction.

For the converse, let \(\omega \) be the orbit under \(\text{Mod}(S) \) of some \(F(L_0) \in \partial \mathcal{A}(S) \). Let \(l_1, \ldots, l_n \) be the finitely many geodesic lines asymptotic to \(L_0 \). Choose \(a_1, \ldots, a_p \in A \) that are representatives of the equivalence classes of \(\sim_{L_0} \) distinct from the one containing \(a_0 \). For \(0 \leq q \leq p \) and \(1 \leq j \leq n \), let \(P_{aj} = P(a_j, l_j) \).

Let \(P = (c_i)_{i=0}^\infty \in \mathcal{P} \) with \(f(P) \in \omega \). By Theorem 3.2, we have \(P = P(a_0, l) \) where \(l \) is a geodesic line asymptotic to \(\psi L_0 \) for some \(\psi \in \text{Mod}(S) \). In particular, for some \(1 \leq j \leq n \) we have \(l = \psi l_j \). Thus \(\psi^{-1} P = P(\psi^{-1} a_0, l_j) \). Choose \(0 \leq q \leq p \) so that \(a_q \sim_{L_0} \psi^{-1} a_0 \). By Lemma 3.4, writing \(P_{aj} = (b_i)_{i=0}^\infty \), we have \(\psi^{-1} c_i = b_{i+k} \) for some \(k \in \mathbb{Z} \) and all \(i \) sufficiently large. We have then that \(g(P_{aj}) \) and \(g(\psi^{-1} P) \), hence also \(g(P) \), are tail equivalent.

Proof of Theorem 1.1. Write \(E \) for the equivalence relation on \(\partial \mathcal{A}(S) \) induced by the action of \(\text{Mod}(S) \) and write \(E^* \) for the equivalence relation on \(\mathcal{P} \) that is the pullback of \(E \) via \(f \), i.e. \(P \sim_{E^*} P' \) if \(f(P) \sim_E f(P') \). Since \(E \) is Borel and countable, and \(f \) is Borel and finite-to-one, we have that \(E^* \) is also Borel and countable.

Since \(f \) is a Borel finite-to-one function, it has a Borel right inverse by the Lusin–Novikov uniformisation theorem [Kec95, Thm 18.10]. Consequently, \(E \) is Borel reducible to \(E^* \). Thus it is enough to show that \(E^* \) is hyperfinite.

Write \(E^*_t \) for the equivalence relation on \(\mathcal{P} \) that is the pullback of \(E_t \) via \(g \). Since \(E_t \) is Borel, and \(g \) is Borel, we have that \(E^*_t \) is Borel. By Lemma 4.4, we have \(E^*_t \subseteq E^* \) and every equivalence class of \(E^* \) contains finitely many equivalence classes of \(E^*_t \). (In particular, \(E^*_t \) is countable.) Thus by [JKL02, Prop 1.3(vii)] it is enough to show that \(E^*_t \) is hyperfinite.
Note that g is a Borel reduction of E_t^* to E_t. Thus since E_t is hyperfinite [DJK94, Cor 8.2], we have that E_t^* is hyperfinite as well. □

Proof of Corollary 1.2. Assume first that S has $n \geq 1$ punctures. Then by [Kla99, Thm 1.3], Theorem 1.1, and [JKL02, Prop 1.3(iii)] it suffices to prove that $\mathcal{EL}(S)$ is a Borel subset of $\mathcal{EL}_0(S)$. Indeed, $L_0 \in \mathcal{EL}_0(S)$ is a minimal filling lamination if and only if each curve c on S intersects L_0 and does it transversally. Given c, this is an open condition, and so $\mathcal{EL}(S)$ is a countable intersection of open sets.

Secondly, assume $n = 0$ and let S' be the surface obtained from S by adding one puncture at a point outside the closure of the union of all embedded geodesic circles and lines, which exists by [BS85, Thm I]. This induces a closed embedding $e: \mathcal{EL}(S) \to \mathcal{EL}(S')$, which is a section for the map $r: \mathcal{EL}(S') \to \mathcal{EL}(S)$ defined by forgetting the puncture. See [PO17, §4.2] for details. Thus for each $L_1, L_2 \in \mathcal{EL}(S)$, with $\psi'(L_1) = e(L_2)$ for some $\psi' \in \text{Mod}(S')$, we have that the image $\psi \in \text{Mod}(S)$ of ψ' under the puncture forgetting map $\text{Mod}(S') \to \text{Mod}(S)$ satisfies $\psi(L_1) = L_2$.

Conversely, let $L \in \mathcal{EL}(S)$ and let $R_1, \ldots, R_n \subset S$ be the components of $S \setminus L$. For $1 \leq j \leq n$, let L_j be a lamination in $\mathcal{EL}(S')$ obtained from L by adding a puncture in R_j, under an arbitrary identification with S'. All such identifications differ by $\text{Mod}(S')$, so the resulting orbit $[L_j]$ in $\mathcal{EL}(S')$ does not depend on our choice. Since e is a section for r, we have $e(L) \in \bigcup_{j=1}^n [L_j]$. Analogously, for any $\psi \in \text{Mod}(S)$, we have $e(\psi(L)) \in \bigcup_{j=1}^n [L_j]$.

Consequently, under the identification of $\mathcal{EL}(S)$ with $e(\mathcal{EL}(S))$, each orbit of $\text{Mod}(S)$ on $\mathcal{EL}(S)$ consists of the intersections of finitely many orbits of $\text{Mod}(S')$ on $\mathcal{EL}(S')$ with $e(\mathcal{EL}(S))$. Thus by [JKL02, Prop 1.3 (iii,vii)], the hyperfiniteness of the action of $\text{Mod}(S)$ on $\mathcal{EL}(S)$ follows from the hyperfiniteness of the action of $\text{Mod}(S')$ on $\mathcal{EL}(S')$. □

References

Dep. of Math. & Stat., McGill University, Burnside Hall, 805 Sherbrooke St. W, Montreal, Quebec, Canada H3A 0B9

Email address: piotr.przytycki@mcgill.ca

Email address: marcin.sabok@mcgill.ca