
Journal of Algebra 338 (2011) 35–55
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Bipolar Coxeter groups

Pierre-Emmanuel Caprace a,1, Piotr Przytycki b,∗,2

a Université catholique de Louvain, Département de Mathématiques, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
b Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956 Warsaw, Poland
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We consider the class of those Coxeter groups for which removing
from the Cayley graph any tubular neighbourhood of any wall
leaves exactly two connected components. We call these Coxeter
groups bipolar. They include the virtually Poincaré duality Coxeter
groups, the pseudo-manifold Coxeter groups and the infinite
irreducible 2-spherical ones. We show in a geometric way that
a bipolar Coxeter group admits a unique conjugacy class of Coxeter
generating sets. Moreover, we provide a characterisation of bipolar
Coxeter groups in terms of the associated Coxeter diagram.
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1. Introduction

Much of the algebraic structure of a Coxeter group is determined by the combinatorics of the
walls and half-spaces of the associated Cayley graph (or Davis complex). When investigating rigidity
properties of Coxeter groups, it is therefore natural to consider the class of Coxeter groups whose
half-spaces are well defined up to quasi-isometry. This motivates the following definition.

Let W be a finitely generated Coxeter group. Fix a Coxeter generating set S for W . Let X denote
the Cayley graph associated with the pair (W , S). An element s ∈ S is called bipolar if any tubular
neighbourhood of the s-invariant wall Ws separates X into exactly two connected components. In fact,
we shall later give an alternative Definition 3.2 and prove equivalence with this one in Lemma 3.3.
Another equivalent condition is

ẽ
(
W ,ZW (s)

) = 2,
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where ẽ(·,·) is the quasi-isometry invariant introduced by Kropholler and Roller in [KR89]. See Ap-
pendix A for details.

We further say that W is bipolar if it admits some Coxeter generating set all of whose elements
are bipolar. We will prove, in Corollary 3.7, that if W is bipolar, then every Coxeter generating set
consists of bipolar elements.

A basic class of examples of bipolar Coxeter groups is provided by the following.

Proposition 1.1. A Coxeter group which admits a proper and cocompact action on a contractible manifold is
bipolar.

Proof. The Coxeter group W in question is a virtual Poincaré duality group of dimension n. By
[Dav98, Corollary 5.6], for each s ∈ S its centraliser ZW (s) is a virtual Poincaré duality group of
dimension n − 1. Then, in view of [KR89, Corollary 4.3], there is a finite index subgroup W0 of W
satisfying ẽ(W0, W0 ∩ZW (s)) = 2. Using [KR89, Lemma 2.4(iii)] we then also have ẽ(W ,ZW (s)) = 2.
By Lemma A.7 below this means that s is bipolar, as desired. �

More generally, we shall see in Proposition 6.1 below that pseudo-manifold Coxeter groups (or
shortly PM Coxeter groups), defined by Charney and Davis [CD00] (see also Section 13.3 from [Dav08])
are also bipolar.

Our first main result provides a characterisation of bipolarity in terms of the Coxeter graph. All the
notions relevant to its statement are recalled in Section 2.1 below. The only less standard terminology
is that we call two elements s, s′ of some Coxeter generating set S adjacent (resp. odd-adjacent)
if the order of ss′ is finite (resp. finite and odd). The graph with vertex set S and edges between
adjacent elements is called the free Coxeter graph of S; the equivalence classes of the equivalence
relation generated by odd-adjacency are called the odd components of S .

Theorem 1.2. A finitely generated Coxeter group W is bipolar if and only if it admits some Coxeter generating
set S satisfying the following three conditions.

(a) There is no spherical irreducible component T of S.
(b) There are no I ⊂ T with T irreducible and I non-empty spherical such that I ∪ T ⊥ separates the vertices

of the free Coxeter graph of S into several connected components.
(c) If T ⊂ S is irreducible spherical and an odd component O of S is contained in T ⊥ , then there are adjacent

t ∈ O and t′ ∈ S \ (T ∪ T ⊥).

As an immediate consequence, we obtain another natural class of bipolar Coxeter groups.

Corollary 1.3. Any infinite irreducible 2-spherical Coxeter group is bipolar.

Bipolarity is thus a condition which is naturally shared by infinite irreducible 2-spherical Coxeter
groups, virtually Poincaré duality Coxeter groups and pseudo-manifold Coxeter groups. By the works
of Charney and Davis [CD00], Franzsen, Howlett and Mühlherr [FHM06], and Caprace and Mühlherr
[CM07] the Coxeter groups in those three classes are strongly rigid in the sense that they admit a
unique conjugacy class of Coxeter generating sets. The following result shows that this property is in
fact shared by all bipolar Coxeter groups.

Theorem 1.4. In a bipolar Coxeter group, any two Coxeter generating sets are conjugate. In other words, all
bipolar Coxeter groups are strongly rigid.

Before discussing this result, we point out an immediate corollary. A graph automorphism of a
Coxeter group is an automorphism which permutes the elements of a given Coxeter generating set,
and thus corresponds to an automorphism of the associated Coxeter graph. An automorphism of a
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Fig. 1. Two strongly rigid but not bipolar Coxeter groups.

Coxeter group is called inner-by-graph if it is a product of an inner automorphism and a graph
automorphism.

Corollary 1.5. Every automorphism of a bipolar Coxeter group is inner-by-graph.

Theorem 1.4 both generalises and unifies the main results of [CD00,CM07,FHM06]. The proof we
shall provide is self-contained and based on the fact that the bipolar condition makes the half-spaces
into a coarse notion which is preserved under quasi-isometries coming from changing the generating
set.

Theorem 1.4 resulted from an attempt to find a geometric property of so-called twist-rigid Coxeter
groups that would provide an alternative proof of the following, which is the main result from [CP09].

Theorem 1.6. (See [CP09, Theorem 1.1 and Corollary 1.3(i)].) In a twist-rigid Coxeter group, any two angle-
compatible Coxeter generating sets are conjugate.

We recall that a Coxeter group W is twist-rigid if it has a Coxeter generating set S such that
no irreducible spherical subset I ⊂ S has the property that I ∪ I⊥ separates the vertices of the free
Coxeter graph of S into several connected components. Specialising condition (b) from Theorem 1.2 to
the case I = T , we see that a bipolar Coxeter group is necessarily twist-rigid. However, many twist-
rigid Coxeter groups are not bipolar, hence one cannot use Theorem 1.4 to deduce Theorem 1.6. On
the other hand, a combination of Theorems 1.6 and 1.2 together with the main results of [HM04] and
[MM08] yields Theorem 1.4. Despite of this fact, we believe that the direct geometric proof we provide
here sheds some light on existing rigidity results on Coxeter groups. Note for example that the proof
of Theorem 1.6 which we give in [CP09] relies on the fact that infinite irreducible 2-spherical Coxeter
groups are strongly rigid.

In view of Theorem 1.4, it is also natural to ask whether bipolarity characterises Coxeter groups
having a unique conjugacy class of Coxeter generating set. This is however not the case. To see this,
we consider the Coxeter groups W (∗) and W (∗∗) associated with free Coxeter graphs (∗) and (∗∗)
depicted in Fig. 1.

It can be shown using [FHM06] (or [HM04]) that all Coxeter generating sets of W (∗) and W (∗∗)

are reflection-compatible (the definition of this notion is given after Proposition 3.6 below). Since
moreover all Coxeter numbers in those graphs are 2, 3 or ∞, all Coxeter generating sets of W (∗) and
W (∗∗) are angle-compatible. Since both graphs are twist-rigid, it follows from Theorem 1.6 that W (∗)

and W (∗∗) are both strongly rigid. However, they are not bipolar, since the graph (∗) does not satisfy
condition (b) of Theorem 1.2 and the graph (∗∗) does not satisfy condition (c).

The article is organised as follows. In Section 2 we collect some basic facts on Coxeter groups. In
Section 3 we discuss properties of bipolar Coxeter groups and prove Theorem 1.4. In Section 4 we
characterise nearly bipolar reflections, which are reflections enjoying significant geometric properties
slightly weaker than the ones of bipolar reflections. Then, in Section 5 we characterise bipolar reflec-
tions and prove Theorem 1.2. Finally, in Section 6 we discuss PM Coxeter groups. In Appendix A we
give a survey on different approaches to the notion of poles. The results from Appendix A hold in a
more general context than Coxeter groups. Some of them will be used at several places in the core of
the paper.
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2. Coxeter groups

2.1. Preliminaries

Let W be a finitely generated Coxeter group and let S ⊂ W be a Coxeter generating set. We start
with explaining the notions appearing in the statement of Theorem 1.2.

Given a subset J ⊂ S , we set W J = 〈 J 〉. We say that W J is spherical if it is finite. The subset
J is called spherical if W J is spherical. It is called 2-spherical if all of its two-element subsets are
spherical. Two elements of S are called adjacent if they form a spherical pair. This defines a graph
with vertex set S which is called the (free) Coxeter graph. We emphasise that this terminology is
not standard; for us a Coxeter graph is not a labelled graph; the non-edges correspond to pairs of
generators generating an infinite dihedral group. In this terminology J is 2-spherical if its Coxeter
graph is a complete graph. A Coxeter group is 2-spherical if it admits a Coxeter generating set S
which is 2-spherical. A path in S is a sequence in S whose consecutive elements are adjacent.

We denote by J⊥ the subset of S \ J consisting of all elements commuting with all the elements
of J . A subset J ⊂ S is called irreducible if it is not contained in K ∪ K ⊥ for some non-empty proper
subset K ⊂ J . The irreducible component of s ∈ S in J ⊂ S is the maximal irreducible subset of J
containing s. If J satisfies S = J ∪ J⊥ , then W J is called a factor of W .

The Cayley graph associated with the pair (W , S) with the path-metric in which the edges have
length 1 is denoted by (X,d). The corresponding Davis complex is denoted by A. A reflection is an
element of W conjugate to an element of S . Given a reflection r ∈ W , we denote by Wr its fixed-
point set in X , the wall associated with r. We use the notation W A

r for the fixed point set of r in A.
The two connected components of the complement of a wall are called half-spaces. We say that two
walls Wr1 , Wr2 intersect if the corresponding W A

r1
, W A

r2
intersect, i.e. if r1r2 is of finite order. The

walls Wr1 , Wr2 are orthogonal, if r1 commutes with and is distinct from r2.
A parabolic subgroup P ⊂ W is a subgroup conjugate to W T for some T ⊂ S . Any P -invariant

translate of the Cayley graph of W T in X is called a residue of P .
If v is a vertex of X and w is an element of W , we denote by w.v the translate of v in X under

the action of w .
We will need some additional non-standard notation. Let v be a vertex of X . We say that v is

adjacent to a wall W if the distance from v to W equals 1
2 . We denote by S v the set of all reflections

with walls adjacent to v . Thus S v is a Coxeter generating set conjugate to S via the element mapping
the identity vertex to v . In particular, if v is the identity vertex v0, then we have S v0 = S . We say
that a subset of S v is spherical, irreducible, etc., if its conjugate in S is so. In particular, for T ⊂ S v

we denote by T ⊥ the subset of S v \ T consisting of elements commuting with all the elements of T .
Similarly, for T ⊂ S v we denote W T = 〈T 〉. Note that in case S v = T ∪ T ⊥ the parabolic subgroup W T

is a conjugate of a factor of W .
Let now r be a reflection in W . We denote by T v,r the smallest subset of S v satisfying r ∈ 〈T v,r〉.

This set should be thought of as the support of r with respect to S v .
We denote by J v,r the subset of S v defined as follows. If r ∈ S v then we set J v,r = {r}; otherwise

we put

J v,r = {
s ∈ S v

∣∣ d(s.v, Wr) < d(v, Wr)
}
.

Observe that we have J v,r ⊂ T v,r .
Finally, let U v,r be the set of elements of S v commuting with r, but different from r. Equivalently

(see [BH93, Lemma 1.7]), s belongs to U v,r if it satisfies d(s.v, Wr) = d(v, Wr) and s �= r. In particular
U v,r is disjoint from J v,r . We also have T ⊥

v,r ⊂ U v,r . On the other hand, an easy computation shows

U v,r ⊂ T v,r ∪ T ⊥
v,r .

We also have the following basic fact.
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Lemma 2.1. (See [CP09, Lemma 8.2].) For any vertex v of X and any reflection r, the set J v,r ∪ (U v,r ∩ T v,r) is
spherical.

We deduce a useful corollary.

Corollary 2.2. Let r ∈ W be a reflection not contained in a conjugate of any spherical factor of W . Then every
vertex v of X is adjacent to some vertex v ′ satisfying d(v ′, Wr) > d(v, Wr).

Proof. Set T = T v,r , J = J v,r , and U = U v,r . Suppose, by contradiction, that for each vertex v ′ adjacent
to v we have d(v ′, Wr) � d(v, Wr). This means that we have S v = J ∪ U . From J ⊂ T we deduce
T = J ∪ (U ∩ T ). Furthermore, by Lemma 2.1 the set J ∪ (U ∩ T ) is spherical. Thus W T contains r and
is conjugate to a spherical factor of W . A contradiction. �
2.2. Parallel Wall Theorem

We now discuss the so-called Parallel Wall Theorem, first established by Brink and Howlett [BH93,
Theorem 2.8]. The theorem stipulates the existence of a constant L such that for any wall W and any
vertex v at distance at least L from W , there is another wall separating v from W . The following
strengthening of this fact is established (implicitly) in [Cap06, Section 5.4].

Theorem 2.3 (Strong Parallel Wall Theorem). For each n there is a constant L such that for any wall W and
any vertex v in the Cayley graph X at distance at least L from W , there are at least n pairwise parallel walls
separating v from W .

In order to state a corollary we need to define tubular neighbourhoods. Given a metric space (X,d)

and a subset H ⊂ X , we denote

N X
k (H) = {

x ∈ X
∣∣ d(x, H) � k

}
.

We call this set the k-neighbourhood of H . A tubular neighbourhood of H is a k-neighbourhood for
some k > 0 (usually we consider only k ∈ N). We record an immediate consequence of Theorem 2.3.

Corollary 2.4. For each k ∈ N there is a constant L such that for any wall W and any vertex v of X at distance
at least L from W , there is another wall separating v from the tubular neighbourhood N X

k (W ).

2.3. Complements of tubular neighbourhoods of walls

We need the following result about the complements of tubular neighbourhoods of walls and their
intersections. We denote by ∂φ the boundary wall of a half-space φ in the Cayley graph X .

Lemma 2.5. Assume that (W , S) has no spherical factor. Let k ∈ N.

(i) For each half-space φ , the set φ \ N X
k (∂φ) is non-empty.

(ii) Let φ,φ′ be a pair of non-complementary half-spaces whose walls ∂φ , ∂φ′ intersect. Then the intersection
(φ \ N X

k (∂φ)) ∩ (φ′ \ N X
k (∂φ′)) is also non-empty.

(iii) Let φ,φ′ be a pair of non-complementary half-spaces with ∂φ ⊂ φ′ , ∂φ′ ⊂ φ , whose associated pair of
reflections r, r′ is contained in the Coxeter generating set S. Assume additionally that {r, r′} is not an
irreducible factor of S. Then the intersection (φ \ N X

k (∂φ)) ∩ (φ′ \ N X
k (∂φ′)) is non-empty.

In assertion (iii) we could relax the hypothesis to allow any intersecting half-spaces bounded by
disjoint walls. But then we have to additionally assume that the corresponding reflections do not lie
in an affine factor of W . We will not need this in the article.
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Proof of Lemma 2.5. Assertion (i) follows directly from Corollary 2.2. Assertions (ii) and (iii) are easy
to see for irreducible, non-spherical Coxeter groups of rank 3; we are going to reduce the general case
to this case.

(ii) Denote by r, r′ the reflections in ∂φ, ∂φ′ . By (i) and the Parallel Wall Theorem, there is a reflec-
tion t ∈ W such that tr is of infinite order (for another argument, see e.g. [Hée93, Proposition 8.1]).
If r does not commute with r′ , then by [Deo89] the reflection group 〈r, r′, t〉 is an infinite irreducible
rank-3 Coxeter group (affine or hyperbolic). It remains to observe that the desired property holds in
the special case of affine and hyperbolic triangle groups.

If r commutes with r′ , we take a vertex v in φ ∩ φ′ . By Corollary 2.2 there is a path of length
2k from v to some v ′ such that each consecutive vertex is farther from ∂φ. Then d(v ′, ∂φ) is at
least 2k + 1

2 . Since ∂φ and ∂φ′ are orthogonal, this path stays in φ′ . Similarly, there is a path of
length k from v ′ to some v ′′ such that each consecutive vertex is farther from ∂φ′ . Then v ′′ lies in
(φ \ N X

k (∂φ)) ∩ (φ′ \ N X
k (∂φ′)).

(iii) Since {r, r′} is not an irreducible component of S , there is an element s ∈ S which does not
commute with one of r and r′ . Hence the parabolic subgroup 〈r, r′, s〉 is a hyperbolic rank-3 Coxeter
group. As before we observe that the desired property holds in this special case. �
2.4. Position of rank-2 residues

We conclude with the discussion of the possible positions of a rank-2 residue with respect to a
wall.

Lemma 2.6. Let r ∈ W be a reflection and let R ⊂ X be a residue of rank 2 containing a vertex v. Assume that
the vertices x, y adjacent to v in R satisfy d(v, Wr) < d(y, Wr) and d(v, Wr) � d(x, Wr). Then for any vertex
z in R we have

d(z, Wr) = d(v, Wr) +
{

d(z, v) if d(v, Wr) < d(x, Wr),

d(z, {v, x}) if d(v, Wr) = d(x, Wr).

In particular, no wall orthogonal to Wr crosses R , except possibly for the one adjacent to v and x.
The proof is a simple calculation using root systems (see e.g. [BH93]) and will be omitted.

3. Rigidity of bipolar Coxeter groups

In this section we define bipolar Coxeter groups and prove that this definition agrees with the one
given in the Introduction (Lemma 3.3). Then we prove that in a bipolar Coxeter group all Coxeter
generating sets are reflection-compatible (Corollary 3.7). We conclude with the proof of Theorem 1.4.

3.1. Bipolar Coxeter groups

Let G be a finitely generated group and let X denote the Cayley graph associated with some finite
generating set for G . We view X as a metric space with the path-metric obtained by giving each edge
length 1. We identify G with the 0-skeleton X (0) of X . Let H be a subset of G .

Definition 3.1. A pole (in X ) of G relative to H (or of the pair (G, H)) is a chain of the form U1 ⊃
U2 ⊃ · · · , where Uk is a non-empty connected component of X \ N X

k (H).

In Appendix A, different equivalent definitions of poles as well as their basic properties will be
discussed. Here we merely record that in Lemma A.2 we show that there is a correspondence between
the collections of poles of the pair (G, H) determined by different generating sets. Hence it makes
sense to consider the number of poles ẽ(G, H) as an invariant of the pair (G, H).

We say that the pair (G, H) (or simply the subset H when there is no ambiguity on what the
ambient group is) is n-polar if we have ẽ(G, H) = n. We shall mostly be interested in the case n = 2,
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in which case we say that H is bipolar. In case n = 1 we say that H is unipolar. Notice that G has n
ends if and only if the trivial subgroup is n-polar.

Definition 3.2. A generator s in some Coxeter generating set S of a Coxeter group W is called bipolar
if its centraliser ZW (s) is so. The group W is bipolar if it admits a Coxeter generating set all of
whose elements are bipolar.

We now verify that this definition agrees with the one given in the Introduction.

Lemma 3.3. A generator s ∈ S is bipolar if and only if X \ N X
k (Ws) has exactly two connected components for

any k ∈ N.

Before we can give the proof we need the following discussion.

Remark 3.4. The centraliser ZW (s) coincides with the stabiliser of Ws in the Cayley graph X . Since
the action of W on X has only finitely many orbits of edges, it follows that ZW (s) acts cocompactly
on the associated wall Ws . Hence Ws is at finite Hausdorff distance in X from ZW (s) ⊂ X (0) . Thus,
by Remark A.1, ẽ(W ,ZW (s)) is equal to the number of poles of (X, Ws) (see Appendix A).

Lemma 3.5. Let r be a reflection in W . Then

(i) r is not unipolar,
(ii) moreover we have ẽ(W ,ZW (r)) = 0 if and only if r belongs to a conjugate of some spherical factor of W .

Proof. (i) By Remark 3.4 we need to study the poles of (X, Wr). Since r acts non-trivially on the two
components of X \ Wr it follows that the number of poles of (X, Wr) is even (or infinite).

(ii) If r belongs to a conjugate of some spherical factor of W , then ZW (r) has finite index in
W and hence we have ẽ(W ,ZW (r)) = 0. Conversely, assume that s does not belong to a conjugate
of any spherical factor of W . Then Corollary 2.2 ensures that X does not coincide with any tubular
neighbourhood of Wr , hence we have ẽ(W ,ZW (r)) �= 0. �

We are now prepared for the following.

Proof of Lemma 3.3. First assume that X \ N X
k (Ws) has exactly two connected components for any

k ∈ N. Since these components are interchanged under the action of s, they are either both contained
or neither of them is contained in a tubular neighbourhood of Ws . In fact, since the hypothesis is
satisfied for every k, neither of them is contained in a tubular neighbourhood of Ws . Hence they
determine the only two poles of (X, Ws). Then s is bipolar by Remark 3.4.

For the converse, let s be bipolar. Like before, by Remark 3.4 the pair (X, Ws) has exactly two
poles. Hence each X \ N X

k (Ws) has at least one connected component not contained in any tubular
neighbourhood of Ws . In fact, since this component is not s-invariant, there are at least two such
connected components of X \ N X

k (Ws). Since the number of poles of (X, Ws) equals two, all other
possible connected components of X \ N X

k (Ws) must be contained in some tubular neighbourhood
of Ws . It remains to exclude the existence of these components.

It suffices to prove that any vertex v of X is adjacent to some vertex v ′ which is farther from Ws .
By Lemma 3.5(ii), the reflection s is not contained in a conjugate of any spherical factor of W . There-
fore the desired statement follows from Corollary 2.2. �
3.2. Reflections

In this section we show that in a bipolar Coxeter group the notion of a reflection is independent
of the choice of a Coxeter generating set (Corollary 3.7). It follows that all elements of all Coxeter
generating sets are bipolar.
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Proposition 3.6. Let S be a Coxeter generating set for W all of whose elements are bipolar. Then any involution
of W which is not a reflection is unipolar.

Proposition 3.6 is related to [Kle07, Corollary 2] which asserts that, in an arbitrary finitely gener-
ated group, an infinite index subgroup of an n-polar subgroup is necessarily unipolar.

Before we provide the proof, we deduce the following corollary. We say that two Coxeter generat-
ing sets S1 and S2 for W are reflection-compatible if every element of S1 is conjugate to an element
of S2. This defines an equivalence relation on the collection of all Coxeter generating sets (see [CP09,
Corollary A.2]).

Corollary 3.7. In a bipolar Coxeter group any two Coxeter generating sets are reflection-compatible. In partic-
ular any Coxeter generating set consists of bipolar elements.

Proof. By hypothesis there is some Coxeter generating set S1 ⊂ W consisting of bipolar elements. Let
r belong to an other Coxeter generating set S2. By Lemma 3.5(i) ZW (r) is not unipolar. Hence by
Proposition 3.6 the involution r is a reflection with respect to S1. �

In order to prove Proposition 3.6 we need the following subsidiary result. Let d denote the maximal
diameter of a spherical residue in X .

Lemma 3.8. Let W1, . . . , Wn be the walls associated to the reflections of some finite parabolic subgroup
P < W . Then for each k ∈ N there is some K ∈ N satisfying

n⋂
i=1

N X
k (Wi) ⊂ N X

K

(
n⋂

i=1

N X
d (Wi)

)
.

We need to consider the intersection of N X
d (Wi) instead of the intersection of the walls Wi them-

selves because in the Cayley graph the intersection
⋂n

i=1 Wi is usually empty. On the other hand, the
intersection of N X

d (Wi) is non-empty since it contains all the residues whose stabiliser is P .

Proof of Lemma 3.8. It is convenient here to work with the Davis complex A. The complex A

equipped with its path-metric is quasi-isometric to the Cayley graph X . In the language of the Davis
complex, we need to show that for each k ∈ N, there is some K ∈ N satisfying

n⋂
i=1

N A

k

(
W A

i

) ⊂ N A

K

(
n⋂

i=1

W A

i

)
.

The above intersection
⋂n

i=1 W A

i equals to the fixed-point set AP of P in A. The centraliser
ZW (P ) acts cocompactly on AP .

Assume for a contradiction that there is some sequence (x j) contained in
⋂n

i=1 N A

k (W A

i ) but leav-
ing every tubular neighbourhood of AP . After possibly translating the x j by the elements of ZW (P ),
we may assume that the set of orthogonal projections of the x j onto AP is bounded. Let ξ ∈ ∂∞A

be an accumulation point of (x j). If we pick a basepoint o in AP , then the geodesic ray [o, ξ) leaves
every tubular neighbourhood of AP . On the other hand, by assumption we have x j ∈ N A

k (W A

i ). This
implies ξ ∈ ∂∞(W A

i ) and hence [o, ξ) ⊂ W A

i for each i. Thus we have [o, ξ) ⊂ ⋂n
i=1 W A

i = AP , a con-
tradiction. �

We are now ready for the following.
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Proof of Proposition 3.6. Let r ∈ W be an involution which is not a reflection. We need to show that
ZW (r) is unipolar.

Let P be the minimal parabolic subgroup containing r. Let also W1, . . . , Wn be the walls corre-
sponding to all the reflections in P . The centraliser of r acts cocompactly on

⋂n
i=1 N X

d (Wi) which we
will denote by Xr . Hence Xr is at finite Hausdorff distance from ZW (r) ⊂ X (0) . Therefore, in view of
Remark A.1, it suffices to show that (X, Xr) has only one pole.

By Lemma 3.8 for each k ∈ N there exists K ∈ N satisfying

N X
k−d

(
Xr) ⊂

n⋂
i=1

N X
k (Wi) ⊂ N X

K

(
Xr).

Hence it suffices to prove that for each k ∈ N the set

X \
(

n⋂
i=1

N X
k (Wi)

)
(1)

is connected. If we denote by Φ the set of all half-spaces bounded by Wi for some i, the set displayed
in (1) is equal to ⋃

φ∈Φ

φ \ N X
k (∂φ).

Since W is bipolar, the set φ \ N X
k (∂φ) is connected for each φ ∈ Φ . Moreover, by Lemma 3.5(ii),

W has no spherical factor. Therefore, by Lemma 2.5(ii) the intersection φ \ N X
k (∂φ) ∩ φ′ \ N X

k (∂φ′) is
non-empty for any two non-complementary half-spaces φ,φ′ ∈ Φ . Finally, since r is not a reflection,
we have n > 1 and hence Φ does not consist of a single pair of complementary half-spaces.

Hence
⋃

φ∈Φ φ \ N X
k (∂φ) is connected, (X, Xr) has only one pole, and r is unipolar, as desired. �

3.3. Rigidity

Finally, we prove our rigidity result.

Proof of Theorem 1.4. Let W be a bipolar Coxeter group and let S1 and S2 be two Coxeter generating
sets for W . By Corollary 3.7, the sets S1 and S2 are reflection-compatible; moreover, both of them
consist of bipolar elements.

Let Xi be the Cayley graph associated with the generating set Si and let Ψi be the corresponding
set of half-spaces. We shall denote by Wr,i the wall of Xi associated with a reflection r ∈ W .

We need the following terminology. A basis is a set of half-spaces containing a given vertex v
bounded by walls adjacent to v . A pair of half-spaces {α,β} ⊂ Ψi is called geometric if α ∩ β is
a fundamental domain for the action on Xi of the group 〈rα, rβ〉 generated by the corresponding
reflections. If 〈rα, rβ〉 is finite, then this means that for each reflection r ∈ 〈rα, rβ〉, the set α ∩ β lies
entirely in one half-space determined by the wall Wr,i . If 〈rα, rβ〉 is infinite, then this means that
α ∩ β , α ∩ −β , −α ∩ β are all non-empty but −α ∩ −β is empty. Note that if rα , rβ commute, then
{α,β} is automatically geometric.

In order to show that S1 and S2 are conjugate, it suffices to show that there are half-spaces in
Ψ2 bounded by Ws,2, over s ∈ S1, which form a basis. In view of the main theorem of Hée [Hée93]
(see also [HRT97, Theorem 1.2] or [CM07, Section 1.6] for other proofs of the same fact), it suffices
to prove the following. There are half-spaces in Ψ2 bounded by Ws,2, over s ∈ S1, which are pairwise
geometric.

Let S0
1 be the union of those irreducible components of S1 which are not pairs of non-adjacent

vertices (giving rise to D∞ factors). For a generator s ∈ S1 outside S0
1 we consider the unique other
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element t in the irreducible component of s. Then the walls Ws,2, Wt,2 are disjoint and there is a
geometric choice of half-spaces in Ψ2 for this pair. Since all other elements of S1 commute with both
s and t , it remains to choose pairwise geometric half-spaces in Ψ2 for the elements of S0

1.

Now the main part of the proof can start. The identity on W defines a quasi-isometry f : X (0)
1 →

X (0)
2 , which we extend to an invertible (possibly non-continuous) mapping on the entire X1. By Sub-

lemma A.3 and by the fact that Wr,i are at bounded Hausdorff distance from ZW (r) ⊂ X (0)
i , we have

the following. For each α ∈ Ψ1 bounded by Wr,1, there is a (unique) half-space α′ ∈ Ψ2 bounded by
Wr,2 satisfying

f
(
α \ N X

k (Wr,1)
) ⊂ α′

for some k ∈ N. Therefore, the assignment α �→ α′ defines a W -equivariant bijection f ′ : Ψ1 → Ψ2.
Let Φ ⊂ Ψ1 be the set of half-spaces containing the identity vertex and bounded by a wall of the

form Ws,1 for some s ∈ S0
1. Our goal is to show that the map f ′ maps every pair of half-spaces from

Φ to a geometric pair in Ψ2. Let α �= β belong to Φ . Set α′ = f ′(α) and β ′ = f ′(β). For k ∈ N and any
pair {ρ, δ} ⊂ Ψi , we set

Ci(ρ, δ,k) = ρ \ N Xi
k (Wrρ,i) ∩ δ \ N Xi

k (Wrδ,i).

Case where ∂α and ∂β intersect. In this case we proceed by contradiction. If {α′, β ′} is not geometric,
then there exists a reflection r ∈ 〈rα, rβ〉 different from rα and rβ satisfying the following. If φ′ and
−φ′ denote the pair of half-spaces in Ψ2 bounded by Wr,2, then both α′ ∩ φ′ and β ′ ∩ −φ′ are non-
empty and contained in α′ ∩ β ′ .

By Lemma 2.5(ii) for all k ∈ N both C2(α
′, φ′,k) and C2(β

′,−φ′,k) are non-empty. Denote
f ′−1(φ′) = φ. We now apply Sublemma A.3 to f −1. It guarantees that for k large enough the sets
C2(α

′, φ′,k) and C2(β
′,−φ′,k) are mapped into α ∩ φ and β ∩ −φ, respectively. Furthermore, they

are both mapped into α ∩ β . Hence α ∩ β is separated by the wall Wr,1 and {α,β} is not geometric.
A contradiction.

Case where ∂α and ∂β are disjoint. By Lemma 2.5(i), (iii) all the sets C1(α,β,k), C1(α,−β,k), and
C1(−α,β,k) are non-empty. Hence all α′ ∩β ′ , α′ ∩−β ′ , and −α′ ∩β ′ are non-empty. This means that
{α′, β ′} is geometric. �
4. Characterisation of nearly bipolar reflections

On our way to proving Theorem 1.2, which characterises bipolar Coxeter groups, we come upon a
property slightly weaker than bipolarity, which we discuss in this section.

Given a vertex v in the Cayley graph X and a reflection r ∈ W , we denote by Cv,r the subset of
X which is the intersection of half-spaces containing v bounded by walls orthogonal to or equal Wr .
Note that Cv,r is a fundamental domain for the action on X of the group generated by reflections in
these walls. We say that r is nearly bipolar if for all k ∈ N and each vertex v of X , the set Cv,r \
N X

k (Wr) is non-empty and connected.
The goal of this section is to prove the following (for the notation, see Section 2.1).

Theorem 4.1. Let r ∈ W be a reflection. The following assertions are equivalent.

(i) r is nearly bipolar.
(ii) The following two conditions are satisfied by every vertex v ∈ X.

(a) T v,r is not a spherical irreducible component of S v .
(b) J v,r ∪ U v,r does not separate S v .
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Fig. 2. Proof of Lemma 4.2.

Below we prove that for a bipolar or nearly bipolar reflection r there are ways to connect a pair of
walls by a chain of walls avoiding tubular neighbourhoods of Wr . The proof bears resemblance to the
main idea of [CP09], where to obtain isomorphism rigidity we had to connect a pair of good markings
by a chain of other markings with base r.

Lemma 4.2. Let s, t ∈ S be non-adjacent and let r ∈ W be a reflection. Assume that at least one of the following
conditions is satisfied.

(i) r is nearly bipolar and 〈s, t〉 does not contain any reflection commuting with r.
(ii) r is bipolar and at most one reflection from 〈s, t〉 commutes with r. This reflection is different from r.

Then for any k ∈ N there is a sequence of reflections s = r0, r1, . . . , rn = t such that for all i = 1, . . . ,n the wall
Wri−1 intersects Wri and for all i = 1, . . . ,n − 1 the wall Wri is disjoint from N X

k (Wr).

Proof. Denote by v0 ∈ X the identity vertex. Without loss of generality, we may assume that the
given k is larger than the distance from v0 to Wr . By Corollary 2.4, there is a constant L such that for
any vertex v at distance at least L from Wr , there is a wall separating v from N X

k (Wr).
Denote by R be the {s, t}-residue containing v0 (see Fig. 2). Since r does not belong to 〈s, t〉, the

residue R lies entirely on one side of Wr . We claim that 〈r, s, t〉 is a hyperbolic triangle group. Indeed,
〈r, s, t〉 is an irreducible reflection subgroup of rank 3, hence by [Deo89] it is a Coxeter group of
rank 3. Since it contains an infinite parabolic subgroup of rank 2, namely 〈s, t〉, it cannot be of affine
type. Thus 〈r, s, t〉 is a hyperbolic triangle group, as claimed. The claim implies that every tubular
neighbourhood of Wr contains at most a bounded subset of the residue R .

Hence for N large enough, the vertices v− = (st)−N .v0 and v+ = (st)N .v0 are not contained in
N X

L (Wr). By hypothesis, either r is nearly bipolar and the vertices v− and v+ are both contained in
Cv0,r or r is bipolar. Thus there is a path connecting v+ to v− outside N X

L (Wr).
There is a sub-path (x1, . . . , xn−1) of γ such that x1 is adjacent to Ws and xn−1 is adjacent to Wt .

By the choice of L, for each i there is some wall which separates xi from N X
k (Wr). Among these, we

pick one nearest possible Wr and call it Wi . We denote the associated reflection by ri .
Notice first that, since W1 separates x1 from v0, which are both adjacent to Ws , it follows that

W1 intersects Ws . Analogously Wn−1 intersects Wt . It remains to show that Wi−1 intersects Wi for
all i = 2, . . . ,n − 1.

Assume for a contradiction that Wi−1 does not intersect Wi . In particular we have Wi−1 �= Wi and
it follows that for some j ∈ {i − 1, i}, say for j = i, the vertices xi−1 and xi lie on the same side of W j .
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It follows that the vertex xi−1 is separated from N X
k (Wr) by both Wi−1 and Wi . By the minimality

hypothesis on Wi−1, the wall Wi−1 separates N X
k (Wr) from Wi . But this contradicts the minimality

hypothesis on Wi . �
We can now provide the proof of the main result of this section.

Proof of Theorem 4.1. (i) ⇒ (ii) Assume that r is nearly bipolar. Since Cv,r \ N X
k (r) is non-empty for

each k ∈ N, the set X \ N X
k (r) is non-empty for each k. Then ẽ(W ,ZW (r)) is non-zero and in view of

Lemma 3.5(ii) we have condition (a).
It remains to prove condition (b), which we do by contradiction. Assume that there are s, t ∈ S v

separated by J v,r ∪ U v,r . We set J = J v,r , U = U v,r , and T = T v,r . By Lemma 2.6 the group 〈s, t〉
does not contain any reflection which commutes with r. Therefore, we are in position to apply
Lemma 4.2(i). Let k be large enough so that the residue stabilised by W J∪(U∩T ) and containing v
(this residue is finite by Lemma 2.1) lies entirely in N X

k (Wr). Lemma 4.2(i) provides a sequence of
reflections s = r0, . . . , rn = t such that for all i = 1, . . . ,n − 1 the wall Wri avoids N X

k (Wr) and for all
i = 1, . . . ,n walls Wri−1 and Wri intersect.

The group W splits over W J∪U as an amalgamated product of two factors each containing one of
s and t . Consider now the W -action on the associated Bass–Serre tree T . Thus W J∪U is the stabiliser
of some edge e of T , and the elements s and t fix distinct vertices of e, but neither of them fixes e.
Furthermore, for each i = 1, . . . ,n, the fixed-point sets T ri−1 and T ri intersect. It follows that some
ri fixes the edge e, hence it lies in W J∪U . From the inclusions J ⊂ T , U ⊂ T ∪ T ⊥ and T ⊥ ⊂ U , we
deduce

W J∪U = W J∪(U∩T ) × W T ⊥ .

Thus a reflection in W J∪U belongs either to W J∪(U∩T ) or to W T ⊥ . Since the wall Wri does not
meet Wr , the order of rri must be infinite, hence ri does not belong to W T ⊥ . Therefore we have ri ∈
W J∪(U∩T ) . This implies that Wri meets the residue stabilised by W J∪(U∩T ) containing v , contradicting
the fact that Wri avoids N X

k (Wr).
(ii) ⇒ (i) Let k ∈ N and let v ∈ X be a vertex. We need to show that

Cv,r \ N X
k (Wr)

is non-empty and connected. For non-emptiness it suffices to prove that any vertex w of X is adjacent
to a vertex which is farther from Wr . Otherwise we have S w = J w,r ∪ U w,r and it follows that S v

equals T w,r ∪ T ⊥
w,r . Moreover, T w,r is then equal to J w,r ∪ (U w,r ∩ T w,r), which is finite by Lemma 2.1.

This would contradict condition (a).
It remains to prove connectedness. Let x, y be two vertices in Cv,r \ N X

k (Wr). We shall construct
a path connecting x to y outside of N X

k (Wr). First notice that, by the definition of Cv,r , no wall
orthogonal to Wr separates x from y.

We consider the collection G of all (possibly non-minimal) paths connecting x to y entirely con-
tained in Cv,r . Notice that G is non-empty since it contains all minimal length paths from x to y. To
each path γ ∈ G , we associate a k-tuple of integers (n1, . . . ,nk), where ni is defined as the number of
vertices of γ at distance i − 1

2 from Wr . We call this tuple (n1, . . . ,nk) the trace of the path γ . We
order the elements of G using the lexicographic order on the set of their traces.

We need to show that G contains some path of trace (0, . . . ,0). To this end, it suffices to associate
to every path in G with non-zero trace a path of strictly smaller trace. Let thus γ ∈ G be a path
with non-zero trace (n1, . . . ,nk), put j = min{i | ni > 0} and let v be some vertex of γ contained
in N X

j (Wr). Let also v− and v+ be respectively the predecessor and the successor of v on γ . The

vertices v− and v+ do not belong to N X
j (Wr) (otherwise γ would cross walls which are orthogonal

to Wr ). Set J = J v,r , T = T v,r , and U = U v,r . Let s− and s+ be the elements of S v satisfying v− = s−.v
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and v+ = s+.v . Since v− and v+ do not belong to N X
j (Wr), we infer that s− and s+ do not belong

to J ∪ U .
Condition (b) implies existence of a path

s− = s0, s1, . . . , sm = s+

connecting s− to s+ in S v \ ( J ∪ U ). Put vk = sk.v for k = 0,1, . . . ,m. In particular v0 = v− and
vm = v+ . Notice that for each k = 1, . . . ,m the rank-2 residue containing v and stabilised by 〈sk−1, sk〉
is finite. Therefore, it contains a path γk connecting vk−1 to vk but avoiding v . Since sk−1 and sk are
not in J ∪U , we deduce from Lemma 2.6 that γk does not intersect N X

j (Wr), and that no wall crossed
by γk is orthogonal to Wr .

We now define a new path γ ′ ∈ G as follows. The path γ ′ coincides with γ everywhere, except
that the sub-path (v−, v, v+) is replaced by the concatenation γ1 · · ·γm . Notice that γ ′ is entirely con-
tained in Cv,r . Denoting the trace of γ ′ by (n′

1, . . . ,n′
k), it follows from the construction that we have

n′
i = 0 for all i < j and n′

j < n j . Hence the trace of γ ′ is smaller than the trace of γ , as desired. �
5. Characterisation of bipolar reflections

In this section we finally prove Theorem 1.2. We deduce it from Theorem 5.1 characterising bipolar
reflections, which is similar in spirit to Theorem 4.1. In order to state it we introduce the following
terminology.

Given two reflections r, t ∈ W , we say that r dominates t (or t is dominated by r) if the wall Wt

is contained in some tubular neighbourhood of Wr . In particular, t is dominated by r if ZW (t) is
virtually contained in ZW (r) (the converse is also true, but we do not need it). (We warn the reader
than the term dominating was used in [BH93] with a completely different meaning.)

Theorem 5.1. Let r ∈ W be a reflection. The following assertions are equivalent.

(i) r is bipolar.
(ii) r is nearly bipolar and does not dominate any reflection t �= r commuting with r.

(iii) The following three conditions are satisfied by every vertex v of X .
(a) T v,r is not a spherical irreducible component of S v .
(b) There is no non-empty spherical I ⊂ T v,r such that I ∪ T ⊥

v,r separates S v .

(c) If T v,r is spherical and an odd component O of S v is contained in T ⊥
v,r , then there are adjacent t ∈ O

and t′ ∈ S v \ (T v,r ∪ T ⊥
v,r).

Before providing the proof of Theorem 5.1, we apply it to the following.

Proof of Theorem 1.2. First assume that W is bipolar, i.e. for some Coxeter generating set S ⊂ W all
elements of S are bipolar. Given any irreducible subset T ⊂ S , there exists a reflection r ∈ W T with
full support, i.e. a reflection which is not contained in W T ′ for any proper subset T ′ ⊂ T . Let v0 denote
the identity vertex of X . Then we have T = T v0,r . Conditions (a), (b), and (c) of Theorem 1.2 follow
now directly from conditions (a), (b), and (c) of Theorem 5.1.

Conversely, assume that S ⊂ W satisfies conditions (a), (b), and (c) of Theorem 1.2. Since for any v ,
r the set T v,r is irreducible, these yield immediately conditions (a), (b) and (c) of Theorem 5.1. Hence
every reflection of W is bipolar and W is bipolar. �

We begin the proof of Theorem 5.1 with a (probably well-known) lemma which indicates the role
of the odd components.

Lemma 5.2. Let s ∈ S, let O be the odd component of s in S and let Ō be the set of all elements of S adjacent
to some element of O . Then the centraliser ZW (s) is contained in W Ō .
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Proof. Consider an element w of the centraliser ZW (s). Denote by v0 the identity vertex in X . By
[Deo82, Proposition 5.5] there is a sequence of vertices v0, v1, . . . , vn = w.v0, such that all vi are
adjacent to Ws and the pairs vi−1, vi lie in a rank-2 residue Ri intersecting Ws . Denote by si ∈ S the
type of the edge between vi and s.vi , in particular we have s0 = s. We can show inductively that if Ri
is of type {si−1, t} with si−1 and t odd-adjacent, then si equals t . If si−1 and t are not odd-adjacent,
then si equals si−1. It follows that w.v0 is connected to v0 by a path of edges all of whose types lie
in Ō . �
Proof of Theorem 5.1. We first provide the proof of the less involved equivalence (i) ⇔ (ii). Then we
give the proofs of (i) ⇒ (iii) and of (iii) ⇒ (ii).

(i) ⇒ (ii) Assume that r is bipolar. Then clearly r is nearly bipolar. Consider a reflection t �= r
commuting with r and let k ∈ N. Since r is bipolar, there is a vertex v lying outside N X

k (Wr). In
particular v ′ = t.v is another such vertex and moreover v and v ′ lie on the same side of Wr . Since r
is bipolar, there is a path joining v to v ′ outside N X

k (Wr). This path must cross Wt , hence Wt is not
contained in N X

k (Wr), as desired.
(ii) ⇒ (i) Assume now that r is nearly bipolar and does not dominate any reflection t �= r com-

muting with r. Let k ∈ N and let x, y be vertices of X outside of N X
k (Wr) not separated by Wr . Let

W1, . . . , Wn be all the walls orthogonal to Wr which are successively crossed by some minimal length
path joining x to y. For each i, since the reflection in W i is not dominated by r, we can pick a pair of
adjacent vertices zi , z′

i lying outside of N X
k (Wr) and such that zi (resp. z′

i ) lies on the same side of
Wi as x (resp. y). Denote additionally z′

0 = x and zn+1 = y. Since r is nearly bipolar, any two vertices
outside of N X

k (Wr) and not separated by any wall orthogonal to Wr may be connected by a path
lying entirely outside of N X

k (Wr). Thus for each i = 0, . . . ,n there is a path avoiding N X
k (Wr) and

connecting z′
i to zi+1. Concatenating all these paths we obtain a path avoiding N X

k (Wr) and joining
x to y. This shows that r is bipolar, as desired.

This ends the proof of equivalence (i) ⇔ (ii). It remains to prove the equivalence with (iii).
(i) ⇒ (iii) We assume that r is bipolar. Like in the proof of Theorem 4.1, condition (a) follows from

Lemma 3.5(ii).
We now prove condition (b), by contradiction. Suppose that there is a vertex v and non-empty

spherical I ⊂ T v,r such that I ∪ T ⊥
v,r separates some s, t ∈ S v in the Coxeter graph of S v . In particular,

the group 〈s, t〉 is infinite. We set T = T v,r .

Claim. The group 〈s, t〉 contains at most one reflection commuting with r. This reflection is different from r.

In order to establish the claim, we first notice that r does not belong to 〈s, t〉. Otherwise we would
have I ⊂ T ⊂ {s, t}, which is impossible since neither s nor t belongs to I and I is non-empty.

In particular, the rank-2 residue R stabilised by 〈s, t〉 and containing v lies entirely on one side
of Wr . Let v ′ be a vertex in R at a minimal distance to Wr (v ′ might be not uniquely determined)
and let s′ and t′ denote the two reflections of 〈s, t〉 whose walls are adjacent to v ′ .

If at most one of s′ , t′ commutes with r, then by Lemma 2.6 this is the only reflection of 〈s′, t′〉 =
〈s, t〉 commuting with r, as desired. On the other hand, if s′ and t′ both commute with r, then r
centralises 〈s, t〉. By [Deo82, Proposition 5.5], this implies that r belongs to the parabolic subgroup
〈{s, t}⊥〉. By definition, T ⊂ S v is smallest such that r is contained in W T . We infer that T is contained
in {s, t}⊥ , or equivalently that s and t lie in T ⊥ . This contradiction ends the proof of the claim.

In view of the claim, we are in a position to apply Lemma 4.2(ii). It provides for each k ∈ N a
sequence of reflections s = r0, . . . , rn = t such that for all i = 1, . . . ,n the wall Wri−1 intersects Wri

and for all i = 1, . . . ,n − 1, the wall Wri avoids N X
k (Wr). We now consider the W -action on the

Bass–Serre tree associated with the splitting of W over W I∪T ⊥ as an amalgamated product of two
factors containing s and t , respectively. We obtain a contradiction using the exact same arguments as
in the proof of Theorem 4.1((i) ⇒ (ii)).

It remains to prove condition (c), which we also do by contradiction. Assume that there is a vertex
v of X such that T = T v,r is spherical, an odd component O of S v is contained in T ⊥ and no pair of
elements of O and S v \ T ∪ T ⊥ , respectively, is adjacent. Denote by Ō the union of O with the set of
all elements of S v adjacent to an element of O . Pick any s ∈ O .



P.-E. Caprace, P. Przytycki / Journal of Algebra 338 (2011) 35–55 49
By Lemma 5.2, the centraliser ZW (s) is contained in W Ō , which is in our case contained in
W T ∪T ⊥ . Then, since T is spherical, the group ZW (s) ∩ W T ⊥ has finite index in ZW (s). On the other
hand, clearly W T ⊥ is contained in ZW (r). Therefore, we deduce that ZW (s) is virtually contained in
ZW (r), which implies that r dominates s. A contradiction.

(iii) ⇒ (ii) By Lemma 2.1, the set I = J v,r ∪ (T v,r ∩ U v,r) is spherical, for any vertex v of X . Hence,
by Theorem 4.1, conditions (a) and (b) imply that r is nearly bipolar.

It remains to prove that there is no reflection t �= r dominated by r, which we do by contradiction.
If there is such a t , then let v be a vertex adjacent to Wt at maximal possible distance from the
wall Wr . We again set J = J v,r , T = T v,r , and U = U v,r . We have t ∈ U ⊂ S v . To proceed we need the
following general remark. Its part (i) requires Lemma 2.6.

Remark. Let s ∈ S v be adjacent to t and let m denote the order of st . Put v ′ = (st)� m
2 �.v .

(i) For s /∈ J ∪ U we have d(v ′, Wr) > d(v, Wr) and v ′ is adjacent to Wt .
(ii) For s ∈ U we have d(v ′, Wr) = d(v, Wr). Moreover the canonical bijections between S v , S and

S v ′ yield identifications T v ′,r ∼= T , J v ′,r ∼= J , and U v ′,r ∼= U . We denote by s0 the element of S
corresponding to s ∈ S v , i.e. such that v and s.v share an edge of type s0. If m is odd, then v ′ is
adjacent to Wt by an edge of type s0.

The proof splits now into two cases.

Case t ∈ T ⊥ . In this case we have T = J ∪ (U ∩ T ), since otherwise v is adjacent to another vertex
adjacent to Wt farther away from Wr . Hence T is spherical by Lemma 2.1.

By part (i) of the Remark, t is not adjacent to any element outside T ∪ T ⊥ . In particular, every
element s odd-adjacent to t lies in T ⊥ . Then, by part (ii) of the Remark, we can replace v with v ′ ,
which replaces in the free Coxeter graph the vertex corresponding to t with the one corresponding
to s. Hence the whole odd component of s is contained in T ⊥ and none of its elements is adjacent to
a vertex outside T ∪ T ⊥ . This contradicts condition (c).

Case t /∈ T ⊥. In this case we set

I = J ∪ (T ∩ U ) \ {t}.

By Lemma 2.1 the set I ∪ {t} is spherical, in particular so is I . Observe that I ∪ {t} ∪ T ⊥ does not
equal the whole S v . Indeed, otherwise we would have S v = T ∪ T ⊥ with T = I ∪ {t} spherical which
contradicts condition (a).

By condition (b) the set I ∪ T ⊥ does not separate S v . Therefore, there exists some s ∈ S v \ (I ∪ T ⊥)

adjacent to t . By part (i) of the Remark this leads to a contradiction. �
We finish this section with an example of a Coxeter group all of whose reflections are nearly

bipolar, but not all are bipolar.

Example 5.3. Let (W , S) be the Coxeter group associated with the Coxeter graph represented in Fig. 3,
where each solid edge is labeled by the Coxeter number 4, while each dotted edge is labeled by the
Coxeter number 2. In particular, the pair {s2, s6} is non-spherical.

It follows easily from Theorem 4.1 that every reflection of W is nearly bipolar. On the other hand,
put r = s1 and let v0 be the identity vertex. Then we have T v0,r = {s1}. The singleton {s6} is an odd
component contained in T ⊥

v0,r . But s6 is not adjacent to the only element outside T v0,r ∪ T ⊥
v0,r , which

is s2. This violates condition (c) of Theorem 5.1(iii). Hence s1 is not bipolar.
We can see explicitly that Proposition 3.6 fails for W . Consider the subset S ′ = {s′

1, . . . , s′
6} ⊂ W

defined by s′
i = si for all i < 6 and s′

6 = s1s6. Clearly S ′ is a generating set consisting of involutions.
Moreover each pair {s′

i, s′
j} ⊂ S ′ satisfies the same relations as the corresponding pair {si, s j} ⊂ S .
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Fig. 3. Coxeter graph for Example 5.3.

Therefore the mapping si �→ s′
i extends to a well-defined surjective homomorphism α : W → W . Since

W is finitely generated and residually finite, it is Hopfian by [Mal56]. Thus α is an automorphism
and S ′ is a Coxeter generating set. But s′

6 is not a reflection, which explains why the conclusions of
Proposition 3.6 do not hold in this example.

6. Pseudo-manifold Coxeter groups

The goal of this section is to prove the following.

Proposition 6.1. Let W be a pseudo-manifold Coxeter group. Then W is bipolar.

Pseudo-manifold Coxeter groups were considered by Charney and Davis in [CD00], where they
proved that these groups are strongly rigid [CD00, Theorem 5.10]. In view of Proposition 6.1 we get
strong rigidity of PM Coxeter groups also as a special case of Theorem 1.4.

In order to present the definition of PM Coxeter groups, we first need to introduce some additional
terminology. Given a Coxeter generating set S of a Coxeter group W , the nerve of S is the simplicial
complex associated to the poset consisting of all non-empty spherical subsets of S . In other words,
the vertex set of the nerve is S and a non-empty set T of vertices spans a simplex if and only if T is
spherical. In particular, the 1-skeleton of the nerve is the Coxeter graph. A pseudo-manifold is a lo-
cally finite simplicial complex L such that any two maximal simplices have the same dimension n > 0,
and any (n − 1)-simplex is a face of exactly two maximal simplices. Two n-dimensional simplices are
called adjacent if they share a face of codimension one. A gallery is a sequence of n-dimensional
simplices such that any two consecutive ones are adjacent. A pseudo-manifold L is called gallery-
connected if any two n-dimensional simplices can be connected by a gallery. Moreover, L is called
orientable if one can choose orientations for the n-simplices so that their sum is a (possibly infinite)
cycle.

Following [CD00] (see also Section 13.3 in [Dav08]), we say that a Coxeter group W is a pseudo-
manifold Coxeter group (or, shortly, a PM Coxeter group), if it has a Coxeter generating set S whose
nerve L is a finite, orientable, gallery-connected pseudo-manifold.

In the proof of Proposition 6.1 we shall need a subsidiary fact, which is due to Mike Davis. Let L
be a pseudo-manifold and σ ⊂ L be a simplex. By O (σ , L), we denote the open star of σ in L, i.e. the
set

O (σ , L) =
⋃

σ ′⊇σ

int
(
σ ′).
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Two top-dimensional simplices in L are called σ -connected if they can be connected by a gallery in
L \ O (σ , L).

Lemma 6.2. Let L be a finite, gallery-connected, orientable pseudo-manifold. For any simplex σ ⊂ L, any two
top-dimensional simplices which do not contain σ are σ -connected.

This is proved in Lemma 13.3.11 in [Dav08] in the special case when σ is a vertex. The proof in
the general case is identical and we omit it.

Proof of Proposition 6.1. Let S be a Coxeter generating set for W whose nerve is an orientable
gallery-connected pseudo-manifold. We shall verify that S satisfies the three conditions (a), (b) and
(c) from Theorem 1.2, from which the desired conclusion will then follow.

Let T ⊂ S be a non-empty irreducible component and J ⊂ S \ T be a maximal spherical subset of
S \ T . Since the nerve of S is a pseudo-manifold, it follows that J is contained in at least two maximal
spherical subsets of S . It follows that T cannot be spherical. This proves that (a) must hold.

Let now T ⊂ S be an irreducible spherical subset and O be an odd component of S contained
in T ⊥ . Given t ∈ O , let J be a maximal spherical subset of S \ T containing t . If J ⊂ T ⊥ , then J is
a spherical subset of S which is contained in a unique maximal spherical subset, namely T ∪ J . This
is impossible since the nerve of S is a pseudo-manifold. Thus there is some t′ ∈ J \ T ⊥ . Since J is
spherical, the vertex t′ is adjacent to t . Thus (c) must hold as well.

Finally, let I ⊂ T be subsets of S such that I is spherical non-empty and T is irreducible. Let L be
the nerve of S . We identify the spherical subsets of S with the corresponding simplices in L. Notice
that a maximal spherical subset σ of S is contained in L \ O (I, L) if and only if it does not contain I .

We next observe that for any two distinct adjacent maximal spherical subsets σ , σ ′ of S not
containing I , the intersection σ ∩ σ ′ does not lie in the closure of O (I, L). Indeed, otherwise I ∪
(σ ∩ σ ′) is a spherical subset containing σ ∩ σ ′ properly. Since σ and σ ′ are the only spherical
subsets of S containing properly σ ∩ σ ′ , we must have σ = I ∪ (σ ∩σ ′) or σ ′ = I ∪ (σ ∩σ ′), which is
absurd.

Let now v, v ′ ∈ S \ (I ∪ T ⊥). We claim that since L is a pseudo-manifold, we can find two maximal
spherical subsets of S , say σ and σ ′ , containing v and v ′ respectively and such that σ and σ ′ do not
contain I . Indeed, otherwise, if all maximal spherical subsets of S containing, say, v contain also I ,
then the boundary of O (v, L) (i.e. the link of v) is contractible. On the other hand, since L is a
pseudomanifold, the link must be a pseudo-manifold itself. This contradiction justifies the claim.

By Lemma 6.2, it follows that σ and σ ′ are joined by a gallery σ = σ0, σ1, . . . , σk = σ ′ which
is entirely contained in L \ O (I, L). By the above observation, for each i ∈ {1, . . . ,k}, there is some
vi ∈ σi−1 ∩ σi which does not belong to the closure of O (I, L). In particular, vi does not lie in I ∪ T ⊥ .
Since vi−1 and vi are both contained in σi−1, they are adjacent. Therefore v, v0, . . . , vk, v ′ is a path
connecting v to v ′ in S \ (I ∪ T ⊥). Thus condition (b) holds, as desired. �
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Appendix A. Poles

This appendix is aimed at a discussion of the notion of a pole in a general framework.

A.1. Poles

Let H be a subset of a metric space X . A pole of X relative to H (or of the pair (G, H)) is a chain
of the form U1 ⊃ U2 ⊃ · · · , where Uk is a non-empty connected component of X \ N X

k (H).
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A different but equivalent definition of a pole is as follows. Let H denote the collection of subsets
of X at bounded Hausdorff distance from H and let P(X) be the set of all subsets of X . A pole of
X relative to H (or of the pair (X, H)) is a function U : H → P(X) satisfying the following two
conditions, where H1, H2 ∈ H :

• U (H1) is a non-empty connected component of X \ H1.
• If H1 ⊂ H2, then U (H1) ⊃ U (H2).

This equivalent definition makes the following remark obvious.

Remark A.1. Let H1, H2 ⊂ X be at finite Hausdorff distance. Then we can identify the poles of (X, H1)

with the poles of (X, H2).

We now prove that poles are quasi-isometry invariants.

Lemma A.2. Let X and Y be two path-metric spaces and let f : X → Y be a quasi-isometry. Then there is a
natural correspondence between the poles of (X, H) and the poles of (Y , f (H)).

In order to prove Lemma A.2 we will establish the following.

Sublemma A.3. Let f : X → Y be a quasi-isometry between a metric space X and a path-metric space Y . Then
for each k ∈ N there is K ∈ N such that for each connected component α of X \ N X

K (H), there is a connected
component α′ of Y \ N Y

k ( f (H)) satisfying

f (α) ⊂ α′.

Before we provide the proof of Sublemma A.3, we show how to use it in the proof of the lemma.

Proof of Lemma A.2. Let V 1 ⊃ V 2 ⊃ · · · be a pole of the pair (X, H). We define its corresponding
pole U1 ⊃ U2 ⊃ · · · of (Y , f (H)). By Sublemma A.3, for each k ∈ N there is a component Uk of Y \
N Y

k ( f (H)) which contains the f -image of some V K (k) . Since all V K (k) intersect, for k′ > k we have
Uk ⊃ Uk′ . Thus U1 ⊃ U2 ⊃ · · · is a pole. Hence we have a mapping f ′ from the collection of poles of
(X, H) to the collection of poles of (Y , f (H)). We now prove that f ′ is a bijection.

Let g : Y → X be a quasi-isometry which is quasi-inverse to f . Let g′ be the map induced by
g which maps the collection of poles of (Y , f (H)) to the collection of poles of (X, g ◦ f (H)). The
sets H and g ◦ f (H) are at finite Hausdorff distance and by Remark A.1 we can identify the poles of
(X, g ◦ f (H)) with the poles of (X, H). We leave it to the reader to verify that f ′ ◦ g′ and g′ ◦ f ′ are
the identity maps. Thus f ′ is a bijection. �

It remains to prove the sublemma.

Proof of Sublemma A.3. We need the following terminology. Given k ∈ N, a sequence (x0, . . . , xn)

of points in X is called a k-path if the distance between any two consecutive xi ’s is at most k.
A subset Z ⊂ X is called k-connected if any two elements of Z may be joined by some k-path
entirely contained in Z .

Let c and L be the additive and the multiplicative constants of the quasi-isometry f . Put K =
L(k + L + 2c). Then f (X \ N X

K (H)) is contained in Y \ N Y
k+L+c( f (H)).

Let α be a connected component of X \ N X
K (H). The quasi-isometry f maps α, which is 1-con-

nected, to an (L + c)-connected subset of Y \ N Y
k+L+c( f (H)). Any pair of points at distance L + c in Y \

N Y
k+L+c( f (H)) is connected by a path in Y of length at most 2(L +c) (here we use the hypothesis that

Y is a path-metric space). This path has to lie in Y \ N Y
k ( f (H)). Hence the points of any connected

component α of X \ N X
K (H) are mapped into a single connected component of Y \ N Y

k ( f (H)). �
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We conclude with the following alternative characterisation of poles. A subset of X is called H-
essential if it is not contained in any tubular neighbourhood of H .

Lemma A.4.

(i) Suppose that the number of poles of (X, H) is finite and equals n. Then for k sufficiently large the number
of connected H-essential components of the space X \ N X

k (H) is exactly n.
(ii) On the other hand, if the number of poles of (X, H) is infinite, then for k sufficiently large the number of

connected H-essential components of the space X \ N X
k (H) is arbitrarily large.

We leave the proof as an exercise to the reader.

A.2. Poles as topological ends

It is natural to ask if the poles of (X, H) may be identified with the topological ends of a certain
space. Below we construct such a topological space XĤ which, as a set, coincides with the disjoint
union of X together with one additional point, denoted by ∞. The topology on XĤ is defined in the
following way. First, we declare that the embedding X → XĤ is continuous and open. Second, we
define neighbourhoods of ∞ to be complements of those subsets of X which intersect every tubular
neighbourhood of H in a bounded subset. In particular, if H is bounded, then ∞ is an isolated point.

If X is locally compact, there is an alternative approach. For each k ∈ N there is a natural continu-
ous embedding

N̂ X
k (H) → XĤ ,

where we denote by Ẑ the one-point compactification of a space Z . In view of this, the space XĤ
can be alternatively defined as the direct limit of the injective system given by the natural continuous

embeddings {N̂ X
k (H) → N̂ X

k′ (H)}k<k′ .

Lemma A.5. For any compact subset Q ⊂ XĤ , the intersection X ∩ Q is contained in some tubular neighbour-
hood of H.

Proof. Let Q ⊂ XĤ be a subset which contains a sequence (xk) of X such that xk does not belong to
N X

k (H). Clearly (xk) is unbounded in X . Moreover, the complement of the set {xk}k is a neighbour-
hood of ∞, so that (xk) does not sub-converge to ∞ in XĤ . This implies that Q is not compact. �

Lemma A.5 implies that a sequence (xk) in X converges to ∞ if and only if it leaves every bounded
subset of X but remains in some tubular neighbourhood of H . The lemma also immediately implies
the following.

Proposition A.6. There is a natural correspondence between the poles of (X, H) and the topological ends
of XĤ .

A.3. Poles in groups

Let now G be a finitely generated group and let X denote the Cayley graph associated with some
finite generating set for G . We view X as a path-metric space with edges of length 1. We identify G
with the 0-skeleton X (0) of X . Let H be a subset of G .

We recall that if H is a subgroup, then e(G, H) denotes the number of relative ends of G with
respect to H , which are the topological ends of the quotient space H \ X . This invariant was first
introduced by Houghton [Hou74] and Scott [Sco77] and is independent of the choice of a generating
set for G .
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On the other hand, we define a pole (in X ) of G relative to H (or of the pair (G, H)) to be a
pole of (X, H). By Lemma A.2, there is a correspondence between the collections of poles of the pair
(G, H) determined by different generating sets. Hence we can speak about the number of poles of
(G, H), which we denote by ẽ(G, H). Here H is allowed to be any subset of G .

By Proposition A.6, we have a correspondence between the poles of (X, H) and the ends of the
space XĤ . In particular, by Lemma A.2, there is natural correspondence between the ends of XĤ and
the ends of Y Ĥ , where Y is the Cayley graph of G with respect to a different generating set.

Our notation ẽ(G, H) for the number of poles coincides with the notation of Kropholler and
Roller [KR89]. Their definition goes as follows.

Let PG denote the set of all subsets of G and FH G the collection of all subsets of G contained in
H F for some finite subset F of G . Notice that an element of FH G is nothing but a subset of G lying
in some tubular neighbourhood of H in the Cayley graph. We view PG and FH G as vector spaces
over the field F2 of order two.

The action of G on itself by right multiplication preserves both PG and FH G; they can thus be
viewed as right G-modules over F2. Kropholler and Roller set

ẽ(G, H) = dimF2(PG/FH G)G . (2)

See also Geoghegan [Geo08, Section IV.14] for a similar definition of this value, which is called there
the number of filtered ends. We end Appendix A by establishing the following.

Lemma A.7. The number of poles of (G, H) coincides with the value ẽ(G, H) defined by the formula (2).

Proof. If the number of poles of (G, H) is at least n, then there is k ∈ N such that X \ N X
k (H) has at

least n connected H-essential components (see Lemma A.4). The set of vertices of each such compo-
nent determines a non-trivial vector of (PG/FH G)G . Moreover, the collection of all these vectors is
linearly independent. This implies ẽ(G, H) � n.

Conversely, let v1, . . . , vn be linearly independent vectors in the space (PG/FH G)G . Let V i be
the subset of X (0) determined by vi . Denote by ∂V i the set of all the vertices outside V i which are
adjacent to some vertex in V i . Then all ∂V i are at finite Hausdorff distance from H . Choose k ∈ N so
that N X

k (H) contains all ∂V i . Then each vi lies in the linear subspace of (PG/FH G)G determined
by the connected H-essential components of X \ N X

k (H). Hence n is bounded by the number of
connected H-essential components of X \ N X

k (H), which equals at most ẽ(G, H). �
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