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The following lemma is Lemma 4.7 of [HP15]. In the proof of part (2), we

incorrectly invoked [CS11, Prop. 2.6]. Here we correct the proof, emphasising

that the statement is unchanged. The current proof is largely a re-writing of

the proof of [HJP15, Lem 6.2].

Lemma: Consider the product of the free cyclic and a finitely generated non-

abelian free group H = Z× F. Suppose that H acts freely and cocompactly on

a CAT(0) cube complex V . Then the following hold:

(1) The essential core Vess of V is a product Va × Vb, where Va,Vb are

unbounded.

(2) The group H has a finite-index subgroup H ′ = Ha ×Hb that preserves

the above decomposition, where Ha acts trivially on Vb and Hb acts

trivially on Va.

(3) We have Ha = Z ∩ H ′ and the group Hb embeds as a finite-index

subgroup of the free group H/Z ∼= F under the natural quotient.
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In the proof we will use the fact that any fixed-point-free isometry g of a finite-

dimensional cube complex V is hyperbolic, which means that infv∈V d(gv, v)

is attained and non-zero [Bri99a, Thm A]. We denote by Min(g) ⊂ V the set

on which the infimum is attained. If V is CAT(0), then by [Bri99b, Thm II.6.8]

we have a product decomposition Min(g) = R × Y , where each R × {y} is a

g-invariant geodesic line called an axis of g. Moreover, each isometry h com-

muting with g preserves Min(g) and respects its product decomposition.

Proof. Since H is a direct product with infinite factors, no element is rank-one

in the action on Vess. Corollary 6.4(iii) of [CS11] yields a nontrivial cubical

product decomposition of Vess such that each factor has some h ∈ H respecting

the decomposition and acting on that factor as a rank-one isometry. This proves

(1). By [CS11, Prop 2.6], there is a finite index subgroup H ′ ≤ H respecting

this decomposition. Let Va be a factor on which Ha = H ′ ∩ Z acts freely.

Combine all other factors into Vb, so Vess = Va × Vb.

We claim that the generator z of Ha acts on Va as a rank-one isometry. Oth-

erwise, let h ∈ H be the element guaranteed by [CS11, Cor 6.4(iii)] respecting

the decomposition and acting on Va as a rank-one isometry. Then the axes of

h are not parallel to the axes of z. Hence 〈h, z〉 ∼= Z
2, and this subgroup acts

properly on Va, contradicting the fact that h is rank-one. This justifies the

claim.

Consider Min(z) = R× Y ⊂ Va. Since z is central in H ′, we have an induced

action ofH ′ on R×Y respecting this decomposition. Since z is rank-one, Y does

not contain a geodesic ray, and hence is bounded. Consequently, Y contains a

fixed point of the action of H ′, whence Va contains an H ′-invariant line l.

Let ρ : H ′ → Isom(l) be the induced map and note that ρ(H ′) does not

switch the ends of l. Since Va is a cube complex, the translation lengths on l

are discrete. Thus ρ(H ′) can be identified with the integers, containing ρ(Ha)

as a finite index subgroup. Let Hb = ker(ρ). Since Hb∩Ha = {1}, the subgroup
Hb embeds into H/Z = F; its image has finite index since H ′ ≤ H has finite

index. Thus Hb is free, of rank ≥ 2. Replace H ′ with its finite-index subgroup

Ha ×Hb.

Choose a ∈ l. Since Hb fixes a, it acts properly on {a} × Vb ⊂ Vess, so it

acts properly on Vb. By hypothesis, there is a compact set K ⊂ Vess such that

H ′K = Vess. Since Ha acts properly on Va, there are finitely many ha ∈ Ha

for which there exists hb ∈ Hb so that hahbK intersects {a} × Vb. Hence Hb
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acts cocompactly on {a} × Vb, and thus on Vb, so any orbit map Hb → Vb is a

quasi-isometry.

Let h, h′ ∈ Hb be non-commuting. The sets Min(h),Min(h′) ⊂ Vb have the

form R × U,R × U ′, where U,U ′ are bounded (since Vb is quasi-isometric to

a tree). Let R be large enough so that the neighbourhoods NR(Min(h)) and

NR(Min(h′)) intersect. Since z commutes with h and h′, it preserves both

Min(h) and Min(h′). Thus Ha preserves NR(Min(h)) ∩ NR(Min(h′)), which is

bounded. Hence Ha fixes some b ∈ Vb, and consequently the entire orbit Hbb is

fixed by Ha. Thus Ha moves each v ∈ Vb a uniformly bounded distance.

Above, we obtained an Ha-invariant fiber Va×{b} ⊂ Vess. As before, because

Ha ×Hb acts cocompactly on Vess, and Hb acts properly on Vb, we have that

Ha acts cocompactly on Va, so l ↪→ Va is a quasi-isometry. Since Hb fixes l, we

have that Hb moves each point of Va a uniformly bounded distance. Since Va

and Vb are locally finite, there is a uniform bound n on the size of each orbit

of the action of Hb on Va and the action of Ha on Vb. We replace Ha and Hb

(and hence H ′) by the intersection of all their subgroups of index ≤ n!. Then

Ha acts trivially on Vb and Hb acts trivially on Va. This proves (2). Along the

way we also established (3).
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