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Note from the translators

With some exceptions in Chapter IV the translation follows the Annals ver-
sion of the article. We included and updated only these references, on which
Chapters IV–VI rely. We added some comments as footnotes. We tried
rather to preserve the structure of the sentences then to make them sound
more English. All translation comments are welcome; we will correct any
errors or misprints found by the reader.

4 Geodesic currents on surfaces

Applying the intersection number lemma to the sequence of curves αj ⊂
Sb given by Proposition 2.4, where the associated geodesics α∗j are located
arbitrarily far from Sb, we deduce that the self–intersection number i(αj, αj)
becomes arbitrarily small with respect to the square of the length l(αj). In
other words, αj become ”more and more like simple curves”. The purpose
of this section is to give a meaning to this assertion, to create a certain
topological space in which αj will converge to something that is a limit of
simple curves. Apart from this motivation, this section is independent from
the remaining part of the article.

4.1 Definitions

Let S be a surface of finite type without boundary, with negative Euler
characteristic. We are interested in the set of homotopy classes of non–
oriented homotopically nontrivial closed curves on S. To give a specific
representative in each such homotopy class, it is convenient to equip S with
an arbitrary hyperbolic metric without cusps. Each free homotopy class is
then represented by a unique closed geodesic on S.

In [11], [12], Thurston studied the subset consisting of homotopy classes of
simple curves. Equipping it with a topology, he defined a certain completion
by measured geodesic laminations. A measured geodesic lamination is a
partial foliation of S by simple (without self–intersections) disjoint geodesics
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with a foliation–invariant transverse measure (see §4.3). We are going to
extend this construction to non–simple curves.

The difference between a simple curve and a non–simple curve comes
obviously from . . . the self–intersections. To remove these, it is rather natural
to lift the closed geodesics to the unit tangent bundle T1(S) of S. Since we are
not interested in the orientation of the curves, we will look at the tangent line
bundle P(S), the quotient of T1(S) by the involution, which is the antipodal
map on each fiber.

Since we have fixed a hyperbolic metric on S, the unit tangent bundle
is equipped with a geodesic flow, whose trajectories are defined as lifts of
geodesics on S to T1(S) by considering their tangent vectors at each point.
Passing to the quotient, the geodesic flow on T1(S) induces a 1–dimensional
foliation F on P(S), called the geodesic foliation. There is therefore a natural
correspondence between closed (non–oriented) geodesics on S and compact
leaves of F .

The convex core C(S) of S, in the sense of §1.5, is the compact part of S
delimited by the closed geodesics corresponding to the ends of S. Denote by
PC(S) the compact set in P(S) formed by the lifts of geodesics on S, which
are completely contained in this convex core. In particular PC(S) contains
all lifts of closed geodesics on S, and the union of these lifts is dense in
PC(S)1.

By definition, a geodesic current α on S is a positive transverse invariant
measure for the geodesic foliation F , whose support is contained in PC(S).
This means that α defines a positive measure supported on V ∩ PC(S) for
each submanifold V of codimension 1 in P(S) transverse to F , and that α
is invariant under holonomy in the following sense: if x1 ∈ V1 and x2 ∈ V2

are two points on such transverse submanifolds located on the same leaf of
F , and if φ : U1 → U2 is a holonomy diffeomorphism between neighborhoods
of x1 and x2 in V1 and V2 (defined by following the leaves of F), then φ
respects the measure induced by α on U1 and U2. Geodesic currents are
hence particular cases of geometric currents introduced by D. Ruelle and D.
Sullivan in [8].

We give now a fundamental example of a geodesic current. To a given
closed geodesic α on S corresponds a compact leaf α̃ of F . We associate to it
the geodesic current, which induces on each transverse manifold V the Dirac
measure at the point V ∩ α̃; invariance under holonomy is then immediate.

We equip the set C(S) of currents on S with the unique weak topology,
in which two currents α and β are close if there exists a finite family of
continuous functions fi : Vi → R with compact support defined on transverse

1see Lemma 1.19 of the preprint
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submanifolds Vi such that each α(fi) is close to β(fi) (see e.g. [2], chapter
III, §1 n◦ 9). We can even equip C(S) with a uniform space structure taking
the entourages basis

{(α, β) ∈ C(S)× C(S);∀i = 1 . . . n, |α(fi)− β(fi)| < ε}

for all ε > 0 and all finite families fi : Vi → R as before. We get then the
following classical result in functional analysis (c.f. [2], chapter III, §1 n◦ 9):

Proposition 4.1. The uniform space C(S) is complete.

To understand well currents on S and their topology it is first necessary to
understand well P(S) equipped with F . A flow box B for F is defined by an
elongated H–shape configuration on S, where the horizontal bar is a geodesic
arc and where the two vertical bars are arcs transverse to the previous one
and sufficiently small so that each geodesic arc joining the vertical bars which
is homotopic to a path in the H, meets the vertical bars transversely (we
will actually impose one more condition, see Lemma 4.3 below). The box
B ⊂ P(S) consists of the lifts of all geodesic arcs in S joining the two vertical
bars that are homotopic to a path in H. Barycentric coordinates on each
geodesic arc give a diffeomorphism B ' Q×[0, 1] for which the leaves of B∩F
correspond to {?}× [0, 1]. We point out that Q can be lifted to B as a square
transverse to the foliation and that this lift is unique up to holonomy; given a
geodesic current α ∈ C(S), we can therefore speak of the measure α(B) ∈ R+,
defined as the measure w.r.t. α of this transverse square. Likewise, if ∂FB
is the part of B corresponding to ∂Q × [0, 1] (formed by the geodesic arcs
meeting one of the extremities of the H), we define α(∂FB) as the measure
w.r.t. α of the boundary of the transverse square, which is the lift of Q.

To illustrate this, let us investigate what this means if the geodesic cur-
rent is defined by a closed geodesic α on S (usually closed geodesics will be
identified with the geodesic currents they define). If B is a flow box, α(B) is
clearly the number of sub–arcs of α whose lifts are leaves of B ∩F . In other
words, α(B) is the number of sub–arcs of α that join the two vertical bars of
the H defining B and are homotopic relative the endpoints to an arc in the
H.

Proposition 4.2. A neighborhood basis for a current α ∈ C(S) consists of
the open sets U(α,B1, . . . , Bn; ε) = {β ∈ C(S) : ∀i |α(Bi) − β(Bi)| < ε},
where ε ∈ R+

∗ and the Bi are taken among all the flow boxes B such that
α(∂F(B)) = 0.

Proof. To explain the restriction α(∂F(B)) = 0, we recall a small subtlety
of the weak convergence topology: if µi is a sequence of measures on a lo-
cally compact space X that converges weakly to a measure µ, and if A is a
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measurable subset of X, then µi(A) converge to µ(A) if µ(∂A) = 0, where
∂A is the boundary of A (see [2], chapter IV, §5 n◦ 12); the example of the
Dirac measure shows that this condition is necessary.

From this it is clear that each U(α,B1, . . . , Bn; ε) contains an open set in
the weak topology.

The converse is only a question of approximating of continuous functions
with compact support by stair–like functions. Note that each flow box B can
be approximated by a box B′ with α(∂F(B′)) = 0. Indeed, it is sufficient to
shorten slightly one of the bars of the H used to define B; as α(B) is finite,
at most countable number of such shortenings give B′ with α(∂F(B′)) = 0.

�
To apply Proposition 4.2, the following observation will be useful.

Lemma 4.3. If ∂F(B) does not meet any compact leaf of F , then α(∂F(B)) =
0 for all α ∈ C(S).

Proof. Suppose α(∂F(B)) > 0. Then, for at least one point x of the four
extreme points of H defining B, the arc k transverse to F formed by the
directions in x pointing towards the other bar of the H has non–zero measure.
Observe that there is only a countable number of leaves of F meeting k in
at least two points, since there is at most one per element of π1(M,x).

We cover the compact set PC(S) by a finite number of flow boxesB1, . . . , Bn.
We get from the finiteness of the α(Bi)

2 that the part of k formed by the
leaves meeting k in exactly one point has zero measure w.r.t. α. Hence the
measure defined by α on k must have at least one atom, corresponding to a
leaf passing more than once through k. Once more because of the finiteness
of the α(Bi), this leaf is compact. �

From now on, unless the opposite is explicitly stated, we will require
that the boundary of a flow box B does not meet any compact leaf of F ,
which means that no closed geodesic on S goes through an extremity of the
H defining B before hitting the opposite vertical bar of the H. Therefore,
∂F(B) will have zero measure for all geodesic currents α ∈ C(S).

If the reader is allergic to geodesic flows and transverse measures, we
can give a definition of geodesic currents completely independent from these
notions. Indeed, let G(S̃) be the manifold of non–oriented geodesics on the
universal cover S̃ of S. If S̃ is identified with the hyperbolic plane H2, then
G(S̃) is diffeomorphic to the Moebius strip (S1

∞×S1
∞ \∆)/(Z/2), where ∆ is

the diagonal and Z/2 acts by switching the two factors. The subset GC(S̃)
formed by geodesics contained in the preimage of the convex core C(S) cor-
responds to (Λ × Λ \∆)/(Z/2), where Λ is the limit set of π1(S) acting on
2and from the Poincaré recurrence
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S̃ ∼= H2. Observing that the projection P(S̃) → G(S̃) is a submersion, we
easily get that a geodesic current is the same thing as a π1(S)–invariant mea-
sure on G(S̃) whose support is contained in GC(S̃). Moreover, the topology
on C(S) corresponds to the classical weak topology on measures on a locally
compact space.

Actually, these two points of view are complementary. The one of π1(S)–
invariant measures seems quite appropriate to do analysis. For instance, it
is in this context that Sullivan shows in [10] that the Hausdorff measure on
Λ induces a privileged current α on S, ergodic in its measure class (i.e. any
π1(S)–invariant function on GC(S̃) is constant α–almost everywhere). On
the other hand, the point of view of measures transverse to the geodesic
foliation is more convenient when geometric intuition is needed.

The proof of the following result, which will not be necessary stricto–sensu
to prove Theorem A, but which justifies a bit the introduced definitions, gives
an illustration.

Proposition 4.4. The homotheties of the geodesic currents defined by closed
geodesics on S are dense in C(S).

Proof. The argument we are going to use is closely related to the train
tracks used by Thurston in [12]. Bill Veech made me point out that this
proposition is actually a specific case of a more general result by K. Sigmund
[9].

We will first show that linear combinations (with positive coefficients) of
closed geodesics are dense in C(S).

Let α ∈ C(S) and let U(α,B1, . . . , Bn; ε) be a neighborhood of α as in
Proposition 4.2. Since PC(S) is compact, we can assume without loss of
generality that flow boxes Bi cover PC(S). Moreover, up to cutting and
perturbing these boxes a little, we can assume the interiors of the Bi to be
pairwise disjoint – in the first step, by perturbing, we can make the vertical
bars of the H’s defining B’s pairwise disjoint, then we observe that each
Bi ∩Bj and Bi \Bj is a union of a finite number of flow boxes with disjoint
interiors, which concludes the argument.

Having fixed this decomposition into boxes, there exists lh > 0 such
that each leaf of Bi ∩ F projects in S onto a geodesic arc of length > lh.
Subdivide then the vertical bars of the H’s to obtain a new decomposition
into flow boxes B′j with the same properties as the Bi (each B′j is contained
in a Bi), but which are narrow, meaning that the vertical bars of the H’s
defining the boxes B′j have length ≤ lv for a given ”small” constant lv, which
will be specified later (while horizontal bars have length > lh).

Choose a section Qj of B′j ∩F for each box B′j consisting, for example, of
the centers of all leaves. Let Qj+ and Qj− be its two sides. If p and q are two
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symbols of the form j+ or j−, consider the subset of the side Qp consisting
of the points x such that Qq is the first of the sides Qr met by the half leaf
of F issuing from x (on the side Qp). We denote by a(p, q) the measure of
this subset for the current α.

Positive reals a(p, q) clearly satisfy the equations:

∀p, q, a(p, q) = a(q, p)

∀j,
∑
p

a(j+, p) =
∑
q

a(j−, q) (= α(B′j)).

As these are linear equations with integer coefficients, the a(p, q) can be
arbitrarily approximated by positive rationals b(p, q) which satisfy the same
family of equations, and such that b(p, q) = 0 iff a(p, q) = 0.

Let D ∈ N be a common denominator for the b(p, q), so that Db(p, q) are
integers.

Each time a(j+, k−) 6= 0, there exists at least one leaf in F issuing from
B′j in the direction of Qj+ and entering B′k in the direction of Qk− . Let then
κ(j+, k−) be the geodesic arc joining the centers of the horizontal bars of the
H’s defining B′j and B′k in this specified homotopy class. Note that if the B′j
have been chosen sufficiently narrow, the length of κ(j+, j−) is ≥ lh and the
angles between κ(j+, k−) and the horizontal bars are arbitrarily small.

We define in the same way the arc κ(p, q) for any pair of symbols p and
q having the form j− or j+ such that a(p, q) 6= 0.

Take now Db(p, q) copies of the arc κ(p, q) for all p, q. As
∑

p b(j+, p) =∑
q b(j−, q) for all j, we can paste these copies and form a family γ of piecewise

geodesic closed curves (there are of course a lot of possible choices for γ).
Each curve γ1 in γ is nearly a geodesic. Indeed, it is made of geodesic

arcs of length ≥ lh, while its angles are arbitrarily small if we took from the
beginning the boxes B′i sufficiently narrow, i.e. the constant lv sufficiently
small. An easy and classical argument shows then that there is an arbitrarily
short homotopy between γ1 and a closed geodesic γ∗1 in S. Let us recall briefly
the argument: if we know already that γ1 is homotopic to a geodesic γ∗1 , we
consider a point of γ1 which is the farthest possible from γ∗1 in the cover
S̃ of S, such that π1(S̃) = π1(γ1) ⊂ π1(S); if this point is actually far, a
little of hyperbolic trigonometry shows that γ1 has necessarily large angle
at this point, which is impossible. A similar argument shows that γ1 is not
homotopic to 0: lift γ1 to the universal cover and check that γ1 must have a
large angle at the farthest point from a given base point.

Let us return to our neighborhood U(α,B1, . . . , Bn; ε) of α ∈ C(S). Let
β ∈ C(S) be obtained by dividing by D the Dirac current defined by the
union γ∗ of the geodesics γ∗i homotopic to the curves in γ. If the constant lv
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was chosen sufficiently small, so that the homotopy between γ and γ∗ sends
each geodesic arc in γ onto an arc in γ∗ whose lift in P(S) is at distance
≤ η, then β(Bi) is close to the sum of all b(j+, p) with B′j ⊂ Bi, where the
absolute value of the difference is bounded by the sum of the b(j+, p), whose
B′j is at distance ≤ η from ∂FBi. Moreover, this bound is close to the α
measure of the η–neighborhood of ∂FBi in P(S), which itself is small if η is
small enough as α(∂FBi) = 0. Therefore, β(Bi) is close to the sum of a(j+, p)
with B′j ⊂ Bi, that is to α(Bi). We have hence shown that β is contained
in U(α,B1, . . . , Bn; ε) if B′j are chosen sufficiently narrow and b(p, q) close
enough to a(p, q).

As β was by construction a linear combination of closed geodesics, we
have proved that these combinations are dense in C(S).

We still have to show that each linear combination of closed geodesics
can be approximated by homotheties of closed geodesics. By induction, it is
enough to show this for linear combinations λα+ µβ of two closed geodesics
α and β.

Choose two geodesic arcs k+ and k− joining α and β. We can choose k+

and k− such that the angles (α, k+), (α−1, k−), (β, k+) and (β−1, k−) at those
extremities are arbitrarily small (it is an easy exercise in hyperbolic plane
geometry, consider the universal cover H2). We consider then 3 positive
integers a, b and D such that a

D
and b

D
are arbitrarily close to λ and µ. If γ

is the closed curve αak+β
bk−, we check as before that it is homotopic to a

closed geodesic γ∗ under a ”short” homotopy if the various angles between
k+, k−, α and β have been chosen sufficiently small. Therefore, if those angles
are sufficiently small and if a

D
and b

D
are close enough to λ and µ, then the

geodesic current D−1γ∗ is close to λα + µβ in the topology of C(S), by the
same argument as above.

This ends the proof of Proposition 4.4. �

4.2 Intersection number and length of geodesic cur-
rents

Proposition 4.5. The function ”intersection number” defined on the set of
closed geodesics on S extends to a continuous symmetric bilinear mapping
i : C(S)× C(S)→ R+.

Proof. The geometric intersection number of two closed geodesics α1, α2 is
equal to the number of triples (x, λ1, λ2), where x ∈ α1 ∩ α2 and λ1, λ2 are
two distinct lines in Tx(S) tangent to α1, α2 respectively. The advantage of
this definition is that it is expressed only in terms of geodesic currents, and
we will exploit this observation to define the function i on C(S)× C(S).
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Starting from the bundle P(S) → S, we can consider the Whitney sum
P(S)⊕P(S)→ S. In other words, P(S)⊕P(S) is the 4–dimensional manifold
of triples (x, λ1, λ2), where x ∈ S and λ1 and λ2 are two lines in the tangent
space Tx(S). Forgetting the first or the second line defines two projections
p1 and p2 from P(S)⊕ P(S) to P(S). We consider the two foliations F1 and
F2 of codimension 2 in P(S) ⊕ P(S), whose leaves are the preimages of the
leaves of F by, respectively, p1 and p2. One easily checks that these foliations
are transverse outside the diagonal ∆ of P(S)⊕ P(S).

Let α1 and α2 be two geodesic currents. Through p1, α1 induces a trans-
verse invariant measure p∗1(α1) on F1, which, by transversality of F1 and F2,
gives outside ∆ a measure on each leaf of F2. Similarly, α2 induces outside
∆ a measure p∗2(α2) on each leaf of F1. Consider then the product mea-
sure p∗1(α1)× p∗2(α2) on P(S)⊕ P(S) \∆. We define the intersection number
i(α1, α2) as the volume of this measure.

By the observation we made at the beginning of this proof, we see imme-
diately that i(α1, α2) is the usual intersection number when α1, α2 are closed
geodesics. We still have to check that this number i : C(S) × C(S) → R+ is
continuous. Bilinearity and symmetry of i are immediate.

Fix two currents α1 and α2 in C(S). If B1 and B2 are two flow boxes for
F , let B1⊕B2 be the intersection of p−1

1 (B1) and p−1
2 (B2) in P(S)⊕P(S). If

B1 and B2 are small enough (w.r.t. the injectivity radius of S), two leaves of
B1∩F and B2∩F project to S onto simple geodesic arcs, meeting at most in
one point. We get then from the definitions that the measure of B1⊕B2 for
p∗1(α1) × p∗2(α2) is bounded above by the product α1(B1)α2(B2). Therefore,
if we cover the compact set PC(S) by a finite number of small flow boxes Bj,
the volume i(α1, α2) is bounded above by the sum of α1(Bj)α2(Bk), and is
therefore finite.

The continuity of i at (α1, α2) ∈ C(S)×C(S) will be more tricky. Indeed,
as PC(S) ⊕ PC(S) \ ∆ is not compact, the weak convergence of measures
p∗2(β2) × p∗1(β1) does not necessarily imply the convergence of their volumes
i(β1, β2). Hence the strategy will be the following. Fix ε > 0. We will
construct a neighborhood U of the diagonal ∆ in PC(S) ⊕ PC(S), whose
measure w.r.t. p∗2(β2) × p∗1(β1) is smaller than 2ε, if the currents (β1, β2)
are close enough to (α1, α2). We will use then the weak convergence of
p∗2(β2) × p∗1(β1) to p∗2(α2) × p∗1(α1) on the compact complement of int(U) in
PC(S)⊕ PC(S) to show that i(β1, β2) differs by at most 5ε from i(α1, α2), if
(β1, β2) is close enough to (α1, α2).

The main technical difficulty will arise from the atoms of the geodesic
currents considered. We recall that an atom of a measure µ is a point x
such that µ({x}) 6= 0. An atom of a geodesic current α is of course a leaf
of F passing through an atom of the measure given by α on a submanifold
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transverse to F . An atomic leaf is necessarily closed: indeed, it can go only
a finite number of times through a flow box, for the latter has finite measure,
and the compact set PC(S) may be covered by a finite number of flow boxes.
The same argument shows that for any η > 0, a geodesic current can have
only a finite number of atoms of measure ≥ η.

Take (α1, α2) ∈ C(S) × C(S) and ε > 0. Choose also a finite covering of
PC(S) by flow boxes Bj, sufficiently small so that two leaves of Bj ∩ F and
Bk ∩ F project to two simple arcs in S meeting in at most one point.

Up to replacing S by its oriented double cover, which doubles the inter-
section number, we can suppose S to be orientable.

Fix two numbers ε′ and ε′′ sufficiently small, in a sense that will be made
precise later; at the moment we can say that the value of ε′ will depend on
the α1(Bj) and α2(Bj) above, while the value of ε′′ will depend additionally
on ε′. Subdividing the vertical bars of the H defining Bj, we can cut this
flow box into small boxes with disjoint interiors such that:

(i) either α1(B
′
k) < ε′

(ii) or the horizontal bar λk of the H defining B′k is contained in an atomic
leaf of α1 of transverse measure ≥ ε′ and α1(B

′
k \ λk) < ε′′, analogically for

α2.
Given two geodesic currents β1 and β2 we have seen that the contribution

of B′k ⊕ B′k to i(β1, β2) is bounded above by β1(B
′
k)β2(B

′
k). For (β1, β2)

sufficiently close to (α1, α2), the total contribution to i(β1, β2) of B′k ⊕ B′k
with α1(B

′
k) < ε′ is then bounded by ε′

∑
β2(B

′
k), which equals ε′

∑
β2(Bj).

Symmetrically for the B′k with α2(B
′
k) < ε′. Therefore, if ε′ was chosen

small enough w.r.t. α1(Bj) and α2(Bj), the contribution to i(β1, β2) of the
B′k ⊕ B′k, where B′k avoids the common atoms of volume ≥ ε′ of α1 and α2,
will be smaller than ε if (β1, β2) is close enough to (α1, α2).

We still need to deal with the B′k for which the leaf λk of B′k∩F has mea-
sure ≥ ε′ for both α1 and α2. Consider the cover S̃k of S, whose fundamental
group is the one of the closed geodesic containing λk, and lift B′k to the
cover. Each non–compact geodesic on S̃k crosses the box B′k a finite number
of times. By convention, we say that the closed geodesic on S̃k crosses B′k an
infinite number of times. Denote by Apk the part of B′k consisting of the arcs
of B′k ∩ F located on a (non–compact) geodesic on S̃k crossing the box B′k
exactly p times. Then B′k is the union of the Apk, p ∈ N, and of λk.

We use now an essential geometric observation: if g and h are two
geodesics on the hyperbolic annulus S̃k crossing the box B′k p and q times
respectively, the projections to S of B′k∩g and B′k∩h meet in at most (p+q)
points. Moreover, the projection of B′k∩g meets the arc of λk in at most one
point. We deduce that the contribution of B′k ⊕ B′k to i(β1, β2) is bounded

9



above by∑
p,q

p+ q

pq
β1(A

p
k)β2(A

q
k) + β1(λk)

∑
q

β2(A
q
k)

q
+ β2(λk)

∑
p

β1(A
p
k)

p
.

Moreover, β(B′k) = β(λk) +
∑

p β(Apk) for any geodesic current β. There-
fore, ∑

p≥q

p+ q

pq
β1(A

p
k)β2(A

q
k) ≤ 2β1(B

′
k)
∑
q

β2(A
q
k)

q
,

and ∑
p<q

p+ q

pq
β1(A

p
k)β2(A

q
k) ≤ 2β2(B

′
k)
∑
p

β1(A
p
k)

p
.

Decomposing the sums, we get∑
p

β(Apk)

p
≤
∑
p<p0

β(Apk)

p
+
∑
p≥p0

β(Apk)

p0

≤
∑
p<p0

β(Apk)

p
+
β(B′k)

p0

≤
∑
p<p0

β(Apk)

p
+
κ

p0

for any geodesic current β sufficiently close to α1 or α2 so that all β(Bj) are
bounded by a constant κ (which only depends on α1(Bj) and α2(Bj)).

Fix p0 such that κ
p0
< ε′. Observe that any geodesic in the boundary

of Aqk in B′k meets necessarily ∂FB
′
k (possibly farther). By Lemma 4.33, we

deduce that the boundary of Apk has zero measure for any geodesic current.
Therefore, since α1(A

p
k) and α2(A

p
k) are < ε′′, there exist neighborhoods of α1

and α2 in C(S) such that, for any geodesic current β in these neighborhoods,∑
p

β(Apk)

p
≤ p0ε

′′ + ε′ ≤ 2ε′,

if we have chosen ε′′ ≤ ε′

p0
at the beginning (recall that the choice of p0

depended only on κ and ε′).
Hence, if (β1, β2) is sufficiently close to (α1, α2), the contribution to

i(β1, β2) of all the B′k ⊕ B′k which meet the atoms of measure ≥ ε′ common
to α1 and α2 is at most

6ε′
(∑

k

β1(B
′
k) +

∑
k

β2(B
′
k)
)
≤ 12ε′nκ,

where n is the number of boxes Bj we started with. If ε′ was chosen suffi-
ciently small at the beginning, this contribution is then ≤ ε.

3Lemma 4.4 in Annals
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Considering the two possibilities for the B′k, we have built then a neigh-
borhood U of ∆, consisting of the B′k ⊕ B′k, whose contribution to i(β1, β2)
is ≤ 2ε for (β1, β2) close enough to (α1, α2). As the complement of int(U)
in PC(S) ⊕ PC(S) is compact, by the weak convergence its contribution to
i(β1, β2) is ε–close to its contribution to i(α1, α2), and then i(β1, β2) differs at
most by 5ε(= 2ε+2ε+ε) from i(α1, α2), if (β1, β2) is close enough to (α1, α2).

This ends the proof of the continuity of i, hence of Proposition 4.5. �

Suppose now that the hyperbolic surface S comes with another path semi–
metric m. Recall that m associates to each path in S a positive number (pos-
sibly zero or infinite), that m is invariant under change of parametrization
of paths, additive with respect to the concatenation of paths, and continu-
ous in the compact open topology. If moreover for any x 6= y the numbers
associated to the paths from x to y are greater then a constant > 0, then m
is a path–metric (see [4]).

Proposition 4.6. If the hyperbolic surface S is equipped with a path semi–
metric m, then the function ”length for m” defined for the closed (hyperbolic)
geodesics extends to a linear continuous function lm : C(S)→ R+.

Proof. Given a geodesic current α ∈ C(S), we equip P(S) with the measure,
which is locally the product of the transverse measure defined by α and of
the measure induced by m on the leaves of F . The length lm(α) of α is then
defined as the volume of this measure.

The continuity of lm(α) is immediate by compactness of PC(S). �

Note that the mapping lm depends on the path metric m together with
the hyperbolic structure on S, while all the notions introduced before were
independent of this hyperbolic metric.

On the hyperbolic surface S, there is of course a privileged path metric
defined by the hyperbolic metric, hence a privileged length function l on
S. The latter will be very often used to normalize the elements of C(S).
Indeed, we will be dealing with geodesic currents which are only defined up
to homothety, and it will be more convenient to consider the space of length
1 geodesic currents rather than the projectivized PC(S) of C(S), even if those
two spaces are canonically isomorphic. In particular, we have the following
property (valid for any path metric):

Proposition 4.7. On the hyperbolic surface S the set of currents α of length
l(α) smaller than or equal to 1 is compact.

Proof. If B is a flow box, then let λB be the minimum of the length of
the arcs of B ∩ F . Then α(B) is bounded above by l(α)

λB
for any geodesic
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current α. In particular, for a fixed B, α(B) are uniformly bounded if α is
a length ≤ 1 current. The compactness of the latter set follows immediately
from a classical result in functional analysis (c.f. [2], Chapter III, §1 n◦ 9,
for example) which is essentially the theorem of Tichonov. �

4.3 Measured geodesic laminations

A measured geodesic lamination α on the hyperbolic surface S (of finite type,
without cusps) is a partial foliation of the convex core C(S) equipped with
an invariant transverse measure. More precisely, it is given by a closed subset
of C(S) called the support Supp(α) of α, which is a disjoint union of simple
geodesics and by a measure defined on any arc k in S transverse to Supp(α),
whose support is k ∩ Supp(α) and which is invariant under any homotopy
respecting Supp(α).

A measured geodesic lamination α defines naturally a geodesic current
which will be also called α. Indeed, PC(S) admits a basis of neighborhoods
consisting of flow boxes B with the following property: either B does not
meet the lifts of the geodesics of Supp(α) in PC(S) or B is defined by an
H on S whose horizontal bar is contained in Supp(α) and whose vertical
bars are transverse to Supp(α) and isotopic via an isotopy which preserves
Supp(α). We define α(B) as 0 in the first case or the measure w.r.t. α of any
of the two vertical bars in the second case. This clearly defines a geodesic
current α ∈ C(S).

Proposition 4.8. The measured geodesic laminations are exactly the geodesic
currents with zero self–intersection, that is α ∈ C(S) such that i(α, α) = 0.

Proof. We defined the intersection number of two geodesic currents as the
volume of a measure on P(S)⊕P(S)\∆. If α ∈ C(S) comes from a measured
geodesic lamination, we see immediately that the measure used to define
i(α, α) has empty support, therefore i(α, α) = 0.

Conversely, fix α ∈ C(S) such that i(α, α) = 0. Then its support
Supp(α) ⊂ PC(S) projects to a union of disjoint simple geodesics on S. In-
deed, otherwise we would get two arcs in Supp(α) which project to two simple
geodesic arcs k1 and k2 on S meeting (transversally) in a point. Adding two
small bars at the ends of these arcs to form an H on S, we get two flow boxes
B1 and B2 around the lifts if k1 and k2 in PS. But then the contribution of
B1 ⊕ B2 to i(α, α) is exactly α(B1)α(B2), which is nonzero since k1 and k2

come from Supp(α). As i(α, α) = 0, this cannot happen, and the image A of
Supp(α) in S is of the desired type.

We still have to build an invariant measure on each arc k transverse to A.
We clearly can restrict ourselves to differentiable k and we define then α(k)
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as the measure w.r.t. α of the submanifold transverse to F consisting of the
(x, λ), where x ∈ k and the direction λ in x is not tangent to k. One easily
checks that this defines a measured geodesic lamination whose associated
geodesic current is precisely α. �

The simplest measured geodesic laminations are obviously the closed sim-
ple geodesics equipped with the transverse Dirac measure. Thurston showed
the following result [11],[12].

Proposition 4.9. The subset L(S) of C(S) formed by measured geodesic
laminations is the closure of the set of linear combinations of disjoint simple
closed curves.

The homotheties of simple closed geodesics are not dense in L(S) in
general. Indeed, the components of ∂C(S) and the simple closed geodesics
reversing the orientation are isolated in the space of simple closed geodesics.
Therefore, a measured geodesic lamination which contains such a leaf cannot
be approximated by a multiple of a simple closed geodesic. Nevertheless,
these are the only counterexamples.

By abuse of the language, we will often denote the support of the mea-
sured geodesic lamination α simply by α ⊂ S.

5 Tightening the measured lamination

In this section we develop a technical tool which will play a fundamental role
in the proof of Theorem A. The idea is roughly the following. Let ϕ be a
mapping from a compact surface S into a hyperbolic manifold M , injective
on fundamental groups. Given a simple curve γ on S, ϕ can be homotoped
so that ϕ(γ) is shorter and shorter. If ϕ(γ) is parabolic in M , the length
of ϕ(γ) will tend to 0. Otherwise, ϕ(γ) will converge to the closed geodesic
γ∗ in M homotopic to γ. We will proceed similarly for a measured geodesic
lamination α on S, which will give a uniform estimate for all closed curves
which are up to rescaling close to α in the space C(S) of geodesic currents.

To do this, we have to define the length lM(ϕ(α)) of ϕ(α) in M when α
is a measured geodesic lamination on S, or more generally a current in C(S):
on the surface S we consider the path semi–metric induced by ϕ and the
metric on M (the length of a path is defined as the length of its image under
ϕ). We define then lM(ϕ(α)) as the length of the geodesic current α as was
done in Proposition 4.6. This length is finite as long as ϕ is reasonable, for
example Lipschitz, which in practice will always be the case.
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Usually each surface S will come with a privileged hyperbolic metric used
to define C(S) and we will denote by lS(α) the length of the geodesic current
w.r.t. this metric.

Proposition 5.1. Let S be a hyperbolic surface of finite type without cusps,
ϕ : S →M a continuous mapping from S to a hyperbolic manifold M , injec-
tive on fundamental groups, and α a geodesic lamination on S. Then

(i) either ϕ can be homotoped so that lM(ϕ(α)) is arbitrarily short,

(ii) or for any ε > 0 and t < 1, ϕ can be homotoped so that: for any closed
geodesic γ on S with γ

lS(γ)
sufficiently close to α

lS(α)
in C(S), ϕ(γ) is homotopic

to a closed geodesic γ∗ in M which stays at distance ≤ ε from ϕ(γ) along a
segment of length at least tlM(ϕ(γ)).

Moreover, these two possibilities exclude each other.

In the case where the lamination α is connected, conclusion (i) (resp. (ii))
of Proposition 5.1 amounts precisely to saying that α is non–realizable (resp.
realizable), in the sense of Thurston [12], §8.

We can prove a statement similar to 5.1 when α is any geodesic current.
However, this requires us to modify the framework in the following fash-
ion: consider not only mappings S → M , but also multivalued mappings
P(S)→ M , which factor through manifolds obtained by cutting P(S) along
parts of leaves of the geodesic foliation (these manifolds give approximation
of geodesic currents, similar to the train tracks defined in §5.1). There is
a natural notion of homotopy between such multivalued mappings and we
can prove a statement similar to Proposition 5.1 starting from the mapping
P(S) → M defined by the composition of the projection P(S) → S and
ϕ : S → M . After having suffered through the ”simple” case, the reader
should understand easily why we did not dare to inflict this one.

The main idea of the proof of Proposition 5.1 is the following. Consider
a closed curve in a hyperbolic manifold: if its total angular variation (i.e.
the curvature integral) is large, it can be shortened significantly through a
homotopy; if its total angular variation is small w.r.t. its length, the curve is
homotopic to a closed geodesic which lies relatively close to it. Even if this
rough statement is not completely true, due to the ”shortcuts” discussed in
§5.3, it suggests quite well the strategy of the proof, which we are going to
adopt. Using train tracks (c.f. §5.1) we are going to homotope ϕ so that
ϕ(α) becomes a graph in M , and therefore behaves more or less like a closed
curve. In §5.2 we will introduce a length reducing algorithm whose efficiency
increases with the total angular variation of ϕ(α) (conveniently defined). If
the length of ϕ(α) tends to 0, then conclusion (i) of the proposition holds.
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Otherwise, the total angular variation of ϕ(α) becomes small w.r.t. its length
and we show in §5.4, provided all ”shortcuts” were conveniently eliminated
in §5.3, that conclusion (ii) holds.

5.1 Train tracks

Train tracks are a useful tool introduced by Thurston to study measured
geodesic laminations on a hyperbolic surface S. The reader can consult [12]
§§8–9, [3], [5], [7] for more details on train tracks.

A train track τ on the surface S is a finite family of ”long” rectangles Ri

on S, foliated by arcs parallel to the ”short” sides, glued along a family of
disjoint arcs in the two short sides (together with a condition on S \ τ , which
will be stated further). Two rectangles meet only along their short sides and
each short side is contained in an arc of gluing. A rectangle may ”bite its
own tail”, which means that an arc in one of its short sides can glue onto an
arc in the other short side.

If not yet, the origins of the terminology will be even clearer if we add
the following definitions: the leaves of the rectangles are called the ties of
the train track, and the gluing arcs along which more than two rectangles
are glued are called the switches. The closures of the connected components
of the complement of the switches are the branches of the train track.

We note that this definition is slightly different from the definition of
train tracks given by Thurston, whose train tracks are dimension 1 objects.
Nevertheless, one can pass easily from one framework to the other, even if
the two definitions are not completely equivalent (ours contains a bit more
information at the switches).

It is usual to require, and we will, one more condition on train tracks τ ,
the closure of each component of S \ τ is never a disc with ≤ 2 corners at its
boundary. This condition is required for τ to satisfy the following, which is
a uniqueness property on the route trains can follow.

Lemma 5.2. In a train track τ on the surface S, two paths transverse to
the ties which are homotopic in S (relative the endpoints) are homotopic in
τ via a homotopy preserving the ties.

Proof. Consider the preimage τ̃ of τ in the universal cover S̃ of S. Due to the
condition on the components of S\τ , an Euler characteristic argument shows
that τ̃ does not contain any simple closed curve transverse to the ties except
possibly at one point. Similarly, a simple curve in τ̃ , which is transverse to
the ties except at two points, bounds in τ̃ a disc foliated in the obvious way.
Lemma 5.2 follows easily from these observations. �
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A lamination α is carried by the train track τ if it is contained in its
interior and is transverse to the ties. It is easy to show that a lamination
α is always carried by at least one train track: one easy way is to locally
construct a foliation transverse to α in a neighborhood of α, then to observe
that the set of points, which are connected to α by a path of length ≤ ε along
the leaves of the foliation, forms a train track, if ε is sufficiently small, and
if the foliation is sufficiently regular ([12], §§8–9 can be also consulted).

A train track τ ′ is contained in τ if it is contained in τ as a subset of S,
and if moreover any tie of τ ′ is contained in a tie of τ . It is then clear that
any lamination carried by τ ′ is also carried by τ , although the converse is
false in general.

To prove Proposition 5.1, we are going to use mappings ϕ : S → M of a
particular type on a train track τ carrying α: first of all, ϕ sends each tie
of τ to a single point; secondly ϕ sends each branch e of τ monotonically
to a piecewise geodesic segment ϕ(e) in M , the condition of monotonicity
meaning that the restriction k → ϕ(e) of ϕ to any path k in e transverse to
the ties is monotone w.r.t. the uniform parametrizations of these curves. We
will say then that ϕ is adapted to τ . It is immediate that, for any train track
τ on S, any mapping S →M is homotopic to a mapping adapted to τ .

Adapted mappings are particularly useful, because of the control we get
over the whole train track. For instance, if ϕ is adapted to the train track τ
carrying the measured lamination α, then the length of ϕ(α) in M is just

lM(ϕ(α)) =
∑
e

α(e)lM(ϕ(e)),

where e varies over the set of all the branches of τ and where α(e) is the
measure w.r.t. α of any tie of e.

Similarly, when ϕ is adapted to τ , we can easily compute the total angular
variation of ϕ(α) for a measured geodesic lamination α carried by τ . Let us
stop for a moment to define this notion.

For a path γ ⊂M , which is a piecewise immersion, its total angular vari-
ation, or total curvature, is the sum of the integral of its curvature function
(defined at the points that have a neighborhood in which γ is immersed) and
of the external angles at the corners of γ. For the latter, we fix a convention:
at a point x ∈ γ where γ admits two tangent vectors v+ and v− in a given
orientation class on γ, the external angle of γ at x is the angle between v+

and v− in M , while its internal angle at x is the angle between v+ and −v−.
Notice that these two angles, external and internal, are contained in the in-
terval [0, π], that their sum equals π, and that they are independent of the
orientation chosen on γ. Avoid confusing the external angle ∈ [0, π] of γ in M
with the external oriented angle ∈]−∞, π] of the boundary of a riemannian
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surface with piecewise smooth boundary, which appears for example in the
Gauss–Bonnet formula.

Suppose now that ϕ is reasonable enough so that it sends each geodesic
g of S to a curve ϕ(g) piecewise immersed (even if ϕ|g is not necessarily an
immersion). We could require, for instance, that ϕ is an immersion except
for a finite number of points, but this condition is of course too strong for
ϕ to be adapted to a train track; an ad hoc condition would rather be that
ϕ is adapted to a train track τ , whose ties are all geodesics, and that ϕ is
an immersion on S \ τ except for a finite number of points. Then ϕ induces
a measure of curvature on each geodesic on S and hence on each leaf of the
geodesic foliation F of P(S). If α is a geodesic current, we define the total
angular variation or total curvature, KM(ϕ(α)) of ϕ(α) in M as the volume
of the measure on P(S) which is locally the product of α and of this curvature
measure along the leaves. We immediately verify that this definition coincides
with the one given previously when α is a closed geodesic, and that the
mapping which assigns to α ∈ C(S) the value KM(ϕ(α)) is continuous.

When α is a measured geodesic lamination carried by the train track τ
to which ϕ is adapted, its total curvature KM(ϕ(α)) can be computed in a
completely combinatorial way. For a tie s of τ , define a local route as a germ
of an arc transverse to s, defined modulo homotopy which preserves the ties.
Hence, at a switch, a local route specifies two branches of τ which meet along
an arc at this switch; all other ties admit only one local route. For such a
local route t for a tie s, we can define its volume α(t), which is the measure
w.r.t. α of the subarc of s consisting of the points through which an arc
transverse to s representing t passes. Similarly, if ϕ is adapted to τ , we can
define the angle θ(ϕ(t)) as the external angle at the point ϕ(s) of the broken
geodesic ϕ(t) in M . Then

KM(ϕ(α)) =
∑
t

α(t)θ(ϕ(t)),

the sum taken over all local routes in τ . (There is of course only a finite
number of nonzero terms in this sum).

In particular, for a measured geodesic lamination α, the formula above
defines the total curvature KM(ϕ(α)) as soon as ϕ is adapted to a train track
τ carrying α, without worrying about the regularity of ϕ and τ which are
needed to define the total curvature of ϕ(β) for any geodesic current β. We
do not need to worry about these issues for the moment.

The following lemma is essentially a preparation for more significant mod-
ifications of ϕ.

Lemma 5.3. Under the hypothesis of Proposition 5.1, suppose additionally
that the lamination α has no compact leaves. Fix a number η > 0. If ϕ : S →
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M is adapted to a train track τ carrying the measured lamination α, we can
homotope ϕ to ϕ′, adapted to a train track τ ′ contained in τ and still carrying
α, such that ϕ′(τ ′) is formed of geodesic arcs in M , all of length ≥ η, and
such that lM(ϕ′(α)) ≤ lM(ϕ(α)).

Proof. First observe that there exists η′ > 0 with the following property:
for any geodesic arc k on S contained in the convex core C(S) of length ≥ η′

w.r.t. the hyperbolic metric on S, the geodesic arc in M homotopic to ϕ(k)
(relative the endpoints) has length ≥ η. To see this, consider the universal
covers S̃ and M̃ of S and M , and lift ϕ to ϕ̃ : S̃ → M̃ . As ϕ induces an
injection on fundamental groups, the intersection of ϕ̃(S̃) with each ball of
radius η in M̃ is compact. We deduce that such a constant exists locally
for all the arcs k starting at the same point x ∈ C(S), hence globally by
compactness of C(S).

The idea will be to build τ ′ contained in τ and carrying α, so that each
branch e′ of τ ′ contains a geodesic of length ≥ η′ crossing each tie of e′

transversally. It will then be sufficient to apply the preceding observation
and to tighten each ϕ(e′) through a homotopy of ϕ, so that e′ is sent to the
geodesic arc in M (of length ≥ η) homotopic to ϕ(e′) relative the endpoints.
Clearly, this does not increase the length of the image of α in M .

It will be convenient to define the length of a branch e as the minimal
length of the arcs in e which are transverse to the ties and join its two ends
(i.e. the two sides of the rectangle which are ties).

We start with the case where τ has no branch which ”bites its own tail”,
which means that its two ends meet along an arc. From each corner of τ ,
we draw in τ an arc transverse to the ties until we meet a switch. We can
clearly choose those arcs disjoint from α and from each other. Let τ ′ be a
train track carrying α obtained by cutting τ along these arcs. As no branch
of τ bites its own tail, each branch of τ ′ is made of two rectangles obtained
by cutting lengthwise two distinct branches of τ . In particular, each branch
of τ ′ has length at least twice the minimum of the lengths of the branches of
τ 4.

If there is a branch e of τ which bites its own tail, we will use the hypoth-
esis that α does not have any compact leaf to reduce to the previous case.
Indeed, this implies that no half leaf of α can stay forever in e. Starting from
one of the corners in the intersection of the two ends of e, we can then con-
struct an arc in e transverse to the ties, disjoint from α, which ends outside
the intersection of the two ends: if α meets e, we just have to go along a leaf
of α, otherwise this is immediate. If we cut τ along this arc, and if we do this

4Even if this is not strictly correct, the reader will easily fix the proof.
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for all the branches which bite their tails, we get a train track without any
branches which bite its own tail5. We can then apply the previous process to
obtain again a train track carrying α whose branches all have length greater
than twice the minimum of the length of the branches of τ .

Iterating this process, we get a train track τ ′ contained in τ which carries
α, whose branches all have length ≥ η′. Up to deleting the branches which
do not meet α and rounding off the ”scars” created, we can suppose that α
passes through any branch of τ ′. In particular, each branch e′ of τ ′ contains
a geodesic of length ≥ η′ which meets transversely each tie of e′ at one point.
We saw before that this ends the proof of Lemma 5.3. �

Lemma 5.4. Under the hypothesis and conclusions of Lemma 5.3, we can
require that

KM(ϕ′(α)) ≤ KM(ϕ(α)).

Proof. Even if this will not be absolutely necessary, it will be convenient to
choose the train track τ ′ used in the proof of Lemma 5.3 without branches
biting their tail. We saw that this is always possible.

To check that the modification in Lemma 5.3 does not increase the total
curvature, we decompose the homotopy from ϕ to ϕ′ into a sequence of
mappings ϕ = ϕ0, ϕ1, . . . , ϕn = ϕ′, where we pass from ϕi to ϕi+1 by a
homotopy which tightens the image of a single branch ei and fixes τ ′ \ei. We
just need then to check that at each step

KM(ϕi+1(α)) ≤ KM(ϕi(α)).

As ϕi and ϕi+1 coincide on τ ′ \ ei, we just have to show that for any arc
a which is a small neighborhood of a component of α ∩ ei in a leaf of α, the
sum of the external angles of ϕi+1(a) in M is less than or equal to the one
for ϕi(a). We note that ϕi(a \ ei) = ϕi+1(a \ ei) as ei does not bite its own
tail.

We realize the homotopy between the piecewise geodesic ϕi(ei) and the
geodesic ϕi+1(ei) by a mapping ∆: D2 → M sending ∂D2 onto ϕi(ei) ∪
ϕi+1(ei). As usual we can choose ∆ to be hyperbolically simplicial for a
triangulation of the disc D2 whose vertices are located on the boundary and
correspond to the corners of ϕi(ei) and to its endpoints (which are also the
endpoints of ϕi+1(ei)). Identifying ∆ with its graph, the former inherits a
hyperbolic metric with piecewise geodesic boundary, induced from the metric
on M .

Let x1, . . . , xp be the vertices of the triangulation ∆, in this order on ∂∆.
such that x1 and xp correspond to the two endpoints of ϕi(ei). Denote by θk
5This also requires fixing.
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the oriented external angle (possibly negative) of ∆ at xk, which is π minus
the internal angle of ∂∆ in ∆ at this point. Let also θik be the external angle
(non–oriented) of ϕi(a) at ∆(xk) in M and let θi+1

1 and θi+1
p be the external

angles in M of ϕi+1(a) at ∆(x1) and ∆(xp). Then

θ1 + θ2 + . . .+ θp ≥ 2π,

∀k 6= 1, p, θik ≥ θk,

(π − θi1) ≤ (π − θi+1
1 ) + (π − θ1),

(π − θip) ≤ (π − θi+1
p ) + (π − θp).

Indeed, the first inequality comes from the Gauss–Bonnet formula (the
difference between those terms is the area of ∆). The other inequalities come
from considering the way various angular sectors around ∆(xk) combine in
M ; it may be useful for this to draw a sphere in the tangent space to M at
∆(xk), so that the various angles are expressed as the lengths of paths drawn
on this sphere.

Combining these inequalities, we get:

θi+1
1 + θi+1

p ≤ θi1 + θi2 + . . .+ θip.

This means exactly that the sum of external angles of ϕi+1(a) is less than or
equal to the one for ϕi(a). This ends the proof of Lemma 5.4. �

5.2 Tightening through curvature

A curve which has significant corners can be tightened through a homotopy.
We are going to apply this idea to the images of measured laminations under
adapted mappings. The starting point is the following observation.

Lemma 5.5. Given η > 0, there exists a constant c(η) with the following
property: for any path k in a hyperbolic manifold M formed by two geodesic
arcs whose length is between η and η

2
, the length of the geodesic arc k′ in M

homotopic to k (relative the endpoints) is bounded above by

lM(k)− c(η)θ2,

where θ is the external angle of k at the only corner.

Proof. If l, l′, l1 and l2 denote respectively the lengths of k, k′ and the two
geodesic arcs of k, we have the following formula of the hyperbolic plane
trigonometry (c.f. [1], §7.12):

cosh l′ = cosh l1 cosh l2 +sinh l1 sinh l2 cos θ = cosh l− sinh l1 sinh l2(1−cos θ).
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Hence when θ tends to 0, the difference (cosh l − cosh l′) is of the order
of θ2, as l1 and l2 are between η and η

2
. Moreover,

cosh l − cosh l′ = 2 sinh
l + l′

2
sinh

l − l′

2

is also of the order of l − l′. The quotient l−l′
θ2

stays bounded when θ tends
to 0, which gives the lemma. �

In the setting of Lemma 5.3 we are going to use the estimate of Lemma
5.5 to obtain a significant reduction of the length lM(ϕ(α)) depending on the
quadratic angular variation QM(ϕ(α)) of ϕ(α) in M . The latter is defined
as follows. Remember that we saw in §5.1 that the total angular variation
KM(ϕ(α)) is

KM(ϕ(α)) =
∑
t

α(t)θ(ϕ(t)),

where t varies over the set of local routes in τ , α(t) is the measure of t w.r.t.
α, and θ(ϕ(t)) is the external angle of ϕ(t) in M . We define similarly

QM(ϕ(α)) =
∑
t

α(t)θ(ϕ(t))2.

Hence, when α is a closed curve, QM(ϕ(α)) is exactly the sum of the squares
of the external angles at the corners of the broken geodesic ϕ(α) in M .

Lemma 5.6. Under the hypothesis of Proposition 5.1, suppose that ϕ is
adapted to a train track τ carrying α, such that ϕ(τ) consists of geodesic
arcs all of length ≥ η. Then ϕ can be homotoped to ϕ′ adapted to a train
track τ ′ contained in τ and carrying α, such that

lM(ϕ′(α)) ≤ lM(ϕ(α))− c(η)QM(ϕ(α))

and
KM(ϕ′(α)) ≤ KM(ϕ(α)),

where the constant c(η) is the one of Lemma 5.5 and QM(ϕ(α)) is the quadratic
angular variation of ϕ(α) in M .

Proof. As each branch e of τ is sent by ϕ onto a broken line consisting of
geodesic arcs of length ≥ η, we can cut e along some ties to get rectangles R
such that each ϕ(R) is a geodesic arc with length between η and η

2
. For each

of these rectangles R, let sR be the middle tie, which is sent to the center of
the arc ϕ(R).
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The train track τ ′ is defined as follows. Starting from each corner of τ , we
draw an arc transverse to the ties, disjoint from α, until we meet the middle
tie sR. We choose these arcs disjoint from each other and we obtain τ ′ by
cutting τ along these arcs. By construction, each switch of τ ′ is contained in
a middle tie sR, and the sR cut τ ′ into rectangles R′ with ϕ(R′) formed of
two geodesics arcs and of length between η and η

2
.

We choose now ϕ′ : S →M adapted to τ ′ and homotopic to ϕ, such that
ϕ′ sends each rectangle R′, cut by sR from τ ′, onto the geodesic arc in M
homotopic to the arc ϕ(R′). From Lemma 5.5, we get immediately that

lM(ϕ′(α)) ≤ lM(ϕ(α))− c(η)QM(ϕ(α)).

Moreover, if the original train track τ had no branch biting its tail, which we
may always assume, we verify that

KM(ϕ′(α)) ≤ KM(ϕ(α))

in the same way as in the proof of Lemma 5.4. �

5.3 Shortcuts

Still in the setting of Proposition 5.1, we suppose ϕ : S →M is adapted to a
train track τ . Given two numbers ε and η with 0 < ε < η, an (ε, η)–shortcut
for ϕ|τ is an arc k contained in τ transverse to the ties, such that ϕ(k) has
length ≥ η, while the geodesic arc k′ in M homotopic to ϕ(k) has length ≤ ε.
(In meta–mathematical sense, the shortcut would rather be k′, but since it
is completely determined by k . . .)

(ε, η)–shortcuts will disturb certain estimates we are going to obtain in
the next paragraph. We would like therefore to eliminate them.

Lemma 5.7. For ε small enough w.r.t. η, we have the following: let ϕ : S →
M be adapted to a train track τ carrying a lamination α without compact
leaves, such that the induced mapping ϕ∗ : π1(S)→ π1(M) is injective. Then
τ contains a train track τ ′ carrying α, and we can homotope ϕ to ϕ′ adapted
to τ ′ so that ϕ′|τ ′ does not admit any (ε, η)–shortcuts and

lM(ϕ′(α)) ≤ lM(ϕ(α))

and
KM(ϕ′(α)) ≤ KM(ϕ(α)).

(The result is still valid if α has compact leaves, and follows easily from this
special case, but we will not need it.)
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Proof. We fix two numbers ε′ and η′, with 0 < ε′ < η′. We will specify them
later when it will have become clear what is meant by the assertion that ε is
small enough w.r.t. η.

The idea of the proof will be, up to modifying τ , to find for ϕ|τ a finite
family k1, . . . , kn of (ε′, η′)–shortcuts, which do not cross any switches, and
which is maximal in the sense that any tie containing the endpoint of another
(ε′, η′)–shortcut necessarily meets the interior of one of ki. We will modify ϕ
by replacing each ϕ(ki) with the homotopic geodesic arc in M . If ε′ and η′

were chosen conveniently w.r.t. ε and η, we will show that there are no more
(ε, η)–shortcuts.

To start with, we show that there is a bound on the number of times an
(ε′, η′)–shortcut can cross the branches of τ . Indeed, given two branches e1
and e2 of τ , there is only a finite number of homotopy classes of paths of
length ≤ ε′ joining ϕ(e1) to ϕ(e2) in M . As ϕ∗ : π1(S)→ π1(M) is injective,
there is only a finite number of homotopy classes of paths joining e1 to e2 on
S which are realized by (ε′, η′)–shortcuts. By Lemma 5.2, there is a bound
on the number (with multiplicity) of branches crossed by an (ε′, η′)–shortcut.

In particular, the length in M of the image under ϕ of an (ε′, η′)–shortcut
is bounded above by a constant A. By the argument used in Lemma 5.3 and
since we assumed the lamination α is without compact leaves, it is carried
by a train track τ0 ⊂ τ , whose branches all have an image in M of length
> 2A. Hence, an (ε′, η′)–shortcut of ϕ|τ0 meets each tie of τ0 in at most one
point, and meets at most one switch.

It will be convenient to use the following notation: if X is a subset of τ0,
then R0(X) is the union of the ties of τ0 meeting X.

We consider first the shortcuts which do not cross any switches. We
choose a finite family of such shortcuts {k1, . . . , kp}, such that the rectangles
R0(ki) have disjoint interiors, and the union of the interiors of R0(ki) is
maximal among the families of this type. The existence of such a maximal
family is immediate, as well as the fact that any other (ε′, η′)–shortcut k
which does not cross any switch has at least one endpoint in the interior of
some R0(ki).

Now we focus on the union U0 of R0(k), where k is an (ε′, η′)–shortcut
such that ∂k avoids the interior of R0(ki) (which implies that k crosses a
switch). Note that U0 cannot contain a complete branch of τ0, since the
images of the latter under ϕ have length > 2A. On the other hand, U0 can
contain some ki. For each corner of τ0 contained in U0, we join this corner
to one of the ties of ∂U0 by a path in U0 disjoint from α and transverse to
the ties; we choose these paths disjoint from each other. Let τ ′ be the train
track obtained by cutting τ0 along these paths.

We denote by R′(X) the union of the ties of τ ′, which meet the set X,
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and let U ′ be the part of τ ′ corresponding to U0. By construction, U ′ does
not contain any switch of τ ′ in its interior.

We re–index ki so that those contained in U0 are exactly those corre-
sponding to the indices i < m. Then kj with m ≤ j ≤ p are also (ε′, η′)–
shortcuts for ϕ|τ ′ . We complete the latter with a family {kp+1, . . . , kn} of
(ε′, η′)–shortcuts for ϕ|τ ′ contained in U ′ such that

(i) R′(kj) for j > p (and hence for j ≥ m) have disjoint interiors;
(ii) for any i < m, each component of R0(ki) ∩ U ′ is contained in R′(kj)

for some j > p;
(iii) the union of the interiors ofR′(kj) is maximal among families {kp+1, . . . , kn}

with the above properties.
We claim that the family {km, . . . kp, kp+1, . . . , kn} of (ε′, η′)–shortcuts for

ϕ|τ ′ has the following property: any other (ε′, η′)–shortcut k for ϕ|τ ′ has at
least one end in the interior of one of R′(ki), with m ≤ i ≤ n. Indeed, every
such k is also a shortcut for ϕ|τ0 . If ∂k avoids the interior of R′(ki) = R0(ki)
for all m ≤ i ≤ p, this means that either ∂k meets the interior of R0(ki)
for some i < m, or k crosses a switch of τ0 and is therefore contained in
U0 ∩ τ ′ = U ′. In the first case, ∂k meets the interior of R′(kj) for some j > p
by condition (ii); the same happens in the second case due to the maximality
condition (iii).

Now that we have defined τ ′ and km, . . . , kn, we homotope ϕ to ϕ′ adapted
to τ ′, which sends each R′(ki) with i ≥ m to the geodesic arc in M homotopic
to ϕ(ki), and which coincides with ϕ on the remaining part of τ ′. (This is of
course possible only because the ki avoid the switches of τ ′.) Clearly, passing
from ϕ to ϕ′ increases neither the length of the image of α in M , nor its total
curvature by the argument of Lemma 5.4.

It is finally time to specify how small ε′ and η′ were chosen at the begin-
ning, if we want to show that ϕ′|τ ′ does not have any (ε, η)–shortcuts. For
fixed η, we chose ε′ and η′ so that ε′ < η′ < η − 2ε′. We require then in the
hypotheses of the lemma that ε > 0 is sufficiently small so as to satisfy the
following property: for any geodesic arcs k1 and k2 of length ≤ ε′ in M with
d(k1, k2) ≤ ε we have d(∂k1, ∂k2) < ε′ (where (d(X, Y ) is the minimum of the
distances between x and y for x ∈ X and y ∈ Y ). Indeed, such a property
holds for ε = 0 by the triangle inequality, and then for ε > 0 sufficiently small
by continuity (we could of course give explicit estimates).

Under these conditions, ϕ′|τ ′ will not admit any (ε, η)–shortcuts. Indeed,
applying the hypothesis on ε to the arcs ϕ′(ki), we could otherwise shorten
or elongate our segment k near its endpoints in order to get an arc k′ ⊂ τ ′

which would be transverse to the ties, with its endpoints outside the interiors
of R′(ki), such that the length of ϕ(k′) in M is ≥ η− 2ε′ ≥ η′ and the length
of the geodesic arc in M homotopic to ϕ(k′) is ≤ ε′. But then k′ would be
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an (ε′, η′)–shortcut for ϕ′|τ ′ of the type excluded by the definition of ki. �

Complement 5.8. Under the conditions of Lemma 5.7, we assume addi-
tionally that ϕ(τ) consists of geodesic arcs of length ≥ η. We then reach the
conclusion that there exists a subset X of τ ′, which is a union of ties, such
that ϕ′(X) consists of geodesic arcs of length ≥ η, and that

lM(ϕ′(α \X)) ≤ 5[lM(ϕ(α))− lM(ϕ′(α))],

and for any arc k transverse to the ties in τ ′, whose endpoints are in τ ′ \X
but which meets X, the geodesic arc in M homotopic to ϕ′(k) has length > ε.

(The 5 in the inequality is not optimal, we could for instance replace it by
any constant > 4.)

Proof. In the above proof of Lemma 5.7, we cut τ0 into rectangles R such
that any ϕ(R) is a geodesic arc with length between η and 2η. We then
modify slightly the construction of τ ′ by opening the corners of S \ τ0 farther
than ∂U0 until we meet either R0(ki) for some m ≤ i ≤ p, or a tie which
separates two such rectangles R. We define ϕ′ as before.

We consider one of the rectangles R of τ0 above. If R does not meet the
interior of one of ki with m ≤ i ≤ p, its trace R ∩ τ ′ consists of rectangles
of τ ′ meeting at at most one corner. If R meets the interior of some ki with
m ≤ i ≤ p, observe that R ∩ τ ′ stays connected.

We take for X the union of the components of R ∩ τ ′ which do not meet
the interior of any kj, with m ≤ j ≤ n. By construction, ϕ′(X) = ϕ(X) and
consists of geodesic arcs of length ≥ η. Moreover, if αi is the measure w.r.t.
α of any tie of τ ′ meeting the interior of ki,

lM(ϕ′(α \X)) ≤ (4η + ε′)
n∑

i=m

αi.

Indeed, ε′ bounds the lengths of ϕ′(ki) and the contribution from a component
of R ∩ τ ′, whose interior meets ∂ki is bounded by 2ηαi.

We also have

lM(ϕ(α))− lM(ϕ′(α)) ≥ (η′ − ε′)
n∑

i=m

αi.

As ε′ and η′ are restricted only by the condition 0 < ε′ < η′ < η− 2ε′, we can
choose them so that (4η+ε′)

(η′−ε′) is ≤ 5, which yields the required inequality. The
last property follows directly from the construction of ki. �
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5.4 The proof of Proposition 5.1

Recall that we have a finite type hyperbolic surface S, a mapping ϕ : S →
M into a hyperbolic manifold M , injective on fundamental groups, and a
measured geodesic lamination α on S. Essentially, we will apply alternatively
the process of tightening through curvature and through taking shortcuts.
Then either the length of ϕ(α) will become arbitrarily small, or we will reach
a situation where ”ϕ(α) is not far from being formed by geodesics”, and
where conclusion (ii) holds.

We are going to alternatively use the process of tightening through cur-
vature and the process of tightening via shortcuts to construct a sequence of
mappings ϕn : S → M homotopic to ϕ and adapted to some train tracks τn
carrying α, such that the length lM(ϕn(α)) decreases.

To do this, we start with ϕ and a train track τ carrying α. The compact
leaves of α must be isolated; indeed, a simple geodesic which passes close
to a simple geodesic without meeting it must spiral around it, which is not
compatible with the existence of an invariant transverse measure. Therefore,
up to cutting τ , we can suppose that each compact leaf of α is contained in
a component of τ which is just one of its collar neighborhoods. Let τ c be the
union of these collars.

We can already say that the components of τ c will also be components
of each τn. Hence we can already determine ϕn|τc ; since ϕn is adapted to
τn, we just have to specify the images of the compact leaves γ of α: If ϕ(γ)
is loxodromic, ϕn sends γ to the corresponding closed geodesic γ∗ of M .
Otherwise, ϕn(γ) is parabolic and we just require that the length and the
curvature of ϕn(γ) decreases with n and tends to 0; for example it suffices
to take ϕn(γ) to be a piecewise geodesic with only one corner, and have this
corner moving towards the corresponding cusp when n tends to infinity.

We consider the compact leaves γ of α such that ϕ(γ) is loxodromic and fix
a number η larger than the lengths of the closed geodesics in M homotopic to
these ϕ(γ). Then we fix ε0 > 0 small enough to apply the tightening Lemma
5.7 with (ε0, η)–shortcuts.

We start with τ0 = τ and homotope ϕ to ϕ0 adapted to τ0, such that
its restriction ϕ0|τc is of the type required above. We then define τn and ϕn
recurrently. Suppose τn and ϕn are constructed. We define τn+1 and ϕn+1 in
two steps.

First we apply Lemma 5.3 to ϕn and to the train track τn \ τ c, where
we recall that τ c is formed by the collars around the compacts leaves of α.
This gives a train track τ ′n contained in τn and carrying α and ϕ′n adapted
to τ ′n and homotopic to ϕn such that ϕ′n(τ ′n \ τ c) is formed by geodesic arcs
of length ≥ η and ϕ′n|τc = ϕn|τc .
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The second step depends on the parity of n. If n is even, we apply Lemma
5.6 on tightening through curvature to ϕ′n and τ ′n \τ c to define ϕn+1 and τn+1

(without changing the conditions required for ϕn+1|τc). If n is odd, we use
Lemma 5.7 on tightening through (ε0, η)–shortcuts and its Complement 5.8.

Having defined τn and ϕn, we note that by Lemmas 5.4, 5.6 and 5.7, and
by the construction of ϕn|τc , the sequences lM(ϕn(α)) and KM(ϕn(α)) are
decreasing. In particular, they converge.

Claim 5.9. The sequence KM(ϕn(α)) tends to 0.

Proof. Because of the conditions imposed on ϕn|τc , we can assume that α
has no compact leaves.

Let τ ′2m and ϕ′2m be the train track and the mapping defined in the first
step of the construction of τ2m+1 and ϕ2m+1 from τ2m and ϕ2m. Recall that
ϕ′2m(τ ′2m) is formed by geodesic arcs of length ≥ η.

By Lemma 5.6,

lM(ϕ2m+1(α)) ≤ lM(ϕ′2m(α))− c(η)QM(ϕ′2m(α)).

As the sequence lM(ϕn(α)) converges, we deduce that the quadratic angular
variation tends to 0 when n tends to infinity.

Recall moreover that

KM(ϕ′2m(α)) =
∑
t

α(t)θ(ϕ′2m(t))

and
QM(ϕ′2m(α)) =

∑
t

α(t)θ(ϕ′2m(t))2,

where t varies over all local routes of τ ′2m, α(t) is the measure of t w.r.t. α,
and θ(ϕ′2m(t)) is the external angle of ϕ′2m(t) in M . In particular, if we fix a
number θ0 > 0,

KM(ϕ′2m(α)) ≤ θ0

∑
t∈A

α(t) + π
∑
t∈B

α(t) ≤ θ0

∑
t∈A

α(t) + π
QM(ϕ′2m(α))

θ2
0

,

where A is the set of local routes t such that 0 < θ(ϕ′2m(t)) ≤ θ0 and B is
the set of t such that θ(ϕ′2m(t)) > θ0.

Moreover, since ϕ′2m(τ ′2m) is formed by geodesic arcs of length ≥ η, each
local route t with θ(ϕ′2m(t)) > 0 (i.e. corresponding to a corner) contributes
at least ηα(t) to the length of ϕ2m(α). In particular,∑

t∈A

α(t) ≤ lM(ϕ′2m(α))

η
≤ lM(ϕ0(α))

η
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and therefore

KM(ϕ′2m(α)) ≤ θ0
lM(ϕ0(α))

η
+ π

QM(ϕ′2m(α))

θ2
0

.

For any ε > 0, fix θ0 such that θ0
lM (ϕ0(α))

η
≤ ε

2
. For n large enough,

π
QM (ϕ′2m(α))

θ20
≤ ε

2
and so KM(ϕ′2m(α)) ≤ ε. Hence we have shown that the

sequence KM(ϕ′2m(α)) tends to 0. As

KM(ϕ2m+2(α)) ≤ KM(ϕ2m+1(α)) ≤ KM(ϕ′2m(α)) ≤ KM(ϕ2m(α))

by Lemmas 5.4, 5.6 and 5.7, we deduce that KM(ϕn(α)) tends to 0. �

Before finishing the proof of Proposition 5.1, for future reference, we
mention the following easy results.

Lemma 5.10. Given ϕn and ε > 0, there exists a constant c1(ϕn, ε) such
that, for any geodesic arc k in the convex core C(S), for which the geodesic
arc in M homotopic to ϕn(k) has length ≤ ε, the length of ϕn(k) in M is
≤ c1(ϕn, ε).

Proof. Since ϕn induces an injection on fundamental groups, the lift to the
universal covers ϕ̃n : S̃ → M̃ is proper. In particular, the preimage under ϕ̃n
of a ball of radius ε in M̃ is compact. Hence such a constant exists locally for
the arcs k issuing from some point x ∈ C(S), hence globally by compactness
of C(S). �

Lemma 5.11. Given ε > 0 and η > 0, there is a constant c2(ε, η) with the
following property: in the hyperbolic plane H2 consider a quadrilateral with
vertices z1, x, z2, x

′, whose oriented external angles are respectively π
2
, θ, π

2
, θ′,

and such that the distances d(x′, z1) and d(x′, z2) are ≤ ε, while d(x, z1) and
d(x, z2) are ≤ η. Then d(x, z1) and d(x, z2) are ≤ c2(ε, η)θ.

Proof. It is enough to show that the quotients d(x,z1)
θ

and d(x,z2)
θ

stay bounded
when θ tends to 0. Let θ1 and θ2 be the internal angles between the arc xx′

and, respectively, x′z1 and x′z2. Then, by Gauss–Bonnet,

θ1 + θ2 ≤ θ,

while by elementary hyperbolic trigonometry (see [1], §7.11)

tanh d(x, z1) = sinh d(x′, z1) tan θ1,

tanh d(x, z2) = sinh d(x′, z2) tan θ2,

which gives the result. �
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Claim 5.12. If the limit of the sequence lM(ϕn(α)) is nonzero, then conclu-
sion (ii) of Proposition 5.1 holds: given ε > 0 and t < 1, for any m suffi-
ciently large and any closed geodesic γ on S with γ

lS(γ)
close enough (w.r.t.

m) to α
lS(α)

in C(S), the curve ϕ(γ) is homotopic to a closed geodesic γ∗ in
M , which is at distance ≤ ε from ϕ2m(γ) on a segment of length at least
tlM(ϕ2m(γ)).

Proof. Fix ε > 0 and t < 1. W.l.o.g., we can suppose ε is less than or equal
to the number ε0 used in the construction of ϕn.

At this point, we will have to consider the total curvature KM(ϕn(β)) of
ϕn(β) for a geodesic current β ∈ C(S), which will require that ϕn and τn
have certain regularity properties (see §5.1). For instance, we can require
that all the ties are geodesics and ϕn is an immersion on S \ τn except at a
finite number of points: since τn is contained in τ0, the first condition will
be immediately satisfied if τ0 had from the beginning geodesic ties, which we
can always assume; since the only conditions required until now for ϕn were
about its restriction to τn, we can obviously assume it satisfies the required
condition. Then the total curvature KM(ϕn(β)) is defined for any geodesic
current β, and depends continuously on β ∈ C(S).

Since τ2m and ϕ2m are constructed by tightening through (ε0, η)–shortcuts
ϕ′2m−1 and τ ′2m−1 \ τ c, let X2m ⊂ τ2m be the union of the part X of τ2m \ τ c
given by Complement 5.8 and of the components of τ c which are collars
around compact leaves of α whose image under ϕ is loxodromic. Hence,
since the closed geodesics in ϕ2m(τ c ∩ X2m) all have length ≥ η, ϕ2m(X2m)
is formed by geodesic arcs in M of length ≥ η.

With the notation and definitions of Section 4, we cover the compact set
PC(S) with a finite number of flow boxes B1, . . . , Br in P(S) with disjoint
interiors such that any arc of Bi∩F projects onto an arc transverse to the ties
contained in X2m if 1 ≤ i ≤ p, onto an arc transverse to the ties contained
in τ2m \X2m if p < i ≤ q, or is an arc disjoint from α if q < i ≤ r. To
do this, we start with covering the support of α with flow boxes B1, . . . , Bq

having the required properties, defined by some H whose horizontal bar is
contained in Supp(α) and whose vertical bars are ties of τ2m. Then we find
a completion of this covering to a covering of PC(S) by boxes B′q+1, . . . , B

′
r

such that each arc of B′j ∩F is an arc disjoint (in PC(S)) from α. Moreover,
we can suppose that the vertical bars of the H defining B′j are disjoint from
the H defining Bi with i ≤ q, and are disjoint from each other. We note that
then each B′j ∩B′k, B′j \B′k and B′k \Bj is a union of a finite number of flow
boxes with disjoint interiors, which allows us to finish.

Note that the boxes Bi with i ≤ p are exactly the ones over which we
have the best control, by all our constructions.
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First we restrict ourselves to the closed geodesics γ on S such that ϕ(γ)
is loxodromic, and hence homotopic to a closed geodesic γ∗ in M . Let γ2m

be the curve obtained in M from ϕ2m(γ) by replacing the image of each
component of γ ∩ Bi with i > p by its homotopic geodesic arc in M . We
realize then the homotopy between γ∗ and the piecewise geodesic γ2m by a
mapping A : S1 × [0, 1] → M which is hyperbolically simplicial for a drum
triangulation of the annulus S1 × [0, 1], whose vertices are on the boundary
∂A, as in the proof of Lemma 2.1. Identifying as usual A with its graph,
the metric in M induces a hyperbolic metric on A with piecewise geodesic
boundary, each of the two components of ∂A is naturally identified with γ2m

or γ∗.
In γ2m, we consider the image under ϕ2m of γ ∩ Bi, with 1 ≤ i ≤ p. By

construction, it is formed by geodesic arcs of length ≥ η (in both M and A).
We denote by γ0

2m its complement in γ2m (that is γ0
2m is essentially the part

where γ2m differs from ϕ2m(γ)).
Through any point z ∈ γ2m \ γ0

2m which is not a corner, we trace in A a
geodesic arc λz orthogonal to the boundary of length ε

2
(if possible).

If λz ∩ λz′ 6= ∅ but z 6= z′, we can join z with z′ by an arc k in γ2m which
is homotopic relative the endpoints to an arc of length ≤ ε in A, hence in M .
By Lemma 5.10, the length of k in M is bounded above by certain constant
c1(ϕ2m, ε).

If k is contained in the closure of γ2m \ γ0
2m, it must have length ≤ η,

otherwise it would give an (ε0, η)–shortcut for ϕ2m|τ2m , which is not allowed.
Hence it contains at most one corner of γ2m \ γ0

2m. By Gauss–Bonnet, k
has exactly one corner of oriented external angle θA > 0 in A, and hence of
external angle θ ≥ θA in M . By Lemma 5.11, the length of k is bounded
above by c2(ε, η)θ.

If k meets γ0
2m, recall that there exists an arc k′ ⊂ γ such that k is

homotopic to ϕ2m(k′) (relative the endpoints) in M . From the definition of
X2m in Complement 5.8 (and since k is homotopic to an arc of length ≤ ε in
M), k′ cannot be contained in the train track τ2m and transverse to the ties,
hence contains an arc of γ ∩Bi for some i > q.

Let γ1
2m be the part of γ2m\γ0

2m consisting of the points which are distance
≤ c1(ϕ2m, ε) from the part of γ2m corresponding to an arc of ϕ2m(γ∩Bi) with
i > q or at distance ≤ c2(ε, η)θ from a corner of γ2m \ γ0

2m of external angle θ
in M . Then, for any z and z′ in γ2m \ (γ0

2m ∪ γ1
2m), the considerations above

show that the arcs λz and λz′ of A are disjoint; we can similarly show that
they are embedded.

Given z ∈ γ2m \ γ0
2m, there are four possibilities:

(1) z ∈ γ1
2m;

(2) z /∈ γ1
2m and the arc λz has really length ε

2
in A;
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(3) z /∈ γ1
2m and the arc λz terminates on γ0

2m in A;
(4) z /∈ γ1

2m and the arc λz terminates on γ∗ in A.
(The arc λz cannot meet γ2m \ γ0

2m by the definition of γ1
2m). These four

possibilities define the partition of γ2m into γ0
2m, γ

1
2m, γ

2
2m, γ

3
2m and γ4

2m. We
are going to show that γ4

2m is ”large”, by estimating the lengths of the other
pieces.

For i ≤ q, all the arcs of Bi ∩ F have the same image under ϕ2m, which
we will denote by ϕ2m(Bi). On the other hand, let c3 be an upper bound on
the length of the images under ϕ2m of the arcs of Bj ∩ F with j > q. Then:

lM(γ0
2m) ≤

q∑
i=p+1

γ(Bi)lM(ϕ2m(Bi)) + c3

r∑
j=q+1

γ(Bj)

and

lM(γ2m \ γ0
2m) ≥ lM(γ2m)−

q∑
i=p+1

γ(Bi)lM(ϕ2m(Bi))− c3
r∑

j=q+1

γ(Bj),

where γ(Bi) is the measure of the box Bi w.r.t. the current defined by γ,
which is simply the number of times γ crosses Bi.

By the definition of γ1
2m,

lM(γ1
2m) ≤ 2c1(ϕ2m, ε)

r∑
j=q+1

γ(Bj) + 2c2(ε, η)KM(γ2m)

≤ 2c1(ϕ2m, ε)
r∑

j=q+1

γ(Bj) + 2c2(ε, η)KM(ϕ2m(γ)),

where the second inequality comes from KM(γ2m) ≤ KM(ϕ2m(γ)), which can
be proved like Lemma 5.4.

Let U be the tube formed by λz, with z ∈ γ2
2m. Then

area(A) ≥ area(U) ≥ ε

2
lM(γ2m)

w.r.t. the hyperbolic metric with piecewise geodesic boundary on A. More-
over, by Gauss–Bonnet, the area of the annulus A is equal to the sum of its
oriented external angles. Such an oriented external angle in A is less than or
equal to the corresponding external angle of γ2m or γ∗ in M . Therefore,

area(A) ≤ KM(γ2m) +KM(γ∗) ≤ KM(ϕ2m(γ))) + 0,

and consequently

lM(γ2
2m) ≤ 2

ε
KM(ϕ2m(γ)).
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Some elementary hyperbolic trigonometry shows that the mapping which
maps z to the other endpoint of λz locally increases distances (c.f. [1], §7.17).
As it is also one–to–one for z /∈ γ1

2m, we deduce in particular that

lM(γ3
2m) ≤ lM(γ0

2m) ≤
q∑

i=p+1

γ(Bi)lM(ϕ2m(Bi)) + c3

n∑
j=q+1

γ(Bj).

Combining all these inequalities, we get that

lM(γ4
2m) = lM(γ2m \ γ0

2m)− lM(γ1
2m)− lM(γ2

2m)− lM(γ3
2m)

is greater than or equal to

lM(ϕ2m(γ))− 2

q∑
i=p+1

γ(Bi)lM(ϕ2m(Bi))− (2c1(ϕ2m, ε) + 2c3)
n∑

j=q+1

γ(Bj)

−
(

2c2(ε, η) +
2

ε

)
KM(ϕ2m(γ)).

We denote now by γ∗4 the part of γ∗ consisting of the endpoints of λz
for z ∈ γ4

2m. By construction, each point of γ∗4 is at distance ≤ ε
2

from
ϕ2m(γ). Moreover, since the map which sends z to the other end of λz
increases distances, the length of γ∗4 is at least the length of γ4

2m. In particular,
lM (γ∗4 )

lM (ϕ2m(γ))
is bounded below by

1− 2

q∑
i=p+1

γ(Bi)
lM(ϕ2m(Bi))

lM(ϕ2m(γ))
− (2c1(ϕ2m, ε) + 2c3)

n∑
j=q+1

γ(Bj)

lM(ϕ2m(γ))

−
(

2c2(ε, η) +
2

ε

)KM(ϕ2m(γ))

lM(ϕ2m(γ))
.

As α(Bj) = 0 for any j > q, by continuity we get that the lower limit of
lM (γ∗4 )

lM (ϕ2m(γ))
when γ

lS(γ)
converges to α

lS(α)
in C(S) is bounded below by

1− 2

q∑
i=p+1

α(Bi)
lM(ϕ2m(Bi))

lM(ϕ2m(α))
−
(

2c2(ε, η) +
2

ε

)KM(ϕ2m(α))

lM(ϕ2m(α))
=

=1− 2
lM(ϕ2m(α \X2m))

lM(ϕ2m(α))
−
(

2c2(ε, η) +
2

ε

)KM(ϕ2m(α))

lM(ϕ2m(α))
.

Now, when m tends to infinity, lM(ϕ2m(α)) tends to a nonzero constant
by hypothesis, and KM(ϕ2m(α)) tends to 0 by Claim 5.9. Moreover, recalling
the definition of X2m, by Complement 5.8 we see that lM(ϕ2m(α\X2m)) tends
to 0 thanks to the inequality in 5.8 and the convergence of lM(ϕ2m(α)).
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Hence, if m is sufficiently large, the lower limit of lM (γ∗4 )

lM (ϕ2m(γ))
when γ

lS(γ)

converges to α
lS(α)

in C(S) is strictly greater than t < 1 fixed at the beginning.
This shows that γ∗ satisfies the conclusion of Claim 5.12: since the mapping
from γ∗4 ⊂ γ∗ to γ4

2m ⊂ ϕ2m(γ) defined along λz moves each point by at most
ε
2
, this shows precisely that γ∗ is at distance at most ≤ ε from ϕ2m(γ) along

a segment of length at least lM(γ∗4) ≥ tlM(ϕ2m(γ)). This would end the proof
of Claim 5.12 if we knew in advance that ϕ(γ) is loxodromic in M .

To end the proof of Claim 5.12, we still have to check that ϕ(γ) is actu-
ally loxodromic in M if γ

lS(γ)
is close enough to α

lS(α)
in C(S). The proof is

analogous to the previous one. Suppose, by way of contradiction, that ϕ(γ)
is parabolic, and define γ2m from ϕ2m(γ) as before. Considering a homotopy
A : S1 × [0,∞[→ M between γ2m and the corresponding cusp which is hy-
perbolically simplicial for a triangulation of S1 × [0,∞[ by rays a × [0,∞[,
the same estimates as before (but now with γ4

2m = ∅) give the contradiction
we are looking for. �

To finish the proof of Proposition 5.1, it only remains to show that its two
conclusions (i) and (ii) exclude each other. To do this, suppose conclusion
(ii) holds and apply it to t > 1

2
. Thus we get ϕ′ homotopic to ϕ such that, for

any closed geodesic γ with γ
lS(γ)

sufficiently close to α
lS(α)

in C(S), the closed
geodesic γ∗ in M homotopic to ϕ(γ) has length ≥ tlM(ϕ′(γ)). In particular,
if γ is close enough to α, lM (γ∗)

lS(γ)
≥ lM (ϕ′(α))

2lS(α)
, since t > 1

2
.

On the other hand, if condition (i) holds, for any ε > 0 we can homotope
ϕ to ϕ′′ such that lM (ϕ′′(α))

2lS(α)
< ε.

In particular, for γ sufficiently close to α,

lM(γ∗)

lS(γ)
≤ lM(ϕ′′(γ))

lS(γ)
< ε,

which contradicts the previous conclusion for ε conveniently chosen. This
ends the proof of Proposition 5.1. �

5.5 The case of parabolic curves

We will need further a refinement of Proposition 5.1 if α consists of a fi-
nite number of disjoint simple curves whose images under ϕ correspond to
parabolic elements in π1(M). In this case, obviously conclusion (i) of Propo-
sition 5.1 is satisfied, but we want an estimate similar to the one of conclusion
(ii).

Proposition 5.13. Under the hypothesis of Proposition 5.1, we suppose ad-
ditionally that α consists of closed (simple disjoint) geodesics α1, . . . , αp such
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that each ϕ(αi) is a parabolic curve in M . Then, for any closed geodesic γ
on S with γ

lS(γ)
sufficiently close to α

lS(α)
in C(S), the curve ϕ(γ) is homotopic

to a closed geodesic γ∗ which meets at least one of the cuspidal components
of Mthin(µ), into which one of ϕ(αi) can be homotoped (except of course if α
is connected and γ = α).

Actually, the proof shows that an arbitrarily large fraction of γ∗ is con-
tained in those cuspidal components.

Proof. Up to replacing M by its cover M̃ such that π1(M̃) = ϕ∗(π1(S)),
we can suppose w.l.o.g that the homomorphism ϕ∗ : π1(M)→ π1(S) induced
by ϕ is an isomorphism. Even if not essential, this assumption will be quite
convenient.

For each i = 1, . . . , p, we begin with choosing a small collar neighborhood
τi of αi, such that the union of τi forms a train track τ carrying α. Then, still
for each i ≤ p, we define a flow box Bi by an H on S whose horizontal bar
is αi, while the two vertical bars merge in a tie of τi, and small enough for
each leaf of Bi∩F to project to S inside τi transversely to the ties. As in the
proof of Claim 5.12, we complete this family with flow boxes Bp+1, . . . , Bq

such that B1, . . . , Bp, Bp+1, . . . , Bq cover the compact set PC(S) and their
interiors are mutually disjoint. We can also suppose that Bj for j > p are
small enough not to ”bite their tail”.

Since the box Bi, for 1 ≤ i ≤ p, ”bites its own tail”, the leaves of Bi ∩ F
generally go around Bi several times. For n ≥ 1, we denote by Bn

i the union
of the leaves of Bi ∩ F which make exactly n turns around Bi. Then Bi is
the union of the lift of αi and all Bn

i .
After homotoping, we can suppose that ϕ is adapted to the train track

τ =
⋃
τi and ϕ(τ) is contained in the interior of the thin part Mthin(µ).

Given a closed geodesic γ on S, let γ′ be the piecewise geodesic in M
obtained from ϕ(γ) by replacing ϕ(k) with the homotopic geodesic arc in M
for each component k of γ ∩Bj. We denote by γ1 the part of γ consisting of
γ ∩Bi, for 1 ≤ i ≤ p, and by γ′1 the corresponding part of γ′.

From now on, we suppose that γ is none of αi.
If k is a component of γ1, it is also a component of γ ∩ Bn

i . Then, the
corresponding component k′ of γ′1 depends only on i and on n. Indeed, if
xi ∈ αi is the intersection of αi with the (merging) vertical bars of the H
defining Bi, then k′ is the geodesic arc in M joining ϕ(xi) with itself and
homotopic to ϕ(αi)

n. Note that by convexity k′ is completely contained in
the cuspidal component of Mthin(µ) containing ϕ(αi), hence γ′1 avoids the
interior of M0(µ).

Suppose we already know that γ′ is homotopic to a closed geodesic γ∗ ofM
through a homotopy A. As usual, we can suppose that A is hyperbolically

34



simplicial for a drum triangulation of S1 × [0, 1], so that its graph, still
denoted by A, inherits a hyperbolic metric with piecewise geodesic boundary.
Moreover, the boundary ∂A is identified with the disjoint union of γ′ and γ∗.

We have chosen Bj, for j > p, so that no component of γ ∩ Bj can wind
around Bj several times, hence its length is uniformly bounded. Therefore,
there is a compact set K ⊂M around ϕ(C(S)) which contains γ′ \γ′1 for any
closed geodesic γ ⊂ S.

From each point z ∈ γ′1, we trace in A an arc λz orthogonal to ∂A at
z, until it meets ∂A again or its image in M meets K ∪M0(µ) (of course
λz = {z} if z ∈ K).

Such an arc λz must be embedded. Otherwise in the annulus A it would
give a closed curve homotopic to γ′ whose image in M is contained in the
component of Mthin(µ) containing the image of z, which contradicts our
hypothesis that γ is not αi (since we assumed π1(M) = π1(S)).

We claim that two distinct λz cannot meet. Indeed, if there are two
distinct points x′ and y′ on γ′1 such that λx′ ∩λy′ 6= ∅, one of the arcs joining
x′ to y′ in γ′ is homotopic in M to an arc contained in λz′ ∪ λy′ , hence in
Mthin(µ). Moreover, due to Gauss–Bonnet, this arc k′ ⊂ γ′ cannot be entirely
contained in γ′1. By convexity of the components of Mthin(µ), we can choose
a homotopy from γ′ to ϕ(γ) which keeps the images of x′ and y′ in Mthin(µ),
and we deduce that there are two points x and y on γ1 which can be joined
by an arc k ⊂ γ meeting γ \ γ1 such that ϕ(k) is homotopic to an arc in
Mthin(µ). In particular, x and y are in the same τi and ϕ(k) is homotopic
to an arc in the curve ϕ(τi) since the latter generates π1 of the component
of Mthin(µ) that contains it (since π1(M) = π1(S)). We conclude that the
geodesic arc k is homotopic in S to an arc in τi. But this contradicts the fact
that k is not completely contained in γ1. Indeed, in the cover of S with the
fundamental group π1(αi), a geodesic which leaves the lift of Bi never comes
back, hence the arc k is forced to stay in Bi. This shows our claim that the
λz are pairwise disjoint.

In particular, no λz returns to γ′1. Moreover, since by definition λz avoid
the compact set K, none of them terminates on γ′ \ γ′1. Since we want to
show that γ∗ goes through at least one cuspidal component of Mthin(µ), we
just have to show that at least one λz ends on γ∗. We will suppose otherwise,
by way of contradiction.

Let U be the union of λz. We want an estimate on the area of U . For
this, we consider a component k of γ1, and the corresponding component k′

of γ′1. We already saw that k′ ⊂ M depends only on i and n such that k is
a component of γ ∩ Bn

i . If Uk is the union of λz for z ∈ k′, we are going to
find a lower bound ain for the area of Uk, which depends only on i and n.

To do this, we consider the cusp of M corresponding to the parabolic
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subgroup of π1(M) generated by αi. More precisely, we consider the neigh-
borhoods of this cusp which are projections of horoballs in the universal cover
H3 of M . Among those neighborhoods whose interior avoids M0(µ), K and
the basepoint ϕ(xi) ∈ ϕ(αi), there is a maximal one Vi.

The arc k′ meets the convex set Vi in a subarc k′ ∩ Vi (possibly empty).
Let k′′ ⊂ ∂Vi be the image of k′∩Vi under the radial projection Vi → ∂Vi from
the cusp. Then the union of k′′ and k′ ∩ Vi bounds a disc Din immersed and
totally geodesic (the ”shadow” of k′ ∩ Vi under the radial projection), whose
area ain bounds below the area of Uk. This last assertion can be verified
as follows. In the universal cover H3 identified with the upper half–plane
model so that the point at infinity corresponds to the cusp of Vi, we lift
Uk ∩ Vi and Din to the component of the preimage of Vi which is a horoball
centered at infinity; then the Euclidean orthogonal projection of Uk∩Vi onto
the hyperplane of H3 containing Din decreases the hyperbolic area, and the
area of its image is bounded below by the area of Din.

Therefore, the area of Uk is bounded below by ain. Before proceeding, we
show that ain

n
tends to a constant ai > 0 when n tends to infinity. Indeed, as

∂Vi is horospherical, the exterior curvature of k′′ in Din is +1 at any point.
The Gauss–Bonnet formula then yields

ain = lM(k′′)− θ1 − θ2,

where θ1 and θ2 are the two internal angles of Din. Namely, when n tends
to infinity, the arc k enters deeper and deeper into the cusp, and θ1 and θ2

tend to π
2
, while lM(k′′) is close to the length of the radial projection of k′

onto ∂Vi, which is asymptotically proportional to n (in the upper half–space
model, the generator of the stabilizer in π1(M) of the point at infinity acts
by translation or by reflection–translation).

Let us return to the area of U . We have seen that

area(U) =
∑
k⊂γ1

area(Uk) ≥
∑
k⊂γ1

ain ≥
p∑
i=1

∞∑
n=1

ain
γ(Bn

i )

n
,

where γ(Bn
i ) is the measure w.r.t. γ of Q ∩ Bn

i for any transverse section Q
of Bi (remember that each component of γ ∩Bn

i contributes n to γ(Bn
i )).

When γ
lS(γ)

converges to α
lS(α)

in C(S), each γ(Bn
i )

lS(γ)
tends to α(Bn

i )

lS(α)
= 0.

Moreover, we saw that ain

n
tends to ai > 0 when n tends to infinity. Decom-

posing the sums into two pieces, we get that when γ
lS(γ)

converges to α
lS(α)

,
the limit of ∑∞

n=1 ain
γ(Bn

i )

n

lS(γ)
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is the same as the limit of∑∞
n=1 aiγ(Bn

i )

lS(γ)
= ai

γ(Bi)

lS(γ)
,

which is ai
α(Bi)
lS(α)

. Then

lim inf
area(U)

lS(γ)
≥

p∑
i=1

ai
α(Bi)

lS(α)
> 0,

when γ
lS(γ)

converges to α
lS(α)

in C(S).
We also have

area(U) ≤ area(A) ≤ 2π

q∑
j=p+1

γ(Bj),

where the second inequality comes from the Gauss–Bonnet formula and from
a rough estimate on the sum of the external oriented angles of γ′ in A. Indeed,
the oriented external angles of γ∗ in A are all negative, each angle of γ′ is
≤ π, and each component of γ ∩ Bj, for j > p, contributes 1 or 2 corners to
γ′.

In particular, since α(Bj) = 0 for all j > p, we get

lim
area(U)

lS(γ)
= 0

when γ
lS(γ)

converges to α
lS(α)

in C(S), which together with the previous in-
equality gives the contradiction we were looking for. Therefore, this shows
that at least one λz terminates on γ∗, hence γ∗ meets at least one component
of Mthin(µ).

If we had not assumed from the beginning that ϕ(γ) is homotopic to a
geodesic γ∗, the same argument based on area estimates shows that actually,
ϕ(γ) cannot be parabolic if γ

lS(γ)
is close enough to α

lS(α)
(but γ 6= α). �

6 Proof of the main theorem

6.1 The setting

Recall the setting of Theorem A. M is a 3–dimensional hyperbolic manifold,
whose fundamental group is finitely generated and satisfies condition (*). We
consider an end b of the complement M0(µ) of the interior of the cuspidal

37



components of the thin part Mthin(µ), and we assume that b is geometrically
infinite. We want to show that it is simply degenerate.

Since b is geometrically infinite, Proposition 2.3 gives us, up to decreasing
the Margulis constant µ, a sequence of closed geodesics α∗j of M , which exit
the end b, which means that each neighborhood of b in M0(µ) contains all
α∗j for j large enough. We can suppose also that the geodesics α∗j behave
well w.r.t. the non–cuspidal components of Mthin(µ) in the following sense:
if α∗j meets a Margulis tube, it is completely contained in it (and hence it is
its core). Indeed, either b admits a neighborhood which does not meet any
Margulis tube and the above property is obviously satisfied, or any neighbor-
hood U of b in M0(µ) meets a Margulis tube. As the action of π1(M) on the
universal cover is properly discontinuous, the compact set ∂U can only meet
a finite number of Margulis tubes, and we deduce that U contains a Margulis
tube. In this second case, we can take for the geodesics α∗j the cores of the
Margulis tubes contained in the same component of M0(µ) \Mc(µ) as b.

We saw in Proposition 2.4 that, by definition of Mc(µ) and incompress-
ibility of Sb, each α∗j is homotopic to a curve αj ⊂ Sb through a homotopy
which does not meet Sb.

Since α∗j exit the end b, the sequence of distances d(α∗j , Sb) tends to in-
finity. Then, because of the good behavior of α∗j w.r.t. the Margulis tubes,
we can apply the intersection number lemma (Proposition 3.4), which gives
that the quotient

i(αj, αk)

lM(αj)lM(αk)

tends to 0 when j and k tend to infinity. (Note that the sequence lM(αj)

tends to ∞, since the action of π1(M) on M̃ is properly discontinuous.)
Now we fix once and for all an identification between Sb and the convex

core of a hyperbolic surface S. Also, until now the curves αj were free on
Sb, however from now on we require them to be geodesics on S w.r.t. this
identification. We denote by lS the length on S, while lM denotes the length
in M .

By compactness of Sb = C(S), there is a constant, which bounds above
the ratio lM (α)

lS(α)
for any closed geodesic on S. Therefore,

i(αj, αk)

lS(αj)lS(αk)

tends to 0 as j and k tend to infinity.
We consider now the geodesic currents αj

lS(αj)
in C(S). Since they have

length 1, by Proposition 4.7 we can pass to a subsequence such that these
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geodesic currents converge to α∞ ∈ C(S). By continuity of the intersection
number,

i(α∞, α∞) = lim i(
αj

lS(αj)
,

αk
lS(αk)

) = lim
i(αj, αk)

lS(αj)lS(αk)
= 0,

hence α∞ is a measured geodesic lamination (Proposition 4.8).
Consider now Proposition 5.1 applied to ϕ : S → M , which extends the

canonical embedding Sb → M , and to the lamination α∞. The existence of
αj, whose homotopic geodesics α∗j are contained in arbitrarily small neigh-
borhoods of the end b shows that conclusion (ii) of Proposition 5.1 cannot
hold. Therefore, conclusion (i) holds, and for any ε > 0 we can homotope ϕ,
so that

lM(ϕ(α)) < ε.

In particular, α∞ does not contain any leaf which is homotopic to a
closed geodesic in M . Moreover, since α∗j avoid the cuspidal components of
Mthin(µ), Proposition 5.13 yields that α∞ cannot consist only of compact
leaves parabolic in M . Therefore, α∞ has at least one non–compact leaf. Let
γ∞ be the measured lamination obtained by restricting α∞ to the (connected)
closure of this non–compact leaf.

It can be shown a posteriori 6 that γ∞ is nearly the whole of α∞, namely
that α∞ is the union of γ∞ and some components of ∂Sb. But we do not
know this for the moment.

Without loss of generality, we can restrict ourselves to the case π1(Sb) =

π1(M). Indeed, if M̃ is the cover of M such that π1(M̃) = π1(Sb), the
component of M0(µ) \Mc(µ) containing b can be lifted diffeomorphically to
M̃0(µ) onto a neighborhood of b̃. Moreover, b̃ is geometrically finite if and
only if b is (use for example Proposition 2.4), and simply degenerate if and
only if b is (this is immediate). By replacing M with M̃ , we will now assume
that π1(Sb) = π1(M), which will simplify the statements.

In this case, if Mb(µ) is the union of the cuspidal components of Mthin(µ)
meeting Sb, we get from [13] omitting the µ to simplify the expressions, that
the pair (Mc, ∂Mc ∩Mb) is homeomorphic to the product (Sb × [0, 1], ∂Sb ×
[0, 1]). In particular, the cuspidal components of Mthin(µ) correspond to
disjoint simple closed curves in Sb, well defined up to isotopy (as it was in
∂Mc(µ)).

Let C(γ∞) be the convex hull of γ∞ in S, i.e. C(γ∞) is the minimal
convex subsurface of S which contains γ∞. We can describe C(γ∞) as fol-
lows: consider the family of closed (simple) geodesics on S homotopic to the

6see the preprint
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boundary components of S \ γ∞ which are not homotopically trivial, then
C(γ∞) is the relatively compact open set of S delimited by these geodesics.
Applying Proposition 4.9, we get that the measured lamination γ∞ is the
limit of a sequence of measured laminations γk with all leaves compact and
contained in C(γ∞).

For each index j, choose a leaf βj of γj, and let λj ∈ R+ be the coeffi-
cient at βj in the decomposition of the measured lamination γj into linear
combination of its leaves, i.e. λj is the measure w.r.t γj of a short arc in-
tersecting βj in one point. If the leaf βj is chosen so that its contribution
λjlS(βj) to lS(γj) is maximal, then the sequence λjβj converges to a non–zero
measured lamination β∞, after passing to a subsequence; the non–vanishing
of β∞ comes from lS(λjβj) ≥ lS(γj)

n
, where the constant n depends only on

the topological type of S. Since the support of γ∞ is connected, we note that
γ∞ and β∞ have the same support.

Hence we have found a family of simple closed geodesics βj in C(γ∞) =

C(β∞) such that the sequence βj

lS(βj)
converges to β∞

lS(β∞)
for a certain mea-

sured lamination β∞ which is bounded above by α∞, which means that α∞
decomposes into β∞ + β′ for a lamination β′ ∈ L(S). The reader might
guess that these βj will show that the end is simply degenerate, that is that
each neighborhood of b in M0(µ) will contain the closed geodesics β∗j in M
homotopic to βj for j large enough (after possibly decreasing the Margulis
constant µ). Note that we can assume that each βj is loxodromic in M , since
there is only a finite number of geodesics on Sb which are parabolic in M .

6.2 β∗j stay away from the cusps

We will show in this section that there exists a Margulis constant µ′ such that
all β∗j are contained in M0(µ

′). This is a consequence of the simplicity of βj,
and the main tool for its proof will be hyperbolically simplicial mappings, as
those used in §1.3 for the bounded diameter lemma. This section is largely
inspired by Proposition 9.7.1 of [12].

Recall that we have identified the surface Sb with the convex core C(S)
of the hyperbolic surface S, and that ϕ : S → M extends the canonical
embedding Sb →M .

Let S ′ be an open subset of S containing the convex hull C(β∞) such
that:

(i) the closure S ′ is a compact submanifold of S, and ϕ sends each com-
ponent of ∂S ′ onto a parabolic curve in M ,

(ii) S ′ is minimal up to isotopy satisfying the preceding property, which
means that each simple closed curve in S ′ \ C(β∞), whose image under ϕ is
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parabolic, is homotopic to a component of ∂S ′.
The existence of such surface S ′ is immediate, and, even if we are not

going to use it, we can check that S ′ is unique up to isotopy (consider the
simple disjoint curves in Sb associated to the cusps of M).

As in Lemma 1.7, we construct a sequence of mappings ϕj : S ′ → M ,
hyperbolically simplicial w.r.t. a triangulation of S ′ with only one vertex,
homotopic to the restriction ϕ|S′ : S ′ → M , such that ϕj sends the simple
curve βj to the homotopic closed geodesic β∗j in M . Moreover, we can as-
sume that β∗j are not contained in Mthin(µ), otherwise our conclusions are
immediate, and then we can have the vertex of the triangulation of S ′, for
which ϕj is hyperbolically simplicial, sent by ϕj into the complement of the
thin part Mthin(µ).

We will denote by S ′j the surface S ′ equipped with the path metric induced
by ϕj. As in §1.3, let (S ′j)thin(µ) be the thin part of S ′j, which consists of
the points of S ′j through which there is a homotopically non–trivial loop of
length ≤ µ.

The lemma below is part of the price we have to pay for having replaced
pleated surfaces of [12]with hyperbolically simplicial mappings.

Lemma 6.1. Each component of (S ′i)thin(µ) is isometric to a component of
the thin part of a hyperbolic surface, which is a quotient of a horoball in H2,
or a neighborhood of a geodesic consisting of points at bounded distance, by
a group of isometries.

Proof. Consider x ∈ (S ′j)thin(µ). By definition, there is a geodesic arc γx
of length ≤ µ joining x to itself. The loop γx is freely homotopic in S ′j to a
closed geodesic or a cusp. Among the arcs joining x to this geodesic or this
cusp, in the homotopy class specified by the homotopy of γx, there is one hx,
which has minimal length (say locally in the case of a cusp); the existence of
hx can be easily shown by a broken geodesics argument, taking into account
the singularity of S ′j. Applying Gauss–Bonnet shows that, among the two
angular sectors defined by γx in x, the one which locally contains hx has
angle < π. Therefore, hx is locally contained in (S ′j)thin(µ), hence globally
by connectivity. In particular, hx avoids the singular points of S ′j, since they
are outside (S ′j)thin(µ).

Moreover, since ϕj induces an injection between π1(S
′) and π1(M) =

π1(S), the subgroup of π1(M,x) generated by all the γx of this kind is cyclic,
and the closed geodesic or the cusp associated to x is unique. We deduce
that any component of (S ′j)thin(µ) is of the desired type. �

Lemma 6.2. There exists µ1 ≤ µ, independent of S ′j, such that all sim-
ple closed geodesics γ in S ′j avoid the cuspidal components of (S ′j)thin(µ1),
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and each component of γ ∩ (S ′j)thin(µ1) meets the core of the corresponding
component of (S ′j)thin(µ1).

Proof. We can show this through elementary hyperbolic trigonometry mod-
els for the components of (S ′j)thin(µ) described in Lemma 6.1.

Another point of view is the following. Having fixed a component V of
(S ′j)thin(µ), the space of all simple geodesic arcs in V joining ∂V to itself and,
if V is not cuspidal, avoiding its core, is compact. Indeed, it is homeomorphic
to the space of subarcs of ∂V . Then there exists maximal µV > 0 such that
V ∩(S ′j)thin(µV ) do not meet any of these simple arcs. As the space of models
we have described is compact in the geometric topology (c.f. [12], §5.11), µV
admit a lower bound µ1 > 0. A more pragmatic way to say this is that, if V
is not cuspidal, µV depends only on the length of the core of V and tends to
µV of the unique cuspidal model when this length tends to 0. �

Let µ1 satisfy the conclusion of Lemma 6.2. By the bounded diameter
lemma (Lemma 1.10), there is a constant c1(µ1) such that any two points of
S ′j can be joined by a path k in S ′j such that the length of k \ (S ′j)thin(µ1)
is ≤ c1(µ1) (the constant c1(µ1) also depends on the topological type of S ′j,
but the latter is fixed).

Lemma 6.3. Any point x ∈ S ′ such that ϕj(x) is at distance > 2c1(µ1) from
M0(µ1) is contained in (S ′j)thin(µ1).

Proof.
Since ϕj(S ′) cannot be entirely contained in Mthin(µ1), the bounded di-

ameter lemma gives that x is at distance ≤ c1(µ1) from a component V of
(S ′j)thin(µ1). Suppose that x does not belong to V and draw the shortest path
from x to V . We continue this geodesic arc in the other direction through x
until a point y at distance c1(µ1) from x, and denote by kx the geodesic arc
of length > c1(µ1) created.

Since ϕj(y) is still at distance > c1(µ1) from M0(µ1), the bounded diam-
eter lemma gives again that y is at distance ≤ c1(µ1) from a component V ′

of (S ′j)thin(µ1). We join y to V ′ by an arc ky of minimal length (with ky = y
if y ∈ V ′). Then, since ϕ(kx ∪ ky) is contained in the cuspidal component
of Mthin(µ1) containing ϕj(x), the subgroup of π1(S

′, y) generated by π(V, y)
and π1(V

′, y), linking V and V ′ to the base point y by respectively kx and ky,
has a cyclic image in π1(M) = π1(Sb), and is then cyclic. Therefore, V ′ = V
and the path kx ∪ ky can be homotoped into V relative the endpoints. In
particular, we deduce by the convexity of V that y /∈ V . Moreover, kx and
ky are orthogonal to ∂V and Gauss–Bonnet formula shows that they must
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merge. As they have different lengths, this gives the contradiction we were
looking for and shows that x must be in (S ′j)thin(µj). �

Choose µ′ so that each cuspidal component of Mthin(µ′) is at distance
> 2c1(µ1) from M0(µ1). If β∗j meets a cuspidal component W of Mthin(µ′),
Lemma 6.3 gives that βj meets a component of (S ′j)thin(µ1) whose funda-
mental group corresponds to π1(W ) ⊂ π1(M) = π1(S). By Lemma 6.2, this
component of (S ′j)thin(µ1) cannot be cuspidal in S ′j, and βj meets its core
γjW . Moreover, for any point of βj ∩γjW , the arc of βj ∩ (S ′j)thin(µ) containing
it is not homotopic to an arc in ∂(S ′j)thin(µ) and is consequently of length
bounded below by a constant c2(µ, µ1), which tends to infinity when µ is
fixed and µ1 tends to 0. Indeed, if an explicit formula is needed, Theorem
7.35 of [1] can be used to choose

cosh
(c2(µ, µ1)

2

)
= sinh

(µ
2

)
sinh

(µ1

2

)
.

In particular,
lM(β∗j ) ≥ c2(µ, µ1)i(βj, γ

j
W ).

Now, γjW is homotopic to the simple closed geodesic γW of S corresponding
to the cusp of W . Moreover, since β∗j is the closed geodesic in M homotopic
to βj ⊂ Sb ⊂M ,

lM(β∗j ) ≤ lM(βj) ≤ c3lS(βj),

where c3 bounds the quotient of the metric induced on the compact Sb by
the metrics on S and in M . We deduce that

i
( βj
lS(βj)

, γW

)
≤ c3
c2(µ, µ1)

whenever β∗j meets the cuspidal component W of Mthin(µ′). Note that the
right hand side term of the inequality tends to 0 when µ is fixed and µ1 tends
to 0.

Summary. For a fixed constant µ, we choose µ1 small enough w.r.t. µ, and
µ′ small enough w.r.t. µ1. Then the only cuspidal components W of Mthin(µ′)
that β∗j can meet correspond homotopically to simple curves γW which satisfy
the above and can be homotoped inside S ′, but are not homotopic into the
components of ∂S ′.

Now, there is only a finite number of such closed geodesics γW on S which
correspond to cusps of M and can be homotoped into S ′ but not into ∂S ′.
Moreover, each of these curves has non–zero intersection number with β∞

lS(β∞)

by the condition of minimality in the definition of the surface S ′. Therefore,
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if at the beginning we had chosen µ1 small enough, so that c3
c2(µ,µ1)

is less

than these intersection numbers, and if j is sufficiently large for βj

lS(βj)
to be

sufficiently close to β∞
lS(β∞)

in C(S), the preceding inequality is never satisfied,
hence β∗j do not meet any cuspidal component W of Mthin(µ′).

We have reached the goal of this section.

6.3 β∗j exit an end of M0(µ)

We saw in the previous section that, up to decreasing the Margulis constant
µ, all β∗j are contained in M0(µ). Actually, we even showed that ϕj(S ′) do
not meet any cuspidal component of Mthin(µ), which corresponds to a curve
of S ′ that is not homotopic to the boundary. In particular, the components of
(S ′j)thin(µ) which are not cuspidal in S ′j are sent into non cuspidal components
of Mthin(µ), i.e. Margulis tubes.

We are going to show that for any compact set K in M0(µ), only a
finite number of β∗j meet K. Once this is done, we immediately pass to a
subsequence of β∗j which exits an end b′ of M0(µ), which means that each
neighborhood of b′ contains all β∗j for j large enough.

Let K be a compact set in M0(µ). We consider the sequence of hyperbol-
ically simplicial mappings ϕj : S ′ → M used in the previous section. Recall
that S ′j is the surface S ′ equipped with the path metric induced by ϕj and
the metric in M .

The first step is to build a compact set K ′ such that any β∗j meeting K is
contained in K ′. For this we use the bounded diameter lemma, to be precise
its refinement given as Lemma 1.11. Indeed, if (S ′j)0(µ) is the complement
in S ′j of the interior of the cuspidal components of (S ′j)thin(µ), Lemma 1.11
gives a constant c(µ) such that any two points on (S ′j)0(µ) can be joined by
a path whose length outside (S ′j)thin(µ)∩ (S ′j)0(µ) is bounded by c(µ). As we
have just noticed, these non–cuspidal components of (S ′j)thin(µ) are sent by
ϕj into Margulis tubes of Mthin(µ). The diameter of β∗j modulo the Margulis
tubes of Mthin(µ) is then bounded by c(µ). If µ was chosen such that all
these tubes are at distance ≥ 1 from each other, there is only a finite number
of Margulis tubes which can be joined to K by a path whose length outside
of these tubes is ≤ c(µ). We deduce that the c(µ)–neighborhood K ′ of the
union of K and this finite number of Margulis tubes has the property we
were looking for: each β∗j meeting K is contained in K ′.

We suppose, by way of contradiction, that there is an infinite family of
β∗j meeting K, hence contained in K ′. Without loss of generality, we can
suppose all β∗j satisfy this.

Then a classical result states that the length of lM(β∗j ) is comparable
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to the homotopic length lh(βj) of its conjugacy class in π1(M) = π1(S).
To define the latter, we fix a generating set for π1(M). Then, lh(βj) is the
minimal length of a word in these generators representing the conjugacy class
of βj. Changing the generating set only modifies lh(βj) by a bounded factor.

Since we are staying in the compact set K ′, a result usually attributed to
Milnor [6] gives a constant c1 depending only on K ′ such that

c−1
1 lh(βj) ≤ lM(β∗j ) ≤ c1lh(βj)

for any j.
Similarly, in the compact subset C(S) of S, there exists a constant c2

such that
c−1
2 lh(βj) ≤ lS(βj) ≤ c2lh(βj).

We deduce that
lM(β∗j )

lS(βj)
≥ 1

c1c2
,

and then
lM(β′j)

lS(βj)
≥ 1

c1c2

for any curve β′j homotopic to βj in M .
In particular, if the mapping ϕ : S →M is such that its restriction to Sb

is homotopic to the canonical embedding Sb →M ,

lM(ϕ(βj))

lS(βj)
≥ 1

c1c2

for any j, and passing to the limit,

lM(ϕ(β∞))

lS(β∞)
≥ 1

c1c2
> 0.

But we saw in §6.1 that the existence of α∗j implies that the lamination
α∞ satisfies conclusion (i) of Proposition 5.1. This means that we can find
such ϕ with lM(ϕ(α∞)), hence lM(ϕ(β∞)), arbitrarily small. This gives the
required contradiction and proves that only a finite number of ϕj(S ′) can
meet a given compact set K.

Hence from now on, by passing to a subsequence, we can suppose that β∗j
exit an end b′ of M0(µ). We still have to show that b′ = b.
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6.4 β∗j exit the right end

This is maybe the most delicate part of the proof of Theorem A (and the
author confesses being stuck on it for months). For instance, it is essentially
for this part of the proof that we have introduced in Section 5 the shortening
operations on measured laminations. Indeed, the use of Proposition 5.1 we
have made in the previous section could have been replaced with rougher
estimates. It is worth comparing the analysis of this paragraph with that of
Thurston in §9.6 of [12] in the more restricted framework where αj and βk
are simple curves, for which he has to introduce his delicate interpolations
of pleated surfaces. The proof we are going to use is mainly based on the
intersection number lemma proven in Section 3.

On the hyperbolic surface S, whose convex core is identified with Sb, we
have two sequences (αj) and (βk) of closed geodesics. The sequence αj

lS(αj)

converges to the measured geodesic lamination α∞ in C(S), and the geodesics
α∗j of M homotopic to αj exit the end b of M0(µ), which means that each
neighborhood of b contains all α∗j except for a finite number. Similarly, the
sequence βk

lS(βk)
converges to β∞

lS(β∞)
, where β∞ is bounded above by α∞, and

the geodesics β∗k exit an end b′ of M0(µ) (the fact that βk are simple will not
be used in this section). We want to show that b = b′. Suppose otherwise,
by way of contradiction.

Let γ be a closed geodesic in the interior of the convex hull C(β∞). Then

i(γ, α∞) ≥ i(γ, β∞) 6= 0.

We saw in §6.1 that conclusion (i) of Proposition 5.1 holds for the lamination
α∞ ⊂ Sb ⊂ M . In other words, we can build a mapping ϕ : S → M , whose
restriction to Sb = C(S) is homotopic to the embedding Sb → M , such that
the length lM(ϕ(α∞)) is arbitrarily small.

We fix such a mapping ϕ. By transversality, we can suppose that the
image under ϕ of the union of all closed geodesics on S avoids the curve
γ ⊂ Sb ⊂ M . We choose a homotopy Aj between α∗j and ϕ(αj), and a
homotopy Bk between β∗k and ϕ(βk). Note that, since π1(M) = π1(Sb), the
homotopy Aj is unique up to homotopy respecting α∗j and ϕ(αj), the same
holds for Bk.

Lemma 6.4. There is a constant c(γ) such that, in the notation of Section
3,

i(Aj, γ) ≤ c(γ)lM(ϕ(αj)),

i(Bk, γ) ≤ c(γ)lM(ϕ(βk)).
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Proof. This is the intersection number lemma argument. We suppose first
that ϕ(αj) is piecewise geodesic and, since i(Aj, γ) is invariant under homo-
topy of Aj by Lemma 3.1, we choose Aj hyperbolically simplicial for a drum
triangulation of the annulus S1 × [0, 1]. Then, if ε is the minimum of the
injectivity radius of M on γ, we get as in the first case of Proposition 3.4:

i(Aj, γ) ≤ c1(ε)lM(γ)area(Aj) + c2(ε)lM(γ)length(∂Aj)

≤
(
c1(ε) + c2(ε)

)
lM(γ)length(∂Aj)

≤
(
c1(ε) + c2(ε)

)
lM(γ)

(
lM(α∗j ) + lM(ϕ(αj))

)
≤ 2
(
c1(ε) + c2(ε)

)
lM(γ)lM(ϕ(αj))

which is an inequality of the desired kind. When ϕ(αj) is not a piecewise
geodesic, we do the same by approximating with piecewise geodesics.

The proof is of course identical for i(Bk, γ). �

Now that we have these estimates, we will try to link i(Aj, γ) and i(Bk, γ)
to i(β∞, γ). A convenient method to do this will be to use the duality formula
of Lemma 3.3.

Let K be a compact set in M whose interior contains entirely the image
of the homotopy between ϕ|Sb

and the embedding Sb → M . We can choose
K such that its intersection K0 with M0(µ) is a codimension 0 submanifold of
M0(µ) containing the compact core Mc(µ). Moreover, we can do it so that no
component of M0(µ)\K is relatively compact. Then, by Proposition 1.3, each
component of M0(µ)\Mc(µ) contains exactly one component of the boundary
∂K0 and, for degree reasons, the image in π1(M) of each component of ∂K0

is the same as the one of the component of ∂Mc(µ) it faces. In particular,
there exist two homotopies Cb and Cb′ between γ and two curves located
respectively in the component of ∂K0 facing b and the one facing b′.

Lemma 6.5. If j and k are large enough for α∗j and β∗k to avoid the compact
set K and the images of Cb and Cb′, then

i(Aj, γ) = i(ϕ(αj), Cb′)

and
i(Bk, γ) = i(ϕ(βk), Cb).

Proof. By Lemma 3.1, i(Aj, γ) depends only on α∗j and ϕ(αj). By the
construction of K, we can choose the homotopy Aj such that its image is
contained in the union of K and the component of M0(µ)\Mc(µ) containing
b, by gluing together a homotopy between α∗j and αj ⊂ Sb and a homotopy
between αj and ϕ(αj). In particular, the image of Aj avoids the curve ∂Cb′\γ.

47



Then we just have to apply the duality formula of Lemma 3.3. The same
argument works for i(Bk, γ). �

When j tends to infinity, the geodesic current αj

lS(αj)
converges to α∞

lS(α∞)
,

and we would like to say that i(ϕ(αj),Cb′ )
lS(αj)

tends to i(ϕ(α∞),Cb′ )
lS(α∞)

. To do this, we
have to give a meaning to this statement. That is what we are going to do
now.

Let S̃ be the cover of S whose fundamental group is generated by γ, we
still denote by γ the lift of this curve to S̃. The geodesics on S̃ are of three
types:

1) those which cross γ transversely in one point;
2) those which stay at positive distance from γ;
3) those spiraling towards γ (including γ).

The first ones are determined by their intersection point with γ and their
direction at this point. The second ones are characterized by the unique
point in S̃ \ γ where they are parallel to γ, which means orthogonal to the
perpendicular to γ through this point. The space Gp(S̃) of the geodesics of
type 1) and 2) on S̃ (the p in Gp(S̃) refers to the fact that these are exactly
the proper geodesics on S̃) can then be identified with two submanifolds
of P(S̃), transverse to the geodesic foliation, parametrized respectively by
γ×]0, π[ and S̃ \ γ, and which meet each geodesic of Gp(S̃) in exactly one
point.

If α is a geodesic current on S, it lifts to a measure transverse to the
geodesic foliation on P(S̃), which induces a measure on the two submanifolds
identified with Gp(S̃). Therefore we can speak about the measure induced
by α on Gp(S̃).

We consider now the cover M̃ of M , whose fundamental group is gener-
ated by γ, and we lift ϕ to ϕ̃ : S̃ → M̃ and Cb′ to C̃b′ : S1× [0, 1]→ M̃ . Let S̃b
be the preimage in S̃ of the convex core of Sb of S. (We will avoid the nota-
tion C(S) to avoid confusing with Cb and Cb′ .) We perturb slightly ϕ and Cb′
so that, by transversality, ϕ̃−1(C̃b′) is a family of immersed arcs and curves
on S̃; this can clearly be done preserving the property that ϕ−1(γ) avoids the
union of all closed geodesics on S. As ϕ induces an injection on fundamental
groups, the restriction ϕ̃|S̃b

: S̃b → M̃ is proper, and ϕ̃−1(C̃b′)∩ S̃b is compact.

Let X ⊂ Gp(S̃) be the set of proper geodesics on S̃ contained in S̃b which
do not intersect ∂ϕ̃−1(C̃b′) = ϕ̃−1(γ) and have odd intersection number with
ϕ̃−1(C̃b′); note that this condition makes sense only because ϕ̃−1(C̃b′) ∩ S̃b is
compact and we restrict to proper geodesics avoiding ∂ϕ̃−1(C̃b′). If α is a
geodesic current, we define i(ϕ(α), Cb′) as the volume of this set X w.r.t. the
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measure induced by α on Gp(S̃).

Lemma 6.6. The mapping α → i(ϕ(α), Cb′) defined above is continuous in
any current of which γ is not an atom, and coincides with the standard notion
of the geometric intersection number when α is a closed geodesic on S.

Proof. Suppose γ is not an atom of α ∈ C(S) and, to show the continuity
in α, take ε > 0. Since α(γ) = 0, there is a flow box B in P(S) crossed by γ
such that α(B) < ε. We lift B to S̃.

Let XB be the subset of X consisting of these closed geodesics, which
cross B on S̃. Then X \ XB is relatively compact in Gp(S̃). Moreover, the
boundary of X consists of geodesics passing through ϕ̃−1(γ); since ϕ̃−1(γ)
does not meet any closed geodesic on S, the same reasoning as in Lemma
4.37 shows that the boundary of X has zero measure for any geodesic current
on S. Therefore, if β converges to α in C(S), β(X \XB) tends to α(X \XB)

by the weak convergence of the measures induced on Gp(S̃) (see [2], chapter
4, §5, n◦ 12, for a proof of this property of weak convergence that we have
already used many times in Section 4). Moreover, α(XB) ≤ α(B) < ε and
β(XB) ≤ β(B) < ε if β is close enough to α. Hence |α(X)−β(X)| is bounded
above by 3ε if β is close enough to α.

This proves continuity of the mapping α→ i(ϕ(α), Cb′) for geodesic cur-
rents of which γ is not an atom. That this mapping coincides with the
standard notion (defined in Section 3) when α is a closed geodesic is almost
immediate. �

Combining Lemmas 6.4, 6.5 and 6.6, we get that

i(ϕ(α∞), Cb′) = lim
j→∞

i(ϕ(αj), Cb′)

lS(αj)
= lim

j→∞

i(Aj, γ)

lS(αj)

≤ c(γ) lim
j→∞

lM(ϕ(αj))

lS(αj)
≤ c(γ)lM(ϕ(α∞)).

We define similarly i(ϕ(β∞), Cb) and show using Bk that

i(ϕ(β∞), Cb) ≤ c(γ)lM(ϕ(β∞)).

We consider now the homotopy C between the curves ∂Cb \γ and ∂Cb′ \γ
in M defined by gluing together Cb and Cb′ . To define i(ϕ(α∞), Cb′), we used
the subset X of Gp(S̃) consisting of the geodesics contained in S̃b, avoiding

7Lemma 4.4 in Annals
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ϕ̃−1(γ), and having odd intersection number with ϕ̃−1(C̃b′). Let Y ⊂ Gp(S̃)
be defined similarly by replacing Cb′ with Cb. Then, by definition,

i(ϕ(β∞), Cb′) = β∞(X)

i(ϕ(β∞), Cb) = β∞(Y )

i(ϕ(β∞), C) = β∞(X ∪ Y \X ∩ Y ).

In particular,

i(ϕ(β∞), C) ≤ i(ϕ(β∞), Cb′) + i(ϕ(β∞), Cb) ≤ i(ϕ(α∞), Cb′) + i(ϕ(β∞), Cb) ≤
≤ c(γ)lM(ϕ(α∞)) + c(γ)lM(ϕ(β∞)) ≤ 2c(γ)lM(ϕ(α∞)).

Moreover, ϕ(Sb) avoids ∂C by the construction of Cb and Cb′ , and i(ϕ(β∞), C)
stays unchanged if we homotope ϕ among the mappings having this prop-
erty (apply Lemma 3.1 approximating β∞ in C(S) by multiples of closed
geodesics). In particular, since the image of the homotopy between ϕ|Sb

and
the embedding Sb →M avoids ∂C, because it is completely contained in the
interior of the compact set K, we deduce that

i(ϕ(β∞), C) = i(β∞, C) = i(β∞, γ),

where the second equality comes from Lemma 3.1 and from replacing C with
C ′ such that ∂C ′ = ∂C and C ′ ∩ Sb = γ (note that this is the first time we
use the hypothesis b′ 6= b). With the preceding estimates for i(ϕ(β∞), C), we
have shown that

i(β∞, γ) ≤ 2c(γ)lM(ϕ(α∞)).

i(β∞, γ) is non–zero by the construction of γ and we could choose at the
beginning such ϕ that lM(ϕ(α∞)) is arbitrarily small (by conclusion (i) of
Proposition 5.1). This gives us the contradiction we were looking for, and
shows that b = b′.

Therefore the end b is simply degenerate, and here ends the proof of The-
orem A.

We conclude with a remark. For our proof of Theorem A, we only used a
weak form of the continuity of the intersection number on geodesic currents
on a surface S, which is: if γj is a sequence of geodesic currents converging
to γ∞ ∈ C(S), and if i(γj, γj) tends to 0, then i(γ∞, γ∞) = 0 and γ∞ is a
measured geodesic lamination. The proof of this statement is far simpler than
the one of the continuity of the function i, but we thought it is conceptually
more coherent to give the proof of the general property.
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