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Abstract. We prove the Tits Alternative for groups acting on 2-dimensional
CAT(0) complexes with a bound on the order of the cell stabilisers.

1. Introduction

A triangle complex X is a 2-dimensional simplicial complex, with a fol-
lowing piecewise smooth Riemannian metric. Namely, we have a family of
smooth Riemannian metrics σT , σe on the triangles and edges such that the
restriction of σT to e is σe for each e ⊂ T . Riemannian metrics σT , σe induce
metrics (i.e. distance functions) on triangles and edges. We then equip X
with the quotient pseudometric d (see [BH99, I.5.19]). We assume that for
each metric ball B, the simplices of X intersecting B have only finitely many
isometry types. (Note that the only time we will apply it to B of radius
nonzero is in the proof of Remark 2.5.) Then (X, d) is a complete length
space, which can be deduced from [BH99, I.7.13 and I.5.20] using a bilipschiz
map from each B to a piecewise Euclidean complex. All group actions on X
will be by simplicial isometries.

We say that a group acts on a cell complex X almost freely if there is a
bound on the order of the cell stabilisers. Note that an almost free action on
a triangle complex is proper in the sense of [BH99, I.8.2]. Furthermore, any
subgroup of a group acting properly and cocompactly acts almost freely.

Theorem A. Let G be a finitely generated group acting almost freely on a
CAT(0) triangle complex X. Then G is virtually cyclic, or virtually Z2, or
contains a nonabelian free group.

By [BH99, II.7.5 and II.7.7(2)] and Remarks 2.4 and 2.5, if G acts almost
freely on a CAT(0) triangle complex with finitely many isometry types of
simplices, then every sequence G1 < G2 < · · · of virtually abelian subgroups
of G stabilises. Consequently:

Corollary B. If X has finitely many isometry types of simplices, then The-
orem A holds also for G infinitely generated.
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As explained in [OP21, page 3], one cannot omit in Theorem A the as-
sumption on almost freeness.

Here are some examples of applications of Theorem A to particular groups.
The first result, which is a consequence of Corollary B, was studied inde-
pendently by Paul Tee. We are assuming that G below acts freely instead
of almost freely, since A is torsion free [CD95, Thm B].

Corollary C. Let G be a subgroup of a 2-dimensional Artin group A acting
freely on the modified Deligne complex of A (see [CD95]). Then G is cyclic,
Z2, the fundamental group of the Klein bottle, or contains a nonabelian free
group.

The second result concerns the tame automorphism group Tame(k3) (see
[LP21]). In [LP21, §2 and §5] we introduced a cell complex X with an
action of Tame(k3). We proved that X is CAT(0) for k of characteristic 0
[LP21, Thm A]. Some cells of X are polygons instead of triangles, but we
can easily transform X into a triangle complex by subdividing.

Corollary D. Let G be a finitely generated subgroup of Tame(k3), with k
of characteristic 0. Suppose that G acts almost freely on the cell complex X.
Then G is virtually cyclic, or virtually Z2, or contains a nonabelian free
group.

An ingredient in the proof of Theorem A is the following characterisation
of CAT(0) triangle complexes using a link condition. In [BB96, Thm 7.1] this
was proved only for locally compact triangle complexes, and in [BH99, II.5.2]
only for piecewise Euclidean and piecewise hyperbolic triangle complexes.

Theorem E. A triangle complex X is locally CAT(0) if and only if

(i) the Gaussian curvature of σT at any interior point of a triangle T of X
is ≤ 0, and

(ii) the sum of geodesic curvatures in any two distinct triangles of X at
any interior point of a common edge is ≤ 0, and

(iii) for each vertex v of X, the girth of the link lkXv is ≥ 2π.

Motivation and relation to other results. The term Tits Alterna-
tive usually refers to the property that all finitely generated subgroups
are either virtually solvable or contain a nonabelian free group. The name
comes from the theorem of Tits [Tit72] who proved that every finitely gen-
erated linear group is either virtually solvable or contains a nonabelian
free group. It is widely believed (see e.g. [Bes00, Quest 2.8],[Bri06],[Bri07,
Quest 7.1],[FHT11, Prob 12],[Cap14, §5]) that all CAT(0) groups (groups
acting geometrically, that is, properly and cocompactly, on CAT(0) spaces)
satisfy the Tits Alternative. This was proved only in a limited number of
cases: see [NV02,SW05,CS11,MP20,MP21b,OP21] and references therein.

Groups acting geometrically on 2-dimensional CAT(0) complexes were
studied thoroughly by Ballmann and Brin in [BB95], where they proved
the Rank Rigidity Conjecture for such groups. They also proved that such
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groups are either virtually abelian, or contain a nonabelian free group (state-
ments of this type are sometimes called the Weak Tits Alternative [SW05]).
However, the Tits Alternative for such groups has been open till our cur-
rent work. (E.g. in [FHT11, Prob 12] the question on the Tits Alternative
is asked specifically in dimension 2.) Just recently, together with Norin
we were able to show in [NOP21], among other results, that the groups in
question do not contain infinite torsion subgroups. This property might be
seen as the first step towards the Tits Alternative. In [OP21] we proved the
Tits Alternative for the class of 2-dimensional recurrent complexes. This
class contains all 2-dimensional Euclidean buildings, 2-dimensional systolic
complexes, as well as some complexes outside the CAT(0) setting.

Regarding Corollary C, for right-angled Artin groups the Tits Alternative
follows from the work of Sageev and Wise [SW05]. In our previous work
[OP21] we showed the Tits Alternative for a subclass of 2-dimensional Artin
groups, containing all large-type Artin groups. Recently, in [MP21b] we
proved the Tits Alternative for 2-dimensional Artin groups of hyperbolic
type, and in [MP20] we proved it for FC-type Artin groups. An approach
to the Tits Alternative for subgroups of 2-dimensional Artin groups acting
not almost freely on the modified Deligne complex has been developed by
Martin [Mar20].

As for Corollary D, Cantat proved that the group of birational transfor-
mations Bir(S), for a projective surface S over any field k, satisfies the Tits
Alternative [Can11]. Earlier, Lamy proved the Tits Alternative for the group
of polynomial automorphisms Aut(C2) [Lam01], and the proof extends to
any field k of characteristic 0. The same statement for Aut(k3) seems at the
moment out of reach. However, we believe that for Tame(k3) ( Aut(k3),
with k of characteristic 0, one could study the subgroups acting not almost
freely on the CAT(0) complex X of [LP21] by generalising the methods of
the current paper.

Organisation. In Section 2 we prove Theorem E. In Section 3 we recall the
method of invariant cocompact subcomplexes from [OP21], which allows us
to reduce Theorem A to Proposition 3.2 that assumes the existence of edges
of degree ≥ 3 in our complex X. Under this assumption we can exclude the
cases of virtually cyclic or Z2 groups in Section 4. In technical Section 5,
which we recommend to skip at the first reading, we arrange our complex X
to have no ‘unfoldable’ links. We give criteria for finding ‘rank 1’ elements,
and consequently free subgroups, in Section 6. In the absence of ‘rank 1’
elements, we obtain a particular rationality property of the complex X in
Section 7. In Section 8 we give new criteria for distinguishing the end-
points of certain piecewise geodesics. Together with a Poincaré recurrence
argument this allows us to prove Proposition 3.2 in Section 9.

Acknowledgements. We thank Werner Ballmann, Martin Bridson, Flo-
restan Brunck, Pierre-Emmanuel Caprace, Koji Fujiwara, Stéphane Lamy,
and Paul Tee for helpful remarks.
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2. Characterisation of CAT(0) triangle complexes

In this section we prove Theorem E, which characterises CAT(0) triangle
complexes. The following result is known under the name of the Cartan–
Hadamard theorem.

Theorem 2.1 ([BH99, II.4.1(2)]). Let X be a complete connected metric
space. If X is simply connected and locally CAT(0), then it is CAT(0).

We also have the following consequence of [BH99, II.1.7(4) and II.4.14(2)].

Theorem 2.2. Let X be a complete CAT(0) space. A piecewise local geo-
desic in X with Alexandrov angles π at the breakpoints is a geodesic.

Let x be a point of a triangle complex X. Let lkXx be the metric graph
that is the link of x, as defined in [BB95, page 176]. Namely, if x is a vertex
of X, then the vertices of lkXx correspond to the edges of X containing x and
the edges of lkXx correspond to the triangles of X containing x. The length of
each edge is the angle in the corresponding triangle of X. Since we assumed
that triangles containing x belong to only finitely many isometry classes
of σT , there are only finitely many possible edge lengths in a given lkXx . If x
lies in the interior of an edge e of X, then lkXx has two vertices corresponding
to the components of e \ x, and edges of length π corresponding to the
triangles of X containing e. If x lies in the interior of a triangle, then
lkXx is a circle of length 2π. We denote by dXx (or, shortly, dx) the length
metric on lkXx . In [NOP21, §2] we explained how to identify lkXx with the
completion of the space of directions at x (see [BH99, II.3.18]). Thus a
local geodesic in X starting at x determines a point in lkXx . The angle at x
between two such local geodesics is defined to be the distance between the
two corresponding points in lkXx with respect to the metric dx. As explained
in [NOP21, §2], if this angle is < π, then it coincides with the Alexandrov
angle, and if it is ≥ π, then the Alexandrov angle equals π.

Proof of Theorem E. In the ‘only if’ part, condition (i) follows from [BH99,
II.1A.6]. The proof of condition (ii) is identical to that in [BB96, Thm 7.1],
and the proof of condition (iii) was given in [NOP21, §2]. For the proof of
the ‘if’ part, suppose that a triangle complex X satisfies conditions (i)–(iii).
By condition (i) and [BH99, II.1A.6], we have that X is locally CAT(0) at
any interior point of a triangle.

Consider now an edge e of X. Let St(e) be the union of all the closed
triangles containing e. We will show that St(e) is CAT(0), which implies
that X is locally CAT(0) at any interior point x of e, since the metrics
on St(e) and on X coincide on a sufficiently small neighbourhood of x. Let
Y ⊂ St(e) be the union of the triangles T for which there exists a point on e
with positive geodesic curvature in T . By condition (ii), there is at most
one such triangle of given isometry type T0 and given embedding e ⊂ T0, so
Y has finitely many triangles. We denote this number by m(e) for future
reference. For each triangle T of St(e) outside Y , denote YT = Y ∪ T . By
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conditions (i) and (ii), and by [BB96, Thm 7.1], we have that each YT is
locally CAT(0), hence CAT(0) by Theorem 2.1. (Note that a geodesic in YT
might enter and exit a given triangle infinitely many times.) Furthermore,
the inclusion Y ⊂ YT is an isometric embedding, since points of e have
nonpositive geodesic curvature in T . By [BH99, II.11.3], the union St(e)
of YT is CAT(0), as desired.

Consider now a vertex v of X. After possibly subdividing X, we can
assume that in each triangle T containing v, the local geodesic γT starting
at v and bisecting the angle of T at v ends at the opposite side of T . We will
prove that the union St(v) of all the closed triangles and edges containing v
is CAT(0). This will imply that X is locally CAT(0) at v, since the metrics
on St(v) and on X coincide on a sufficiently small neighbourhood of v.

Claim. St(v) is geodesic, and there is M > 0 such that each geodesic
in St(v) intersects the interiors of at most M triangles.

To justify the Claim, we employ the idea of a taut string [BH99, I.7.20].
Let θ be the minimum of π and the minimum length of an edge in lkXv , and
set N = 2 + π

θ . Let M = 1 + N(1 + maxem(e)), where m(e) is defined as
above and the maximum is taken over all the edges e of St(v) containing v.
For each such edge e, let St′(e) ⊂ St(e) be the closure of the component
containing e of St(e) \

⋃
T⊂St(e) γT , for γT as above. Since St′(e) is locally

convex in St(e), it is CAT(0) [BH99, II.4.14(1)].
For x, y ∈ St(v), a string between x and y is a sequence of edges e1, . . . , en

of St(v) containing v and points x0 = x, x1, . . . , xn = y with St′(ei) contain-
ing both xi−1 and xi. The length of the string is the sum Σn

i=1di(xi−1, xi),
where di is the metric on St′(ei). The distance between x and y in St(v) is
the infimum of the lengths of strings between x and y. A string is taut, if
n ≤ 2 or

• for each 0 ≤ i ≤ n, the point xi is distinct from v, and
• for each 0 < i < n, the point xi belongs to one of the γT defined

above, and
• for each 0 < i < n, the concatenation of geodesics xi−1xi in St′(ei)

and xixi+1 in St′(ei+1) is a geodesic in St′(ei) ∪ St′(ei+1).

We now justify that for each string (ei), (xi) between x and y we can
find a taut string between x and y whose length does not exceed the length
of (ei), (xi). Indeed, by discarding some xi, we can first assume that con-
secutive ei are distinct and so for each 0 < i < n the point xi belongs
to one of the γT . Since γT are compact, there is a choice of x′i in the
same γT as xi, minimising the length of the string (ei), (x

′
i). Then the con-

catenation of geodesics x′i−1x
′
i in St′(ei) and x′ix

′
i+1 in St′(ei+1) is a geodesic

in St′(ei) ∪ St′(ei+1). Finally, if an x′i−1 equals v, and x′i 6= xn, then for
x′i ∈ γT , the subpath of γT from x′i−1 to x′i is a geodesic in both St′(ei)
and St′(ei+1), and consequently we can discard x′i and ei from the string.
Repeating the argument we arrive at i−1 = n−1 or i−1 = n. Analogously,
we obtain i− 1 = 1 or i− 1 = 0, and so n ≤ 2.
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We will now show that a taut string satisfies n ≤ N . We can assume
n > 2, and so none of xi equals v. For 0 < i < n, let θi be the Alexandrov
angle at xi in St′(ei+1) between the geodesics xixi+1 and xiv. The concate-
nation of geodesics xi−1xi in St′(ei) and xixi+1 in St′(ei+1) is a geodesic in
St′(ei)∪St′(ei+1), which is CAT(0) by [BH99, II.11.3]. Consequently, by the
definition of θ we have θi ≥ θi−1 + θ. Thus π ≥ θn−1 ≥ (n − 2)θ + θ1, and
so n− 2 ≤ π

θ = N − 2.
Since there are finitely many isometry types of simplices in St(v), and

each taut string satisfies n ≤ N , the distance between x and y in St(v) is
realised by the length of some taut string (ei), (xi). Then the concatenation
of all the geodesics xi−1xi in St′(ei) is a geodesic between x and y, proving
that St(v) is geodesic. Furthermore, for any geodesic γ from x to y in St(v),
one can choose points on γ forming a taut string. Since any taut string
satisfies n ≤ N , and we have that γ intersects the interiors of at most
1 + n(1 + maxem(e)) triangles, the Claim follows.

Returning to the proof of Theorem E, we follow the scheme in [BB96,
Thm 7.1] to find a sequence of CAT(0) spaces Gromov–Hausdorff converging
to St(v). Namely, realise each (isometry type of a) triangle T of St(v) as
T ⊂ R2, with metric induced from some smooth Riemannian metric of
nonpositive Gaussian curvature on R2 defined in a neighbourhood U of T .
Denote by e, f the edges of T containing v, and by g the remaining edge of T .
Let l denote the length of e. For each n > 0, we decompose e into paths
a1 · a2 · · · an of length l

n , and we define κk to be the integral of the geodesic

curvature along ak. Let en be the piecewise geodesic in U that starts at v
tangent to e, has n locally geodesic pieces of length l

n , and exterior angle at

the k-th breakpoint that equals κk. For n sufficiently large the path en exists,
and they C1-converge to e as n tends to∞. We define paths fn analogously.
We define gn to be any piecewise geodesics joining the endpoints of en and fn
and C1-converging to g. This gives us a triangle Tn ⊂ U bounded by en, fn
and gn, whose boundary is piecewise geodesic (one can pass to a union of
triangles with locally geodesic boundary by subdividing). Furthermore, we
have a map Tn → T whose restriction to en, fn preserves length and which
is bilipschitz with the bilipschitz constant converging to 1 as n tends to ∞.
Glueing various Tn along the sides corresponding to the ones of T that we
glued to form St(v) yields a triangle complex that we call St(v)n. Then
St(v) is a Gromov–Hausdorff limit of St(v)n. Note that since St(v) satisfied
conditions (i)–(iii), we have that St(v)n satisfies conditions (i)–(iii). Since
St(v)n has locally geodesic edges, and is geodesic by the Claim (applied to
St(v)n instead of St(v)), the same proof as for [BB96, Thm 7.1, case 1] shows
that St(v)n is locally CAT(0), hence CAT(0) by Theorem 2.1. Consequently,
by [BH99, II.3.10] we have that St(v) is CAT(0). �

We have the following immediate consequence of Theorem E.

Corollary 2.3. If X is a triangle complex that is locally CAT(0), then all
of its subcomplexes are locally CAT(0).
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Note that while we did not apply the Claim to St(v) in the proof of
Theorem E, it will be used in the following remarks.

Remark 2.4. Suppose that X is a CAT(0) triangle complex with finitely
many isometry types of simplices. Then the constant M in the Claim does
not depend on v. As in the ‘Ψn ⇒ Φn’ part of the proof of [BH99, I.7.28],
we obtain that for each l there is M ′ > 0 such that each geodesic in X of
length ≤ l intersects the interiors of at most M ′ simplices. Using this in the
place of [Bri99, Lem 1] in the proof of [Bri99, Lem 2 and Thm A], we obtain
that every simplicial isometry g of X is semisimple: it fixes a point, or is
loxodromic, meaning that there is a geodesic line ω in X (called an axis)
such that g preserves ω and acts on it as a nontrivial translation.

Remark 2.5. Suppose that X is a CAT(0) triangle complex with finitely
many isometry types of simplices. Then the set of translation lengths of
simplicial isometries of X is a discrete subset of [0,∞), which is proved
using the Claim exactly as [Bri99, Prop]. Similarly we obtain the following:

Let X be a CAT(0) triangle complex with a subcomplex Y on which
some group of simplicial isometries of X acts coboundedly. Since any metric
ball in X intersects finitely many isometry types of simplices, we have that
each bounded neighbourhood of Y intersects finitely many isometry types of
simplices. Then for each simplicial isometry g of X, the set infy∈Y d(y, gy)
attains its infimum, which we denote |g|Y . Moreover, the set of |g|Y over all
simplicial isometries g of X is a discrete subset of [0,∞).

3. G-cocompact subcomplexes

Let X be a simplicial complex with an action of a group G. We say that a
subcomplex Z ⊂ X is an invariant cocompact subcomplex with respect to G
(shortly G-c.s.) if Z is G-invariant, and the quotient Z/G is compact. Note
that a G-c.s. is not required to be connected.

A 2-dimensional simplicial complex is essential if every edge has degree
at least 2, and none of connected components is a single vertex. An essential
simplicial complex is thick if it has an edge of degree at least 3.

A disc diagram D is a compact contractible simplicial complex with a
fixed embedding in R2. Its boundary path is the attaching map of the cell
at ∞. If X is a simplicial complex, a disc diagram in X is a nondegenerate
simplicial map ϕ : D → X, and its boundary path is the composition of the
boundary path of D and ϕ. We say that ϕ is reduced if it maps triangles
sharing an edge to two distinct triangles. By [OP21, Rem 3.6], for each
contractible closed edge-path α in a simplicial complex X, there is a reduced
disc diagram in X with boundary path α.

A group G acts on a simplicial complex X without inversions if for any
g ∈ G stabilising a simplex σ of X we have that g fixes σ pointwise. More
generally, we say that G acts without weak inversions if for each vertex v
of X there is no g ∈ G sending v to a distinct vertex in a common edge.
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The first ingredient in our proof of Theorem A is the following earlier
result.

Proposition 3.1 ([OP21, Prop 3.7]). Let G be a finitely generated group act-
ing almost freely and without inversions on a simply connected 2-dimensional
simplicial complex X that contains no simplicial 2-spheres. If X contains
no thick G-c.s., then G is virtually cyclic, or virtually Z2, or contains a
nonabelian free group.

The second ingredient in the proof of Theorem A is the following, the
proof of which will occupy the present article.

Proposition 3.2. Let G be a group acting almost freely and without weak
inversions on a CAT(0) triangle complex X that is an increasing union of
connected essential G-c.s. If X contains an edge of degree ≥ 3, then G
contains a nonabelian free group.

We now show how Theorem A follows from these two ingredients.

Proof of Theorem A. By passing to a subdivision (see [NOP21, Lem 2.1]),
we can assume that G acts without weak inversions. By Proposition 3.1, we
can assume that X contains a thick G-c.s. Z1. We will prove that G contains
a nonabelian free group. By passing to a connected component of Z1 and
its stabiliser G′ in G (which is finitely generated, since it acts properly and
cocompactly on a connected complex), we can assume that Z1 is connected.
If Z1 contains a closed edge-path that is not contractible in Z1, repeatedly
attaching to Z1 the images of reduced disc diagrams and their G-translates,
we obtain an increasing sequence Z1 ⊂ Z2 ⊂ · · · of connected essential G-
c.s. such that their union X ′ is simply connected. By Corollary 2.3 we have
that X ′ is locally CAT(0), and so X ′ is CAT(0) by Theorem 2.1. It remains
to apply Proposition 3.2. �

4. Not virtually cyclic or Z2

The first step of the proof of Proposition 3.2 is the following.

Lemma 4.1. Let G be a group acting almost freely on a CAT(0) triangle
complex X. If X contains a subcomplex Z that is a connected thick G-c.s.,
then

(i) G is not virtually cyclic, and
(ii) G is not virtually Z2.

In the proof of Lemma 4.1 we will need the following vocabulary. Let
X be a triangle complex. We say that a ray γ : [0,∞) → X or a path
γ : [0, 1]→ X starts (resp. ends) in a simplex σ, if for some ε > 0 the points
γ(0, ε) (resp. γ(1− ε, 1)) all lie in the interior of σ. If γ(0) (resp. γ(1)) lies
in the interior of an edge e, then γ starts (resp. ends) perpendicularly to e
if the angle at γ(0) (resp. γ(1)) between γ and e is π

2 .
We will also need the following, which generalises an argument in the

proof of [MP21a, Thm A].
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Lemma 4.2. Let A be a group isomorphic to Z2 acting freely on a CAT(0)
triangle complex W with finitely many isometry types of simplices. Then
there is an isometrically embedded A-cocompact subcomplex in W isometric
to the Euclidean plane.

Proof. Since W has finitely many isometry types of simplices, by Remark 2.4
all elements of A act as loxodromic isometries on W . By [BH99, II.7.20(1)],
we have Min(A) = Y × Rn with A preserving the product structure and
acting trivially on Y . By [BH99, II.7.20(2)], we have n ≤ 2, but since A
acts freely by simplicial isometries, we have n = 2, and so Y is a point, as
desired. �

Proof of Lemma 4.1. Let e be an edge of Z of degree ≥ 3 and let x be a point
in the interior of e. Let b1, b2, b3, be geodesics starting at x perpendicularly
to e contained in distinct triangles T1, T2, T3. For each i = 1, 2, 3, the set of
starting directions at points in ∂Ti of geodesics intersecting bi at angle < π

6
has positive Liouville measure (see [BB95, §3]). Let S denote the union of
all the open edges in the links lkZy for all y ∈ Z1 \ Z0, with the (infinite)

Liouville measure. We say that (ξj)j ∈ SZ with ξj ∈ lkZyj determines a locally

geodesic oriented line γ in Z \Z0 transverse to Z1 if γ intersects Z1 exactly
at points yj in directions ξj , in that order. Since G acts on Z properly and
cocompactly, the set of (ξj)j ∈ SZ that determine locally geodesic oriented
lines projects to a full measure subset in each coordinate S (see [BB95, §3],
which relies on [CFS82, Chap 6]). Consequently, for i = 1, 2, 3, there exists
a locally geodesic ray γi in Z starting at an interior point xi of bi at angle
< π

6 from bi, disjoint from Z0 and transverse to Z1. Let ai = xxi ⊂ bi. See
Figure 1.

T1

T2

T3 b1

b2

b3

x1

γ1

< π
6

e

x

Figure 1. The geodesic ray γ1

Since X is CAT(0), by Theorem 2.2 we have that γi are geodesic rays in X
and a−1i · aj are geodesics in X. Since each γ−1i · a

−1
i · aj · γj is a piecewise

geodesic with angles > 5π
6 at the two breakpoints, by [BH99, II.9.3] the rays

γi, γj are not asymptotic and they determine points at distance > 2π
3 in the
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Tits boundary of X. In particular, Z cannot be quasi-isometric to R, since
it contains three pairwise non-asymptotic geodesic rays. This proves (i).

For (ii), assume for contradiction that G is virtually Z2 generated by
elements g, h. Let α, β be edge-paths in Z connecting a basepoint y ∈ Z0 to
gy, hy, respectively. Then the concatenation α · gβ · hα−1 · β−1 is a closed
edge-path, and since X is simply connected, there is a reduced disc diagram
D → X with that boundary path. Let Z ′ ⊂ X be the connected thick
G-c.s. obtained from Z by adding the translates under G of the image of D.

The complex Z ′ is locally CAT(0) by Corollary 2.3. Let Z̃ ′ → Z ′ be the
universal cover of Z ′, which is CAT(0) by Theorem 2.1. The action of G

on Z ′ lifts to an almost free action of a group G̃ on Z̃ ′ fitting into the short

exact sequence π1Z
′ → G̃ → G. Since D → Z ′ lifts to D → Z̃ ′, we have

commuting g̃, h̃ ∈ G̃ mapping to g, h ∈ G, and hence generating a subgroup

A < G̃ isomorphic to Z2.
Since A acts almost freely and is torsion-free, we have that it acts freely

on Z̃ ′. By Lemma 4.2 applied with W = Z̃ ′, there is an isometrically

embedded A-cocompact subcomplex E ⊂ Z̃ ′ isometric to the Euclidean

plane. We now justify that the composition φ : E ⊂ Z̃ ′ → Z ′ ⊂ X is an
isometric embedding.

Indeed, for two triangles T, T ′ of E containing a common edge e′, the sum
of the geodesic curvatures in φ(T ) and φ(T ′) at any point of φ(e′) equals 0,
and so the geodesic curvature at φ(e′) in any triangle of X distinct from
φ(T ), φ(T ′) is nonpositive. Consequently, φ is a local isometric embedding
at e′. Furthermore, since E is isometric to the Euclidean plane, for any
geodesic γ in E passing through a vertex v, the angle (see §2) between the
incoming and outgoing directions of γ at v equals π. Since the map that
φ induces between lkEv and lkXφ(v) is locally injective, the angle between the

incoming and outgoing directions of φ(γ) at φ(v) equals π as well. By Theo-
rem 2.2, we have that φ(γ) is a geodesic. Thus φ is an isometric embedding,
as desired.

Since A is of finite index in G, we have that A acts cocompactly on Z ′.
Consequently, the geodesic rays γi from the proof of part (i) are at bounded
distance from φ(E) in Z ′. Since X is CAT(0), we obtain that each γi is
asymptotic to a geodesic ray in φ(E) and these three rays are pairwise at
angle > 2π

3 in φ(E), which is a contradiction. �

5. Folding

This section is devoted to a technical reduction of Proposition 3.2 to the
case where the vertex links of X are not ‘unfoldable’.

By a graph we mean a (possibly infinite) metric graph with finitely many
possible edge lengths. A closed edge-path embedded in a graph Λ is a
cycle of Λ. An edge-path I in Λ that is embedded, except possibly at the
endpoints, is a segment of Λ if the endpoints of I have degree ≥ 3 in Λ, but
every internal vertex of I has degree 2.
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Definition 5.1. Let S be a set with an equivalence relation ∼ each of whose
equivalence classes has size ≥ 2. A graph is a ∼-clover if it is obtained from
the disjoint union of intervals S× [0, π] by identifying all the points in S× 0
to one point called the basepoint and identifying each s× π with s′ × π for
s ∼ s′. See Figure 2. A graph is a clover if it is a ∼-clover for some S,∼.
A graph Γ is unfoldable at a vertex y if Γ is a wedge Γ1∨Γ2 at y of a cycle Γ1

of length 2π and a clover Γ2 with basepoint y. (In particular, Γ is also a
clover.)

2π

π

π

π
π

π

π

π

Figure 2. A clover

Suppose that we have a triangle complex X ′ and a vertex w′ contained in

distinct edges e1 = w′v1, e2 = w′v2 of the same length. Suppose that lkX
′

v1 is

a circle of length 2π and lkX
′

v2 is a clover with basepoint corresponding to e2
Then the quotient map p′ : X ′ → X with X obtained from X ′ by identifying
v1 with v2 and e1 with e2 is called a folding. (Note that X might not be
a simplicial complex, but in this article we will be using only the inverse
operation to folding which does result in a simplicial complex.)

Conversely, suppose that X is a triangle complex with a vertex v whose
link Γ1 ∨ Γ2 is unfoldable at a point y corresponding to an edge vw. Then,
up to an isometry, there exists a unique triangle complex X ′ and a folding
p′ : X ′ → X identifying edges w′v1, w

′v2 to wv and such that the links of vi
in X ′ map isometrically to the graphs Γi in the link of v. See Figure 3. We
call p′ the folding over Γ1 (since it is uniquely determined by Γ1).

Suppose now that p′ : X ′ → X, p̂′ : X̂ ′ → X are foldings over Γ1 6= Γ̂1.

Suppose that v 6= ŵ and v̂ 6= w. We have that Γ̂1 lifts to a link lkX
′

v′ , which

is again unfoldable, except when lkX
′

v′ = Γ̂1. In that exceptional case, we

have Γ2 = Γ̂1 and p′ = p̂′, and we set p′′ = id. Otherwise, let p′′ : X ′′ → X ′

be the folding over Γ̂1. We call p′′ ◦ p′ the folding over Γ1, Γ̂1. Note that the
folding over Γ1, Γ̂1 coincides with the folding over Γ̂1,Γ1.

Analogously, given a finite family of foldings p′λ : X ′λ → X over Γλ1 (where
λ is an index) with all vλ distinct from all wλ, the folding over {Γλ1} is the
composition of foldings over the lifts of Γλ1 , which does not depend on the
order. For a countable family of such foldings p′λ : X ′λ → X, the folding
over {Γλ1} is the inverse limit of the foldings over the finite subsets of {Γλ1}.
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Γ1 Γ2

v
X

X ′v1 v2

p′

w′

w

Figure 3. A folding p′ : X ′ → X over Γ1. Subgraphs cor-
responding to the links Γ1 and Γ2 and their preimages are
thickened, the edge vw and its preimage are dashed.

Lemma 5.2. Let pF : XF → X be the folding over a (finite or countable)
family F = {Γλ1}.

(i) The map pF is a homotopy equivalence.
(ii) If X is locally CAT(0), then XF is locally CAT(0).

(iii) If X is essential, then XF is essential.

Proof. For part (i), note that if for some indices λ, µ, we have vλ = vµ, then
wλ = wµ, since the point yλ in lkXvλ does not depend on Γλ1 . Consequently,

distinct edges vλwλ might intersect only along wλ. Thus their union V ⊂ X
is a forest, and so the quotient map q : X → X∗ collapsing each component
of V into a point is a homotopy equivalence. Similarly, the subcomplex
VF = p−1F (V ) ⊂ XF is a forest, and so the quotient map qF : XF → X∗

collapsing each component of VF into a point is also a homotopy equivalence.
Thus the identity qF = q ◦ pF implies part (i).

Part (ii) follows from the fact that the maps that pF induces between the
links of XF and X are locally injective, and from Theorem E.

The map pF is a local isometry at the open edges outside VF . Thus for
part (iii) it suffices to justify that the links of the vertices in each p−1F (vλ)
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have no leaves. But each such link is a cycle Γµ1 (for vµ = vλ) or a clover,
as desired. �

Proposition 5.3. Let G be a group acting almost freely and without weak
inversions on a CAT(0) triangle complex X that is an increasing union
of connected essential G-c.s. Then G acts almost freely and without weak
inversions on a CAT(0) triangle complex X ′ that is an increasing union of
connected essential G-c.s. and none of whose links are unfoldable.

Furthermore, if X contains an edge of degree ≥ 3, then X ′ contains an
edge of degree ≥ 3 or G contains a nonabelian free group.

Proof. We fix an increasing sequence Zk ⊂ X of connected essential G-c.s.
exhausting X. A multifolding (X ′, (Z ′k), p

′) is a:

(i) CAT(0) triangle complex X ′ with an action of G,
(ii) a sequence (Z ′k) of essential G-c.s. exhausting X ′, and
(iii) a G-equivariant simplicial map p′ : X ′ → X that

• maps bijectively the set of triangles of each Z ′k to the set of trian-
gles of Zk, and
• whose restriction Z ′k → Zk is a homotopy equivalence.

We introduce a partial order≤ on the set of multifoldings, writing (X ′, (Z ′k), p
′) ≤

(X ′′, (Z ′′k ), p′′) (or, shortly, X ′ ≤ X ′′) if there is a G-equivariant simplicial
map r : X ′′ → X ′ satisfying p′′ = p′ ◦ r. Multifoldings X ′, X ′′ are equiva-
lent if X ′ ≤ X ′′ and X ′′ ≤ X ′. Let X be the set of equivalence classes of
multifoldings.

We claim that every chain of elements X ′λ in X (where λ is an index)
has an upper bound. Indeed, denote by p′k the restriction of p′ to Z ′k and
write (Z ′k, p

′
k) ≤ (Z ′′k , p

′′
k) whenever there is a G-equivariant simplicial map

r : Z ′′k → Z ′k satisfying p′′k = p′k ◦ r. For each k, since G acts properly and

cocompactly on Z ′λk , by the first bullet we have that (Z ′λk , p
′λ
k ) can take on

only finitely values up to the appropriate equivalence. Thus there exists a
largest element among the (Z ′λk , p

′λ
k ), which we call Z ′∞k . Furthermore, since

(Z ′k+1, p
′
k+1) ≤ (Z ′′k+1, p

′′
k+1) implies (Z ′k, p

′
k) ≤ (Z ′′k , p

′′
k), we have natural

injective maps Z ′∞k → Z ′∞k+1. Let X ′∞ be their direct limit, equipped with
the limit map p′∞ to X. Since each Z ′∞k is locally CAT(0) (Corollary 2.3),
we have that X ′∞ is locally CAT(0) (Theorem E).

To prove that X ′∞ is an upper bound for our chain in X , by Theorem 2.1
it remains to prove that X ′∞ is simply connected. Let α be a closed edge-
path in the 1-skeleton of X ′∞, and fix k such that α lies in Z ′∞k . Fix λ with

Z ′λk = Z ′∞k and keep the notation α for its copy in Z ′λk . Since X ′λ is simply

connected, there is a disc diagram D → X ′λ with boundary path α. Fix l
such that the image of D is contained in Z ′λl . Since, by the second bullet, the

induced map π1Z
′∞
l → π1Z

′λ
l is an isomorphism, we have that α is trivial in

π1Z
′∞
l and hence in π1X

′∞. Consequently, by the Kuratowski–Zorn lemma,
there is a maximal element X ′ ∈ X .
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We now prove that none of the links of X ′ are unfoldable. Otherwise,
suppose that X ′ has a vertex v whose link Γ = Γ1 ∨ Γ2 is unfoldable at a
point corresponding to an edge vw of X ′. Let F = {gΓ1}, for g ∈ G. Since
G acts without weak inversions, we have gv 6= hw, for all g, h ∈ G. Thus we
can define the folding over F , which we denote by XF → X ′. The action
of G on X ′ lifts to an action of G on XF . For each essential G-c.s. Z ′ ⊂ X ′,
let ZF ⊂ XF be the closure of the union of all the open triangles of XF
mapping into Z ′. Note that if Z ′ does not contain v, or if Z ′ contains v,

but lkZ
′

v is contained in Γ1 or Γ2 (in the latter case lkZ
′

v ⊂
⋂
g∈Stab(v) gΓ2),

then ZF → Z ′ is an isometry. Otherwise lkZ
′

v contains edges lying on both

the cycle Γ1 and the clover Γ2. Since Z ′ is essential, the link lkZ
′

v is the
wedge of Γ1 and a clover, so it is unfoldable. Then ZF → Z ′ is the folding
over the family {gΓ1}, for g ∈ G. By Lemma 5.2(i,iii) we have that ZF is
essential and ZF → Z ′ is a homotopy equivalence. By Lemma 5.2(i,ii) we
have that XF is simply connected and locally CAT(0), and hence CAT(0) by
Theorem 2.1. Consequently, we have XF ∈ X and XF > X ′, contradicting
the maximality of X ′. Thus none of the links of X ′ are unfoldable.

For the last assertion, note that, by Lemma 4.1 applied to X, we have
that G is neither virtually cyclic, nor virtually Z2. Moreover, G is finitely
generated, since it acts properly and cocompactly on Z1, which is connected.
Consequently, if X ′ does not have edges of degree 3, then by Proposition 3.1
we have that G contains a nonabelian free group, as desired. �

6. Criteria for rank 1 elements

In this section, we give criteria for finding ‘rank 1’ elements, and conse-
quently free subgroups in G.

Definition 6.1. Let γ be a geodesic line in a CAT(0) triangle complex X.
We say that γ is curved if γ passes through a vertex v and its incoming and
outgoing directions at v are at angle > π.

Lemma 6.2. Let g be a loxodromic isometry of a CAT(0) triangle com-
plex X with a curved axis γ. Then there exists M such that the projection
to γ of each closed metric ball in X disjoint from γ has diameter ≤M .

Proof. Suppose that γ passes through a vertex v with incoming and outgoing
directions at angle > π + κ, for some π

2 > κ > 0. Let R be the translation

length of g. We will prove that M = Rd2πκ e satisfies the lemma. Otherwise,
let x, y be points in a closed metric ball disjoint from γ, such that the
projections x′, y′ of x, y to γ are at distance > M .

There are at least n = d2πκ e translates of v under 〈g〉 on x′y′ distinct from
x′, y′. We denote these translates by v′1, . . . , v

′
n, in order in which they appear

on x′y′. By the continuity of the projection map, there are points v1, . . . , vn
lying on the geodesic xy in that order such that each v′i is the projection
of vi to γ. We additionally denote v0 = x, v′0 = x′, vn+1 = y, v′n+1 = y′. For
0 ≤ i ≤ n, let βi denote the geodesic quadrilateral vivi+1v

′
i+1v

′
ivi. The sum
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of the four Alexandrov angles of each βi is ≤ 2π [BH99, II.2.11], so the sum
of all the Alexandrov angles of all βi is ≤ (n+ 1)2π.

On the other hand, for 0 ≤ i < n, the sum of the Alexandrov angles of βi
and βi+1 at vi+1 is ≥ π. We will now prove that the sum of the Alexandrov
angles of βi and βi+1 at v′i+1 is > π + κ. Indeed, if one of them is not equal
to the angle in the usual sense (see §2), then it equals π. However, since
v′i+1 is the projection of vi+1, the second Alexandrov angle is ≥ π

2 , so their

sum is ≥ 3π
2 , as desired. Consequently, we have n(π + π + κ) < (n + 1)2π,

and so nκ < 2π, which is a contradiction. �

Lemma 6.3. Let G be a group acting almost freely on a CAT(0) triangle
complex X with a fixed point ξ in the visual boundary of X. Suppose that
there is a curved axis γ for some g ∈ G with one of the limit points ξ. Then
G is virtually cyclic.

Proof. Consider the space of geodesic rays ρ : [0,∞) → X representing ξ,
with the pseudometric d(ρ1, ρ2) = inft1,t2 d(ρ1(t1), ρ2(t2)). Identifying ρ1
with ρ2 for d(ρ1, ρ2) = 0, we obtain a metric space whose metric comple-
tion Xξ is CAT(0) [Lee00, Prop 2.8]. Since X has geometric dimension ≤ 2
(see [Kle99]), by [Cap09, Rem after Cor 4.4], we have that Xξ has geomet-
ric dimension ≤ 1 (more precisely, as we learned from Pierre-Emmanuel
Caprace, for any ρ representing ξ the space Xξ ×R embeds isometrically in
the pointed ultralimit of (X, ρ(n))n, which has geometric dimension ≤ 2 by
[Lyt05, Lem 11.1]). Since G fixes ξ, the action of G on X induces an action
of G on Xξ.

We will now justify that a complete CAT(0) space Xξ of geometric dimen-
sion ≤ 1 is an R-tree, which we learned also from Pierre-Emmanuel Caprace.
For a geodesic triangle xyz in Xξ, let x′ be the projection of x to the geo-

desic yz. If x′ 6= x, y, then the direction of the geodesic x′x in lk
Xξ
x′ is distinct

from that of the geodesic x′y. Thus the geodesic xy must pass through x′,

since otherwise mapping it to lk
Xξ
x′ would give a path between distinct points

of a discrete set. Analogously, the geodesic xz passes through x′, and so xyz
is 0-thin, justifying that Xξ is an R-tree.

Suppose first that there is h ∈ G acting loxodromically on Xξ. Let M
be the constant given by Lemma 6.2 for γ. Let ρ be a ray in γ represent-
ing ξ. Since h acts loxodromically on Xξ, after possibly replacing h by
its power, we can assume d(ρ, hρ) > M . Assume without loss of general-
ity that the Busemann function (see [BH99, II.8.17 and II.8.20]) satisfies
Bξ(ρ(0)) ≤ Bξ(hρ(0)). Then for each t ≥ 0, the projection p(t) of ρ(t) to
hγ is contained in hρ, and for D = d(ρ(0), hρ(0)) we have d(ρ(t), p(t)) ≤ D.
Pick k ∈ N with kM > 2D. Then by the triangle inequality we have
d(p(0), p(2kM)) ≥ 2kM − 2D > kM . Consequently, there is 0 ≤ n < k
such that d(p(2nM), p(2(n + 1)M)) > M . Thus the closed ball of ra-
dius M centred at ρ((2n + 1)M) is disjoint from hγ and contains points
ρ(2nM), ρ(2(n + 1)M) whose projections to hγ are at distance > M . This
contradicts the choice of M .
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Consequently, G has a global fixed point in Xξ (which might not be
represented by a geodesic ray, but be a point added in the completion). Thus
there is D > 0 such that for any ε > 0 there is a geodesic ray ρ′ representing ξ
at distance ≤ D from ρ and satisfying d(ρ′, gρ′) < ε for each g ∈ G. Consider
the homomorphism ψ : G → R defined by ψ(g) = Bξ(gx) − Bξ(x) for any
x ∈ X. We will now justify that ψ has discrete image. Otherwise, for any
ε > 0 and ρ′ as above there is t > 0 such that d(ρ′(t), gρ′(t)) < 2ε, but
g does not fix a point of X. This contradicts Remark 2.5 applied with Y
containing the D-neighbourhood of γ.

Let K be the kernel of ψ. Arguing as in the previous paragraph, we obtain
that every g ∈ K fixes a point of X. By [NOP21, Thm 1.1(i)], every finitely
generated subgroup of K fixes a point of X. Since K acts almost freely, we
have that K is finite and so G is virtually cyclic. �

Proposition 6.4. Let G be a group acting almost freely on a CAT(0) tri-
angle complex X. Assume that G contains a loxodromic element g with a
curved axis γ. Then G is virtually cyclic or contains a nonabelian free group.

Proof. By Lemma 6.2, g is rank 1 in the sense of [BF09, Def 5.1]. By
Lemma 6.3 we can assume that G does not have a finite index subgroup
fixing a limit point of γ. Then there is f ∈ G with γ and fγ having disjoint
limit point pairs. Consequently, by [BF09, Prop 5.9], for some n the elements
gn and fgnf−1 generate a nonabelian free group. �

7. Extrationality

The main result of this section will be Proposition 7.4, where we will show
that in the absence of unfoldable vertices and curved axes, the complex X
enjoys a particularly strong rationality property of angles, which we call
extrationality.

Definition 7.1. The branching locus E of a triangle complex X is the
subcomplex of X that is the union of all the closed edges of degree ≥ 3. A
patch of X is a maximal connected subspace P of X \E such that P \X0 is
connected; see Figure 4. If X is simply connected, then by Van Kampen’s
theorem P is a planar surface, and so we can choose an orientation on P .

We equip P \ X0 with the length metric induced from X \ X0 (see
[BH99, I.3.24]). Let P denote the completion of P \X0, which admits an ob-
vious embedding of P . Furthermore, P admits an obvious triangle complex
structure and a simplicial map P → X fitting the following commutative
diagram.

P X

P

.............................................................................. ............

.................................
.....
.......
.....

..................................................................................
...
............

Note that P is a connected surface with boundary, which we denote ∂P .
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Figure 4. A patch (in dark grey)

Definition 7.2. A triangle complex X is piecewise Euclidean if all its trian-
gles are geodesic Euclidean triangles. A piecewise Euclidean triangle com-
plex X is rational if for any vertex v of X all cycles and segments (see §5)
in the link of v have lengths commensurable with π. In particular, the angle
at v between any edges of the branching locus E is then commensurable
with π. A rational triangle complex X is extrational, if

• for any vertex v of X with a component C of lkXv a circle, we have
that the length of C is 2π, and
• each homomorphism ψ defined below is trivial.

We define ψ = ψ(P ) for each patch P of X. Consider the chain complex
C∗(P , ∂P ) consisting of those singular chains that are affine w.r.t. the affine
structure on P induced by the piecewise Euclidean metric. Note that the

affine structure on P has singularities at the points x of ∂P with lkPx of
length 6= π, and so we require our affine chains to be disjoint from such x
except possibly at the vertices. For each x ∈ P choose (not necessarily

continuously) a direction ξx ∈ lkPx at x, with the only restriction that for
x ∈ ∂P , the direction ξx corresponds to one of the edges in ∂P containing x.
For an affine singular 1-simplex σ → P with endpoints x and y, let ψ(σ) ∈
R/πQ be the oriented angle between ξx and σ at x minus the oriented
angle between ξy and σ at y. Note that since X was rational, this equals 0

mod πQ for σ in ∂P , and so we obtain a homomorphism ψ : C1(P , ∂P ) →
R/πQ. Note that the restriction of ψ to Z1(P , ∂P ) does not depend on
the choice of the ξx. Furthermore, for each affine singular 2-simplex τ we
have ψ(∂τ) = ±π = 0 mod πQ, and so ψ descends to a homomorphism
ψ : H1(P , ∂P )→ R/πQ. It is not hard to check that ourH1(P , ∂P ) coincides
with the usual first (singular) homology group.
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We will need the following variant of [BB95, Lem 7.4] that was implicit
in the proof of [NOP21, Prop 3.4].

Lemma 7.3. Let G be a group acting almost freely on a CAT(0) triangle
complex X that is an increasing union of essential G-c.s. Furthermore, as-
sume that there is a vertex v of X with points ξi, ηi ∈ lkXv , for i = 1, . . . , n,
such that

• dXv (ξi, ηi) = π for i = 1, . . . , n, and
• dXv (ηi, ξi+1) ≥ π for i = 1, . . . , n− 1, and
• dXv (ηn, ξ1) > π.

Then G contains a loxodromic element g with a curved axis.

Proof. Let Z ⊂ X be an essential G-c.s. containing v, such that lkZv contains
ξi, ηi, with dZv (ξi, ηi) = π, for i = 1, . . . , n. By [NOP21, Lem 5.4] (which was
stated in terms of the compact quotient but has the same proof for proper
and cocompact actions), for any ε > 0 there is a path ω = ω1 · · ·ω6n in Z
such that

• paths ωj are local geodesics in Z, and
• there are g0 = id, g1, . . . , gn = g ∈ G such that paths ω3i+1 start at
giv, paths ω3i end at giv, and except for that ω is disjoint from the
vertex set Z0 and transverse to Z1, and
• the starting direction of ω3i+1 is at distance < ε

2 to giξi+1 in lkZgiv,
and the ending direction of ω3i is at distance < ε

2 to giηi, and
• at the remaining breakpoints, ωj and ωj+1 are at angle > π− ε (and
≤ π since outside Z0).

Since ωj are disjoint from Z0 and transverse to Z1, by Theorem 2.2 they
are geodesics in X. The last two bullets hold in X as well. In particular, at
all the breakpoints ωj and ωj+1 are at angle > π−ε. By [BB95, Lem 2.5], the
geodesic γ in X with the same endpoints as ω starts and ends in directions
at distance < (6n− 1)ε to ξ1, gηn. Consequently, for ε sufficiently small, by
Theorem 2.2 we have that

⋃
l∈Z g

lγ is a curved axis for g. �

Proposition 7.4. Let G be a group acting almost freely on a CAT(0) tri-
angle complex X that is an increasing union of essential G-c.s. and none of
whose links are unfoldable. If X is not G-equivariantly isometric (by a pos-
sibly non-simplicial isometry) to a piecewise Euclidean triangle complex X ′

or X is isometric to such X ′ but X ′ is not extrational, then G is virtually
cyclic or contains a nonabelian free group.

Proof. To prove that G is virtually cyclic or contains a nonabelian free group
in each case we will show the existence of a curved axis in X (or in a different
CAT(0) triangle complex X) for an element of G, since then the proposition
follows from Proposition 6.4.

Assume first that X is not G-equivariantly isometric to a piecewise Eu-
clidean triangle complex X ′. Then by [BB95, Prop 2.11] there is



TITS ALTERNATIVE FOR 2-DIMENSIONAL CAT(0) COMPLEXES 19

(i) a point in the interior of a triangle of X with negative Gaussian cur-
vature, or

(ii) a point in the interior of an edge of X with negative sum of geodesic
curvatures of some two incident triangles, or

(iii) a vertex v of X with lkXv a circle of length > 2π.

In case (iii), or, more generally, if lkXv has a component C that is a
circle of length > 2π, let ξ1, η1 be points at distance π in C, and let η2, ξ2
be their antipodal points. Applying Lemma 7.3 with n = 2, we obtain a
curved axis. In cases (i) and (ii), by [NOP21, Lem 5.5], there is a CAT(0)
triangle complex X, obtained from X by a G-equivariant subdivision and a
G-equivariant replacement of the smooth Riemannian metrics, with a vertex

u ∈ X whose lkXu is either

• a circle of length > 2π, or
• a graph obtained from a family of disjoint circles C1, C2, . . . of length 2π

by glueing them along a nontrivial arc b of length < π.

The first bullet brings us to case (iii). In the case of the second bullet, let
ξ1, ξ2 ∈ C1 \ b and η1, η2 ∈ C2 \ b be points at distance π

2 from the endpoints

of b, with dXu (ξ1, η1) = dXu (ξ2, η2) = π. Applying Lemma 7.3 with n = 2, we
obtain a curved axis in X, as desired.

Thus without loss of generality we can assume that X is a piecewise
Euclidean triangle complex. If X is not rational, then by [BB95, Prop 7.7],
applied to an essential G-c.s., there is a closed locally injective edge-path β
in some lkXv whose length is not commensurable with π. In particular, by
[BB95, Lem 6.1(iii)], there are points ξ, η in lkXv at distance > π + δ, for
some δ > 0. (One could apply [NOP21, Cor 1.7] to find such ξ, η in β, but
it does not simplify the argument.) Let β− (resp. β+) be the shortest path
from ξ (resp. η) to β. Since the length of β is not commensurable with π,
there is a path β−β0β+ with β0 factoring through the universal cover of β
whose length equals (2n−1)π+ δ′ for some n ∈ N and 0 ≤ δ′ ≤ δ. Choosing
ξ1 = ξ, η1, ξ2, . . . , ηn as consecutive points at distance π along that path, we
have dXv (ξ1, ηn) > π. Applying Lemma 7.3, we obtain a curved axis.

Finally, if X is not extrational, let P be a patch of X with nontrivial
ψ = ψ(P ). Since P is planar, there is an element in H1(P , ∂P ) represented
by a piecewise affine path α in P with endpoints in ∂P and ψ(α) 6= 0. Let α
be shortest among such paths, which exists since Stab(P ) acts cocompactly
on P . Note that then α does not intersect ∂P except at its endpoints, since
otherwise we could decompose it into two shorter paths, with ψ nontrivial
on at least one of them. Thus the image of α in X (for which we keep
the same notation) is a local geodesic in X that intersects the branching
locus E exactly at its endpoints x, x′. Let e (resp. e′) be the segment of lkXx
(resp. lkXx′) containing the point corresponding to the direction of α. By the
shortness condition, we have that e (resp. e′) has endpoints at distance ≥ π

2
from x (resp. x′), and so is of length ≥ π. They cannot both have length π,
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since then we would have ψ(α) = 0, so assume without loss of generality
that the length l of e is > π.

If l > 2π, then it is easy to find points η1, ξ1, ξ2, η2 lying on l in that order
and satisfying the hypothesis of Lemma 7.3 with n = 2. If 2π > l > π or
l = 2π and the endpoints of e are distinct, then the construction of such
points is given in the proof of [BB95, Lem 7.6]. It remains to consider the
case where l = 2π and where both endpoints of e are equal to a vertex y. Let
Γ2 be the graph obtained from lkXx by removing e. If Γ2 contains a point z at
distance > π from y, then it is easy to find points ξ1, η1, ξ2, η2 on a geodesic
from z to the midpoint of e satisfying the hypothesis of Lemma 7.3 with
n = 2. Otherwise, Γ2 is a clover, contradicting the assumption that lkXx is
not unfoldable. �

8. Sheared geodesics

In this section we prove that the following piecewise geodesics have dis-
tinct endpoints. We will use some vocabulary from §4.

Definition 8.1. A sheared geodesic in a piecewise Euclidean triangle com-
plex X is a concatenation γ1 · γ2 · · · γ2k−1 · γ2k of geodesics such that (see
Figure 5):

• for i = 1, . . . , k, the (possibly trivial) geodesic γ2i lies in the interior
of an edge ei of X, and
• for i = 1, . . . , k − 1, the geodesic γ2i−1 ends and the geodesic γ2i+1

starts perpendicularly to ei in triangles of X that are distinct, and
the geodesic γ2k−1 ends perpendicularly to ek in a triangle.

e1

e2
e3

γ1

γ3
γ5 γ7

γ2

γ4
γ6 γ8

e4

Figure 5. A sheared geodesic

Proposition 8.2. Let X be a piecewise Euclidean triangle complex that
is CAT(0). Let γ in X be a sheared geodesic. Then γ is not a closed path.

The proof will use the following two building blocks.

Lemma 8.3. Let X be a piecewise Euclidean triangle complex that is CAT(0).
Let xy be a nontrivial geodesic in X such that y belongs to the interior of
an edge e of X and xy ends in a triangle T . Then for any z in the interior
of e, the geodesic xz is nontrivial and ends in T .



TITS ALTERNATIVE FOR 2-DIMENSIONAL CAT(0) COMPLEXES 21

Proof. We have z 6= x since edges are geodesics and so in particular x does
not lie in e. If for some z in the interior of e the geodesic xz does not end
in T , then, since the geodesic xz varies continuously with z, for some z in
the interior of e the geodesic xz ends in e. Denote by e1, e2 the two subedges
into which such z divides e. Suppose that xz ends in e1. Then the entire
e1 must lie in xz. Moreover, appending xz by e2 we also obtain a geodesic
(Theorem 2.2). Since y lies in e = e1 ·e2, this shows that xy ends in e, which
is a contradiction. �

Lemma 8.4. Let X be a piecewise Euclidean triangle complex that is CAT(0).
Let xz be a nontrivial geodesic in X such that z belongs to the interior of
an edge e of X and xz ends in a triangle T . Suppose that y belongs to the
interior of an edge e′ of X and zy is a nontrivial geodesic in X that starts
perpendicularly to e in a triangle distinct from T and ends perpendicularly
to e′ in a triangle T ′. Then the geodesic xy is nontrivial and ends in T ′.

Proof. Consider the geodesic triangle xyz. By our assumptions, its Alexan-
drov angle at z is > π

2 , and so in particular x 6= y, and its Alexandrov angle
at y is < π

2 . Since zy ends in a triangle T ′ perpendicularly to e′, we have
that xy ends in T ′, as desired. �

Proof of Proposition 8.2. Let γ = γ1 · γ2 · · · γ2k−1 · γ2k as in Definition 8.1.
For i = 1, . . . , k, denote γ2i = yizi and denote by Ti the triangle in which
γ2i−1 ends. Let x be the starting point of γ1. We prove by induction on
i = 1, . . . , k, that x and zi are distinct and that the geodesic xzi ends in Ti.
The proposition follows from this induction hypothesis applied with i = k.

For i = 1 the induction hypothesis follows from Lemma 8.3. Suppose now
that we have established it for some i = m < k. Then by Lemma 8.4 the
geodesic xym+1 is nontrivial and ends in Tm+1. Thus by Lemma 8.3, the
induction hypothesis holds for i = m+ 1. �

9. Free

Proof of Proposition 3.2. By Proposition 5.3, we can assume that none of
the vertex links ofX are unfoldable. Thus by Proposition 7.4 and Lemma 4.1(i)
we can assume that X is piecewise Euclidean and extrational. Let Z ⊂ X
be a thick G-c.s. Note that each patch of X either has no triangle in Z or
is contained in Z, in which case we call it a Z-patch.

Since X is rational, and Z is a G-c.s., there is q ∈ N such that for each Z-

patch P and each vertex v ∈ ∂P , the length of lkPv is a multiplicity of πq . For

each Z-patch P , we define the homomorphism ψ′ = ψ′(P ) : H1(P , ∂P ) →
R/πqZ in the same way as ψ, but replacing πQ by π

qZ. We have ψ = ψ′

mod πQ. Since ψ is trivial, the image of ψ′ is contained in πQ/πqZ. Since

there are finitely many G-orbits of Z-patches, and since each H1(P , ∂P ) is
finitely generated as a Stab(P )-module, there is q′ ∈ N such that the image
of each ψ′ is contained in π

q′Z/
π
qZ. Consequently, for any Z-patch P , any
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geodesic xy in P disjoint from ∂P , except at its endpoints, that is at angle
∈ π

q′Z from ∂P at x, is also at angle ∈ π
q′Z from ∂P at y. Without loss of

generality assume that q′ is even.
We need the following variant of the Liouville measure µ from [BB95, §3].

Let S be the set of all the directions ξ at an angle θ(ξ) ∈ π
q′Z ∩ (−π

2 ,
π
2 )

from a direction normal to E in the links lkZx for all the points x ∈ Z that
lie in the interior of an edge e of E. The Liouville measure dµ(ξ) on S is
given as cos θ(ξ)dx, where dx is the volume element on e. Let V ⊂ S be
the full measure subset of S of directions ξ such that each geodesic ray γ
in Z with starting direction ξ is disjoint from Z0. Let F : V → P(V ) be
the map defined by η ∈ F (ξ) for η ∈ lkZx if there exists a geodesic yz in Z
with starting direction ξ, intersecting E only in y and x, and with η being
the direction at x of xz. Since G acts on Z properly and cocompactly,
we have that each F (ξ) is finite. We can thus define a Markov chain with
states V and transition probabilities 1

|F (ξ)| from ξ to each η ∈ F (ξ). By

(the calculation in) [BB95, Prop 3.3], the measure µ is stationary for this
Markov chain. Thus the space V Z can be equipped with Markov measure µ∗

invariant under the shift (see e.g. [Wal82, Ex (8), page 21]). Since Z is a
G-c.s., the quotient V Z/G by the diagonal action of G is of finite measure.
Note that the shift map descends to V Z/G and is still measure preserving.

Let e be an edge of Z lying in three distinct triangles Ta, Tb, Tc of Z. Let
V ab ⊂ V Z be the set of (ξi)i such that

• we have ξ1 ∈ lkTax for x ∈ e, and ξ1 is at angle π
2 from e, and

• the geodesic yx from the definition of ξ1 ∈ F (ξ0) ends in Tb.

Note that V ab has positive Markov measure. Thus by the Poincaré recur-
rence (see e.g. [Wal82, Thm 1.4]), there is (ξi)i ∈ V ab and j > 0 with
(ξi−j)i ∈ GV ab. Consequently, there is a geodesic γab in Z \ Z0 starting
perpendicularly to e in Ta and ending perpendicularly to a translate fe in
fTb, for some f ∈ G.

Denote by a, fb the endpoints of γab. Let Iab be the domain of the iso-
metric embedding γab : Iab → Z \ Z0. Analogously, there is a geodesic
γca : Ica → Z \Z0 starting perpendicularly to e in Tc and ending perpendic-
ularly to a translate ge in gTa, with endpoints c, a′, for some g ∈ G. Finally,
there is a geodesic γbc : Ibc → Z \Z0 starting perpendicularly to ge in Tb and
ending perpendicularly to a translate f ′ge in f ′gTc, with endpoints b′, f ′c′,
for some f ′ ∈ G. Let γ : I → e be the shortest geodesic in e containing all
a, b, c in its image (possibly I is a single point), and let γ′ : I ′ → ge be the
shortest geodesic in ge containing all a′, b′, c′ in its image.

Let Γ be the metric graph obtained in the following way. We start from
the disjoint union of the five intervals Iab, Ica, Ibc, I, I ′, and we identify (see
Figure 6):

• points of I and Iab mapping to a under γ and γab,
• points of I and Ica mapping to c under γ and γca,
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• points of I ′ and Ica mapping to a′ under γ′ and γca, and
• points of I ′ and Ibc mapping to b′ under γ′ and γbc.

Note that Γ admits the map ϕ : Γ → Z that is the quotient of γab t γca t
γbc t γ t γ′. Let s, t, s′, t′, be the points in I, Iab, I ′, Ibc mapping under ϕ to
b, fb, c′, f ′c′, respectively.

Iab

Ica

IbcI

I ′

fb

a

b

c

b′

a′

c′ f ′c′

Figure 6. The graph Γ

Let F2 be the free group on two generators h, h′ and let Γ̂ be the quotient
of the graph F2 × Γ (which is the disjoint union of F2 copies of Γ) by the

relations w × t ∼ wh × s, w × t′ ∼ wh′ × s′, for all w ∈ F2. Note that Γ̂
is a tree with a free action of F2. Let ϕ∗ : F2 → G be the homomorphism
mapping h, h′ to f, f ′, respectively. Then ϕ extends to a ϕ∗-equivariant map

ϕ̂ : Γ̂→ Z mapping each w × r ∈ F2 × Γ to ϕ∗(w)ϕ(r) ∈ Z.

Let w be a nontrivial element of F2 and let Rw be the axis for w in Γ̂.
Pick p ∈ Rw an endpoint of a translate of one of Iab, Ica, Ibc contained in Rw.
Let Iw ⊂ Rw be the interval between p and wp, and let γw : Iw → Z be the
restriction of ϕ̂ to Iw. Since Ta, Tb, Tc, were distinct, we have that γw is a
sheared geodesic. By Proposition 8.2, we have ϕ̂(p) 6= ϕ̂(wp) = ϕ∗(w)ϕ̂(p),
and consequently ϕ∗(w) is nontrivial. Thus ϕ∗ is injective, and so G contains
a nonabelian free group. �
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[NV02] Guennadi A. Noskov and Èrnest B. Vinberg, Strong Tits alternative for sub-
groups of Coxeter groups, J. Lie Theory 12 (2002), no. 1, 259–264.

[OP21] Damian Osajda and Piotr Przytycki, Tits Alternative for groups acting prop-
erly on 2-dimensional recurrent complexes, Adv. Math., posted on 2021, DOI
10.1016/j.aim.2021.107976. With an appendix by J. McCammond, D. Osajda,
and P. Przytycki.

[SW05] Michah Sageev and Daniel T. Wise, The Tits alternative for CAT(0) cubical
complexes, Bull. London Math. Soc. 37 (2005), no. 5, 706–710.

[Tit72] Jacques Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270.
[Wal82] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathemat-

ics, vol. 79, Springer-Verlag, New York-Berlin, 1982.

Instytut Matematyczny, Uniwersytet Wroc lawski, pl. Grunwaldzki 2/4,
50–384 Wroc law, Poland

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-
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