ERRATUM TO "COCOMPACTLY CUBULATED GRAPH MANIFOLDS" ISRAEL JOURNAL OF MATHEMATICS **207** (2015), 377–394

ΒY

MARK F. HAGEN

Department of Pure Mathematics and Mathematical Statistics University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK e-mail: markfhagen@gmail.com

AND

PIOTR PRZYTYCKI

Department of Mathematics and Statistics Burnside Hall, McGill University 805 Sherbrooke Street West, Montreal, Quebec H3A 0B9, Canada e-mail: piotr.przytycki@mcgill.ca

The following lemma is Lemma 4.7 of [HP15]. In the proof of part (2), we incorrectly invoked [CS11, Prop. 2.6]. Here we correct the proof, emphasising that the statement is unchanged. The current proof is largely a re-writing of the proof of [HJP15, Lem 6.2].

LEMMA: Consider the product of the free cyclic and a finitely generated nonabelian free group $H = \mathbb{Z} \times \mathbb{F}$. Suppose that H acts freely and cocompactly on a CAT(0) cube complex \mathcal{V} . Then the following hold:

- (1) The essential core \mathcal{V}^{ess} of \mathcal{V} is a product $\mathcal{V}_a \times \mathcal{V}_b$, where $\mathcal{V}_a, \mathcal{V}_b$ are unbounded.
- (2) The group H has a finite-index subgroup $H' = H_a \times H_b$ that preserves the above decomposition, where H_a acts trivially on \mathcal{V}_b and H_b acts trivially on \mathcal{V}_a .
- (3) We have $H_a = \mathbb{Z} \cap H'$ and the group H_b embeds as a finite-index subgroup of the free group $H/\mathbb{Z} \cong \mathbb{F}$ under the natural quotient.

Received October 30, 2015 and in revised form November 29, 2015

In the proof we will use the fact that any fixed-point-free isometry g of a finitedimensional cube complex \mathcal{V} is **hyperbolic**, which means that $\inf_{v \in \mathcal{V}} d(gv, v)$ is attained and non-zero [Bri99a, Thm A]. We denote by $\operatorname{Min}(g) \subset \mathcal{V}$ the set on which the infimum is attained. If \mathcal{V} is CAT(0), then by [Bri99b, Thm II.6.8] we have a product decomposition $\operatorname{Min}(g) = \mathbb{R} \times Y$, where each $\mathbb{R} \times \{y\}$ is a g-invariant geodesic line called an **axis** of g. Moreover, each isometry h commuting with g preserves $\operatorname{Min}(g)$ and respects its product decomposition.

Proof. Since H is a direct product with infinite factors, no element is rank-one in the action on \mathcal{V}^{ess} . Corollary 6.4(iii) of [CS11] yields a nontrivial cubical product decomposition of \mathcal{V}^{ess} such that each factor has some $h \in H$ respecting the decomposition and acting on that factor as a rank-one isometry. This proves (1). By [CS11, Prop 2.6], there is a finite index subgroup $H' \leq H$ respecting this decomposition. Let \mathcal{V}_a be a factor on which $H_a = H' \cap \mathbb{Z}$ acts freely. Combine all other factors into \mathcal{V}_b , so $\mathcal{V}^{ess} = \mathcal{V}_a \times \mathcal{V}_b$.

We claim that the generator z of H_a acts on \mathcal{V}_a as a rank-one isometry. Otherwise, let $h \in H$ be the element guaranteed by [CS11, Cor 6.4(iii)] respecting the decomposition and acting on \mathcal{V}_a as a rank-one isometry. Then the axes of h are not parallel to the axes of z. Hence $\langle h, z \rangle \cong \mathbb{Z}^2$, and this subgroup acts properly on \mathcal{V}_a , contradicting the fact that h is rank-one. This justifies the claim.

Consider $\operatorname{Min}(z) = \mathbb{R} \times Y \subset \mathcal{V}_a$. Since z is central in H', we have an induced action of H' on $\mathbb{R} \times Y$ respecting this decomposition. Since z is rank-one, Y does not contain a geodesic ray, and hence is bounded. Consequently, Y contains a fixed point of the action of H', whence \mathcal{V}_a contains an H'-invariant line l.

Let $\rho : H' \to \text{Isom}(l)$ be the induced map and note that $\rho(H')$ does not switch the ends of l. Since \mathcal{V}_a is a cube complex, the translation lengths on lare discrete. Thus $\rho(H')$ can be identified with the integers, containing $\rho(H_a)$ as a finite index subgroup. Let $H_b = \text{ker}(\rho)$. Since $H_b \cap H_a = \{1\}$, the subgroup H_b embeds into $H/\mathbb{Z} = \mathbb{F}$; its image has finite index since $H' \leq H$ has finite index. Thus H_b is free, of rank ≥ 2 . Replace H' with its finite-index subgroup $H_a \times H_b$.

Choose $a \in l$. Since H_b fixes a, it acts properly on $\{a\} \times \mathcal{V}_b \subset \mathcal{V}^{ess}$, so it acts properly on \mathcal{V}_b . By hypothesis, there is a compact set $K \subset \mathcal{V}^{ess}$ such that $H'K = \mathcal{V}^{ess}$. Since H_a acts properly on \mathcal{V}_a , there are finitely many $h_a \in H_a$ for which there exists $h_b \in H_b$ so that $h_a h_b K$ intersects $\{a\} \times \mathcal{V}_b$. Hence H_b

ERRATUM

acts cocompactly on $\{a\} \times \mathcal{V}_b$, and thus on \mathcal{V}_b , so any orbit map $H_b \to \mathcal{V}_b$ is a quasi-isometry.

Let $h, h' \in H_b$ be non-commuting. The sets $\operatorname{Min}(h), \operatorname{Min}(h') \subset \mathcal{V}_b$ have the form $\mathbb{R} \times U, \mathbb{R} \times U'$, where U, U' are bounded (since \mathcal{V}_b is quasi-isometric to a tree). Let R be large enough so that the neighbourhoods $\mathcal{N}_R(\operatorname{Min}(h))$ and $\mathcal{N}_R(\operatorname{Min}(h'))$ intersect. Since z commutes with h and h', it preserves both $\operatorname{Min}(h)$ and $\operatorname{Min}(h')$. Thus H_a preserves $\mathcal{N}_R(\operatorname{Min}(h)) \cap \mathcal{N}_R(\operatorname{Min}(h'))$, which is bounded. Hence H_a fixes some $b \in \mathcal{V}_b$, and consequently the entire orbit $H_b b$ is fixed by H_a . Thus H_a moves each $v \in \mathcal{V}_b$ a uniformly bounded distance.

Above, we obtained an H_a -invariant fiber $\mathcal{V}_a \times \{b\} \subset \mathcal{V}^{ess}$. As before, because $H_a \times H_b$ acts cocompactly on \mathcal{V}^{ess} , and H_b acts properly on \mathcal{V}_b , we have that H_a acts cocompactly on \mathcal{V}_a , so $l \hookrightarrow \mathcal{V}_a$ is a quasi-isometry. Since H_b fixes l, we have that H_b moves each point of \mathcal{V}_a a uniformly bounded distance. Since \mathcal{V}_a and \mathcal{V}_b are locally finite, there is a uniform bound n on the size of each orbit of the action of H_b on \mathcal{V}_a and the action of H_a on \mathcal{V}_b . We replace H_a and H_b (and hence H') by the intersection of all their subgroups of index $\leq n!$. Then H_a acts trivially on \mathcal{V}_b and H_b acts trivially on \mathcal{V}_a . This proves (2). Along the way we also established (3).

ACKNOWLEDGEMENT. We thank Jingyin Huang and Kasia Jankiewicz for discussions.

References

- [Bri99a] M. R. Bridson, On the semisimplicity of polyhedral isometries, Proceedings of the American Mathematical Society 127 (1999), 2143–2146.
- [Bri99b] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften, Vol. 319, Springer-Verlag, Berlin, 1999.
- [CS11] P.-E. Caprace and M. Sageev, Rank rigidity for CAT(0) cube complexes, Geometric and Functional Analysis 21 (2011), 851–891.
- [HJP15] J. Huang, K. Jankiewicz and P. Przytycki, Cocompactly cubulated 2-dimensional Artin groups, arXiv e-print 1510.08493, (2015).
- [HP15] M. F. Hagen and P. Przytycki, Cocompactly cubulated graph manifolds, Israel Journal of Mathematics 207 (2015), 377–394.