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Abstract. We prove that Coxeter groups are biautomatic. From our construc-
tion of the biautomatic structure it follows that uniform lattices in isometry groups
of buildings are biautomatic.

1. Introduction

Coxeter groups were introduced in 1934 as abstractions of reflection groups [Cox34].
They play a fundamental role in, among others, the theory of Lie groups and alge-
bras, the representation theory, the geometry of Riemannian symmetric spaces, the
topology of aspherical manifolds. Consequently, Coxeter groups are important in
other areas of science, e.g. physics, chemistry, and biology. They are foundational
objects for buildings — highly symmetric spaces having deep connections with al-
gebraic groups. On the other hand, multiple existing ways of constructing them,
make Coxeter groups a source of numerous important, often very exotic, examples
of groups. Being studied thoroughly over decades, many important algebraic, geo-
metric, and algorithmic properties of Coxeter groups have been established. Among
few most important basic open problems concerning Coxeter groups, there has been
the question of biautomaticity.

The notion of biautomaticity was introduced in the classical book by Epstein–
Cannon–Holt–Levy–Paterson–Thurston [ECH+92] as a very powerful means of un-
derstanding a group. Having biautomaticity established for a finitely generated
group, very roughly speaking, we know how to move, using the generators, between
any two given elements of the group. Moreover, the resulting paths are determined
by a finite state automaton, and are stable in the sense that changing slightly the
endpoints does not perturb the paths too much. Such a property should be thought
of as a strong form of controlling the structure of the group.

Main Theorem. Every Coxeter group is biautomatic.

Many partial results in this direction have been obtained in the past. Davis–
Shapiro [DS91] showed a conjecturally weaker feature of all Coxeter groups — the
automaticity, under the assumption of the Parallel Wall Theorem, and showed that
their language does not provide a biautomatic structure. Brink–Howlett [BH93]
proved the Parallel Wall Theorem and hence established the automaticity of all
Coxeter groups using the same language as [DS91]. Biautomaticity has been estab-
lished for a few subclasses of Coxeter groups in: [ECH+92] (Euclidean and Gromov
hyperbolic), [NR98, NR03] (right-angled), [Bah06, CM05] (no Euclidean reflection
triangles), [Cap09] (relatively hyperbolic), [MOP22] (2-dimensional).

Furthermore, there is an intensive research effort in deeper understanding lan-
guages in Coxeter groups, for example the Davis–Shapiro–Brink–Howlett language,
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see e.g. [Cas94, DH16, Yau21, PY22] and references therein. This is primarily in-
spired by computations in representation theory, and leads to theoretical results
concerning algorithmic aspects of the languages, as well as to explicit computations
and software implementations of corresponding algorithms.

For our proof of the Main Theorem we introduce a new geodesic language: the
‘voracious’ language V . Besides providing a biautomatic structure, it has other
interesting features compared to the previously considered languages, e.g. to the
aforementioned Davis–Shapiro–Brink–Howlett language. In particular, V is pre-
served by the automorphisms of a Coxeter group preserving its given generating set.
An immediate consequence of this property, together with a result by Świątkowski
[Świ06, Thm 6.7] on geodesic languages for Coxeter groups, is the following.

Main Corollary. Uniform lattices in isometry groups of buildings are biautomatic.

A uniform lattice here means a group acting properly and cocompactly on the
Davis realisation of a building associated to a Coxeter group. Previously, the biau-
tomaticity of such lattices has been shown in few particular cases in: [ECH+92,CS95]
(Gromov hyperbolic and some Euclidean), [NR98, Dav98] (right-angled), [GS90,
GS91,Nos00,Świ06] (some Euclidean cases), [MOP22] (2-dimensional).

Organisation. In Section 2 we recall the notions of a Coxeter group and a biau-
tomatic structure, and we define the voracious projection and language V used to
prove the Main Theorem. In Section 3, we show that the voracious projection is
well defined. In Section 4, we prove that the distance between any element of W
and its voracious projection is bounded above by a constant depending only on W .
We verify parts (ii) and (iii) of the definition of biautomaticity in Section 5. In
Section 6, we prove the regularity of V .

Acknowledgement. We thank Adrien Abgrall, Pierre-Emmanuel Caprace, Chris
Hruska, Jingyin Huang, and Zachary Munro for useful discussions. This paper was
written during our stay at the Institut Henri Poincaré in Paris, which we thank for
the hospitality.

2. Preliminaries

We follow the notation adopted in [MOP22]. A Coxeter group W of rank k is
a group generated by a finite set S of size k subject only to relations s2 = 1 for
s ∈ S and (st)mst = 1 for s 6= t ∈ S, where mst = mts ∈ {2, 3, . . . ,∞}. Here the
convention is that mst =∞ means that we do not impose a relation between s and t.

Consider an arbitrary group G with a finite symmetric generating set S. For
g ∈ G, let `(g) denote the word length of g, that is, the minimal number n such that
g = s1 · · · sn with si ∈ S for i = 1, . . . , n. Let S∗ denote the set of all words over S.
If v ∈ S∗ is a word of length n, then by v(i) we denote the prefix of v of length i for
i = 1, . . . , n − 1, and the word v itself for i ≥ n. For 1 ≤ i ≤ j ≤ n, by v(i, j) we
denote the subword of v(j) obtained by removing v(i − 1). For a word v ∈ S∗, by
`(v) we denote the word length of the group element that v represents.

We say that G is biautomatic if there exists a regular language L ⊆ S∗ (see
Section 6 for the definition of regularity) and constants C,C ′ satisfying the following
conditions.

(i) For each g ∈ G, there is a word in L representing g.
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(ii) For each s ∈ S and g, g′ ∈ G with g′ = gs, and each v, v′ ∈ L representing
g, g′, for all i ≥ 1 we have `

(
v(i)−1v′(i)

)
≤ C.

(iii) For each s ∈ S and g, g′ ∈ G with g′ = sg, and each v, v′ ∈ L representing
g, g′, for all i ≥ 1 we have `

(
v(i)−1s−1v′(i)

)
≤ C ′.

This definition agrees with the characterisation of biautomaticity in [ECH+92,
Lem 2.5.5], which is equivalent to the original definition of biautomaticity if in
condition (i) the set of words in L representing each g ∈ G is finite [Amr21, Thm 6].
Conditions (ii) and (iii) are called the ‘fellow traveller property’.

To define the voracious language, we need the following. By X1 we denote the
Cayley graph of W , that is, the graph with vertex set X0 = W and with edges (of
length 1) joining each g ∈ W with gs, for s ∈ S. We consider the action of W on
X0 = W by left multiplication. This induces an action of W on X1. For r ∈ W a
conjugate of an element of S, the wall Wr of r is the fixed point set of r in X1. We
call r the reflection inWr (for fixedWr such r is unique). Each wallW separates X1

into two components, called half-spaces, and a geodesic edge-path in X1 intersectsW
at most once [Ron09, Lem 2.5]. Consequently, the distance in X1 between g, h ∈ W
is the number of walls separating g and h.

For g ∈ W , letW(g) be the set of wallsW in X1 that separate g from the identity
element id ∈ W and such that there is no wall W ′ separating g from W .

We consider the partial order � on W , where p � g if p lies on a geodesic in X1

from id to g. Equivalently, there is no wall separating p from both id and g.
For g ∈ W , let P (g) ⊂ W be the set of elements p ∈ W satisfying p � g and such

that there is no wall in W(g) separating p from id. Note that P (g) is nonempty,
since id ∈ P (g). In Section 3 we will prove the following.

Theorem 2.1. For every Coxeter group W, and each g ∈ W, the set P (g) contains
a largest element with respect to �.

This largest element will be called the voracious projection p(g) of g. Note that
p(g) 6= g for g 6= id.

We define the voracious language V ⊂ S∗ for W inductively in the following way.
Let v ∈ S∗ be a word of length n. If v represents the identity element of W , then
v ∈ V if and only if v is the empty word. Otherwise, let g ∈ W be the group element
represented by v, let p be the voracious projection of g, and let w = p−1g ∈ W and
k = `(w). We declare v ∈ V if and only if v(n−k) ∈ V and v(n−k+1, n) represents w.
In particular, v(n − k) represents p. It follows inductively that n = `(g). Such a
language is called geodesic. Note that the voracious language satisfies part (i) of the
definition of biautomaticity, and the set of words in V representing each g ∈ G is
finite.

The paths in W formed by the words in the voracious language are inspired
by the normal cube paths for CAT(0) cube complexes [NR98, §3] used to prove the
biautomaticity for right-angled (or, more generally, cocompactly cubulated) Coxeter
groups [NR03]. Namely, the voracious projection p(g) of g is ‘so’ voracious that the
geodesics from g to p(g) intersect all the walls inW(g) (even if it means intersecting
simultaneously other walls).

We will prove the Main Theorem with L the voracious language V . It is clear
from the definition that the voracious language is preserved by the automorphisms
of W stabilising S, allowing us to apply [Świ06, Thm 6.7] on geodesic languages to
obtain the Main Corollary concerning buildings.
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3. Voracious projection is well defined

Definition 3.1. Let r, q ∈ W be reflections. Distinct walls Wr,Wq intersect, if Wr

is not contained in a half-space for Wq (this relation is symmetric). Equivalently,
〈r, q〉 is a finite group. We say that such r, q are sharp-angled, if r and q do not
commute and {r, q} is conjugate into S. In particular, there is a component of
X1 \ (Wr ∪ Wq) whose intersection F with X0 is a fundamental domain for the
action of 〈r, q〉 on X0. We call such F a geometric fundamental domain for 〈r, q〉.

Lemma 3.2. Suppose that reflections r, q ∈ W are sharp-angled, and that g ∈ W
lies in a geometric fundamental domain for 〈r, q〉. Assume that there is a wall U
separating g from Wr or from Wq. Let W ′ be a wall distinct from Wr,Wq that is the
translate of Wr or Wq under an element of 〈r, q〉. Then there is a wall U ′ separating
g from W ′.

Proof. Consider the group W0 < W generated by the 3 reflections: r, q, and the
reflection in U . By [Dye90], with the rank bound established in his Corollary 3.11
(see also [Deo89] or [Tit88, Prop 3]), we have that W0 can be identified with a
Coxeter group of rank 3 such that

• the reflections of W0 are reflections of W , and
• the connected components of the complement in X1 of the walls of W0 cor-

respond (equivariantly) to the elements of W0, and
• pairs of such components with intersecting closure in X1 correspond to pairs

of elements of W0 differing by a generator of W0.
Let g0 be the element of W0 corresponding to the above component containing g.
Then r, q are still sharp-angled in W0, with g0 in a geometric fundamental domain
for 〈r, q〉. Thus to prove the lemma, it suffices to prove it for W of rank 3.

We can assume S = {r, q, s}, where id lies in the same geometric fundamental
domain for 〈r, q〉 as g. Since U is disjoint from Wr or Wq, the group W is infinite,
so we can assume without loss of generality msr ≥ 3. If msq ≥ 3, or msq = 2 and

• msr =∞, or
• msr ≥ 4 and W ′ 6= qWr, or
• msr = 3 and W ′ /∈ {qWr, rWq, qrWq},

then Ws is disjoint from W ′. Since g is separated from Wr or Wq by U , we have
g 6= id. Thus U ′ =Ws separates g from W ′, as desired. See Figure 1(a).

If msq = 2,msr <∞, and W ′ = qWr, then let U ′ = sWr. Note that U ′ is disjoint
from W ′ since they are related by the point symmetry sq. Furthermore, since g is
separated fromWr orWq by U , and msr <∞, we have g 6= id, s. Thus U ′ separates
g from W ′, see Figure 1(b).

If msq = 2,msr = 3, and W ′ = qrWq, then let U ′ = srWq. Again U ′ is disjoint
from W ′ since they are related by the point symmetry sq. Furthermore, since g is
separated fromWr orWq by U , we have g 6= id, s, sr. Thus U ′ separates g fromW ′,
see Figure 1(c).

It remains to consider the case where msq = 2,msr = 3, and W ′ = rWq. Suppose
first the that wall srqWr is disjoint from W ′, see Figure 2(a). Then we can set
U ′ = srqWr, since g 6= id, s, sr, srq. Second, suppose that srqWr intersects W ′.
Then let U ′ = srqrWq, see Figure 2(b). Note that U ′ is disjoint from W ′ since they
are related by the point symmetry that is the composition of the reflections in srWq

and in Wr. If U ′ does not separate g from W ′, then g ∈ {id, s, sr, srq, srqr, srqrs}.
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Figure 1. Proof of Lemma 3.2.
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Figure 2. Proof of Lemma 3.2, the case msq = 2,msr = 3, and W ′ = rWq.

Since g is separated from Wr or Wq by U , we have that g = srqrs is separated
from Wq by U = srqrWs. But the reflection r maps Wq and U to W ′ and srqWr,
contradicting the assumption that the latter walls intersect. �

Proof of Theorem 2.1. It suffices to show that for each p0, pn ∈ P (g) there is p ∈
P (g) satisfying p0 � p � pn. Let (p0, p1, . . . , pn) be the vertices of a geodesic edge-
path π in X1 from p0 to pn. Note that π does not intersect the walls in W(g),
since p0, pn lie both in their half-spaces containing id. Furthermore, for any wall W
containing id, g in the same half-space, we have that p0, pn lie in that half-space,
and so do all pi. Consequently, pi � g, and so pi ∈ P (g).

We will now modify π and replace it by another embedded edge-path (possibly
not geodesic) from p0 to pn with vertices in P (g), so that there is no pi with pi−1 �
pi � pi+1. Then we will be able to choose p to be the largest pi with respect to �.

If pi−1 � pi � pi+1, then let Wr,Wq be the walls separating pi from pi−1, pi+1,
respectively. Since pi−1 � g, pi+1 � g, the walls Wr,Wq intersect. Moreover, if r
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and q do not commute, then r, q are sharp-angled, with g in a geometric fundamental
domain for 〈r, q〉. We claim that all the elements of R = 〈r, q〉(pi) lie in P (g).

By [Ron09, Thm 2.9], we have that all the elements of R lie on geodesics from pi
to g, and hence they are � g. Since pi−1, pi+1 are both in P (g), we have that
Wr,Wq /∈ W(g). It remains to justify that each remaining wall W ′ that is the
translate of Wr or Wq under an element of 〈r, q〉 does not belong to W(g). We
can thus assume that r and q do not commute, since otherwise there is no such
remaining W ′. Since Wr /∈ W(g), there is a wall U separating g from Wr. By
Lemma 3.2, there is a wall U ′ separating g from W ′, justifying the claim.

We now replace the subpath (pi−1, pi, pi+1) of π by the second edge-path with
vertices in R from pi−1 to pi+1. This decreases the complexity of π defined as the
tuple (n1, n2, . . . , n`(g)), where nj is the number of pi in π with `(pi) = j, with
lexicographic order. After possibly removing a subpath, we can assume that the
new edge-path is embedded. After finitely many such modifications, we obtain the
desired path. �

4. Bounding the voracious projection

Proposition 4.1. Let W be a Coxeter group. There exists a constant C = C(W )
such that for each g ∈ W, we have `

(
p(g)−1g

)
≤ C, where p(g) is the voracious

projection of g.

In the proof we need the following Parallel Wall Theorem.

Theorem 4.2 ([BH93, Thm 2.8]). Let W be a Coxeter group. There exists a con-
stant Q = Q(W ) such that for each g ∈ W and a wall W at distance > Q from g
in X1, there is a wall W ′ separating g from W.

In particular, for g ∈ W , each of the walls in W(g) is at distance ≤ Q from g.

Lemma 4.3. Let W be a Coxeter group. There exists a constant C0 = C0(W ) such
that for each g ∈ W and each W ∈ W(g), there is h ∈ W satisfying h � g, at
distance ≤ C0 from g in X1, and separated from g by W.

Proof. For g ∈ W, and W ∈ W(g), among elements h ∈ W satisfying h � g, and
separated from g by W , consider h with minimal distance C0 from g in X1. Our
goal is to bound C0 uniformly in g and W . We can assume h = id. Furthermore,
by the minimality assumption, we have W =Ws for s ∈ S.

Note that for t ∈ S \{s}, the wallWt does not separate id from g, since otherwise
we could replace id by t contradicting the minimality assumption.

We now use the Davis complex X of W, which is obtained from X1 by adding
Euclidean polyhedra of edge length one spanned on all the cosets of finite 〈T 〉 for
T ⊆ S (see [Dav08, Prop 7.3.4]). By [Mou88] (see also [Bow95]), we have that X is
CAT(0). The fixed point sets of the reflections of W in X are still called walls, and
they still separate X.

Let α be the minimal angle that can be formed between an intersection M of a
wall with one such polyhedron σ, and a geodesic in σ joining a vertex of σ (all of
which lie outside M) to a point of M . Let γ be the CAT(0) geodesic in X between id
and g. Since X and X1 are quasi-isometric, we need to find a uniform bound for the
length c of γ. By Theorem 4.2, there is a uniform bound d for the CAT(0) distance
from g toWs in X. Let σ be the first polyhedron of X with interior intersected by γ,
and let M = σ ∩Ws. Note that γ intersects M (transversally at a point m) since γ
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is disjoint from all Wt, for t ∈ S \ {s}. The length c2 of the second component of
γ \ {m} is ≥ c− diam(σ).

Since X is CAT(0), by [BH99, II.1.7(5)], we have c2 sinα ≤ d, and so c ≤
diam(σ) + d/ sinα, as desired. �

Proof of Proposition 4.1. By Theorem 4.2, there exists a constant N = N(W ) such
that eachW(g) has size≤ N . For each g ∈ W , applying at mostN times Lemma 4.3,
there is h ∈ W satisfying h � g, at distance ≤ C = C0N from g, and separated
from g by all W ∈ W(g). Consequently, h ∈ P (g) and thus h � p(g) � g, implying
`
(
p(g)−1g

)
≤ C, as desired. �

5. Fellow traveller property

In this section we verify parts (ii) and (iii) of the definition of biautomaticity.

Lemma 5.1. Suppose that for g, g′ ∈ W , we have g′ � g. Then p(g′) � p(g).

Proof. It suffices to prove p(g′) ∈ P (g). We have p(g′) � g′ � g. If W ∈ W(g), and
W separates g′ from id, then we have W ∈ W(g′). Consequently, W separates p(g′)
from g′, and hence from g. �

Corollary 5.2. The voracious language satisfies part (ii) of the definition of biau-
tomaticity with C replaced by 2C from Proposition 4.1.

Proof. Let g ∈ W and let s ∈ S with `(gs) < `(g). Let g′ = gs. Since p(g) � g′ � g,
iterating Lemma 5.1, we obtain

· · · � p2(g′) � p2(g) � p(g′) � p(g) � g′ � g,

where pk is defined inductively as p0(g) = g and pk(g) = p(pk−1(g)) for k > 0.
Let v, v′ ∈ V represent g, gs, respectively. Let 1 ≤ i ≤ `(g), and let h, h′ ∈ W be

the elements represented by v(i), v′(i), respectively. We then have `(pk(g′)) ≤ i ≤
`(pk(g)), or `(pk+1(g)) ≤ i ≤ `(pk(g′)), for some k ≥ 0. Furthermore, by Propo-
sition 4.1, we have that both h, h′ are at distance ≤ C from pk+1(g) (respectively,
pk+1(g′)) in X1, and so `(h−1h′) ≤ 2C. �

Lemma 5.3. The voracious language satisfies part (iii) of the definition of biauto-
maticity.

Proof of Lemma 5.3. Let C ′ = 2C(C + 2Q) + 2Q, where Q is the constant from
Theorem 4.2 and C is the constant from Proposition 4.1.

We prove part (iii) of the definition of biautomaticity, with constant C ′, induc-
tively on `(g), where we assume without loss of generality `(sg) > `(g). If g = id,
then there is nothing to prove. Suppose now g 6= id. Let v, v′ ∈ V represent g, sg,
respectively.

Assume firstWs /∈ W(sg). Then we haveW(sg) = sW(g). Consequently, p(sg) =
sp(g). In particular, the words v′

(
`(p(sg))

)
and sv

(
`(p(g))

)
represent the same

element sp(g) of W . Then part (iii) of the definition of biautomaticity for g follows
inductively from part (iii) for p(g), for i < `(p(sg)), or from the definition of C, for
i ≥ `(p(sg)).

Second, assumeWs ∈ W(sg). Then p(sg) and id lie in the same half-space forWs.
We claim that for any element h � p(sg), there is no wallW ′ separating h fromWs.
Indeed, otherwise a geodesic from sg to id passing through h would intersect W ′
twice. By the claim and Theorem 4.2, we have that h is at distance ≤ 2Q from sh,
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which holds in particular for h = p(sg). By the triangle inequality, sg and sp(sg)
are at distance ≤ C + 2Q in X1, and hence so are g and p(sg). By Corollary 5.2,
for i < `(p(sg)), we have that the elements of W represented by v(i), v′(i) are at
distance ≤ 2C(C + 2Q) in X1. Setting h above to be the element of W represented
by v′(i), we obtain by the triangle inequality `

(
v(i)−1sv′(i)

)
≤ 2C(C + 2Q) + 2Q,

as desired. For i ≥ `(p(sg)), we have obviously `
(
v(i)−1sv′(i)

)
≤ 2C as well. �

6. Regularity

A finite state automaton over S (or, shortly, FSA) is a finite directed graph Γ
with:

• vertex set A, edge set E ⊆ A× A,
• an edge labeling φ : E → P(S∗) (the power set of S∗), where each φ(e) is

finite,
• a start state a0 ∈ A, and
• a distinguished set of accept states A∞ ⊆ A.

A word v ∈ S∗ is accepted by Γ if there exists a decomposition v = v0 · · · vm into
subwords, and a directed edge-path e0 · · · em in Γ such that e0 has initial vertex a0,
em has terminal vertex in A∞, and vi ∈ φ(ei) for each i = 0, . . . ,m. A subset of S∗

is a regular language if it is the set of accepted words for some FSA over S.

Proposition 6.1. The voracious language is regular.

To prove Proposition 6.1, we define an FSA Γ over S that will accept exactly the
voracious language.

Definition 6.2. Let U be the set of walls that are not separated from id by any
other wall, which is finite by Theorem 4.2. The vertex set A of our FSA Γ is the
power set P(U). Let a0 = ∅ ⊂ U , and A∞ = A.

To define the edges from a ∈ A, suppose that w ∈ W satisfies:
(a) w is not separated from id by any wall in a, and
(b) w is separated from each wall in a by another wall, and
(c) p(w) = id.
We then put en edge e in E between a and w−1W(w) with φ(e) consisting of all the
minimal length words representing w.

Proof of Proposition 6.1. Let Γ be the FSA from Definition 6.2, and let V be the
voracious language. We argue inductively on j ≥ 0 that, among the words v ∈ S∗
of length ≤ j,

• Γ accepts exactly the words in V , and
• the accept state of each such word v is g−1W(g), where v represents g ∈ W.

This is true for j = 0 by our choice of a0. Now let n > 0 and suppose that we have
verified the inductive hypothesis for all j < n. Let v be a word in S∗ of length n.

Suppose first that v is a word in V representing g ∈ W . Let p = p(g), w = p−1g.
By the definition of V , we have v

(
`(p)

)
∈ V . Moreover, v

(
`(p) + 1, n

)
represents w.

By the inductive hypothesis, Γ accepts v
(
`(p)

)
. Furthermore, v

(
`(p)

)
labels some

directed edge-path in Γ from a0 to p−1W(p). We will now show that Γ has an edge e
from a = p−1W(p) to g−1W(g), with φ(e) consisting of all minimal length words
representing w. To do that, we verify the conditions for w from Definition 6.2.
Condition (a) follows from the fact that p � g and so g is not separated from p by



COXETER GROUPS ARE BIAUTOMATIC 9

any wall in W(p). Since p ∈ P (g), we have that W(p) is disjoint from W(g), which
implies condition (b) and g−1W(g) = w−1W(w). Consequently, p(g)p(w) ∈ P (g)
implying p(w) = id, which is condition (c).

Conversely, let v be accepted by Γ and suppose that v = v0 · · · vm as in the
definition of an accepted word. By the inductive hypothesis, the word v0 · · · vm−1
belongs to V and represents p ∈ W such that em starts at a = p−1W(p). By the
definition of the edges, vm is a minimal length word representing an element w
satisfying the conditions (a,b,c). By condition (a), we have p � g for g = pw.
By condition (b), we have w−1W(w) = g−1W(g). Thus by condition (c), we have
p = p(g). Consequently, v ∈ V , as desired. �
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