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ARCS INTERSECTING AT MOST ONCE

Piotr Przytycki

Abstract. We prove that on a punctured oriented surface with Euler characteristic
χ < 0, the maximal cardinality of a set of essential simple arcs that are pairwise non-
homotopic and intersecting at most once is 2|χ|(|χ|+1). This gives a cubic estimate
in |χ| for a set of curves pairwise intersecting at most once on a closed surface. We
also give polynomial estimates in |χ| for sets of arcs and curves pairwise intersecting
a uniformly bounded number of times. Finally, we prove that on a punctured sphere
the maximal cardinality of a set of arcs starting and ending at specified punctures
and pairwise intersecting at most once is 1

2 |χ|(|χ| + 1).

1 Introduction

Let S be a connected oriented punctured surface of finite type with Euler charac-
teristic χ < 0. We start with the following observation.

Remark 1.1. The maximal cardinality of a set of essential simple arcs on S that
are pairwise non-homotopic and disjoint is 3|χ|. This follows from the fact that every
such set can be extended to form an ideal triangulation of the surface. Fixing any
hyperbolic metric, the surface S has area 2π|χ|, while an ideal triangle has area
π. Thus there are 2|χ| triangles, and these have 6|χ| sides among which each arc
appears twice.

The main result of the article is a similar formula for arcs pairwise intersecting
at most once.

Theorem 1.2. The maximal cardinality of a set A of essential simple arcs on S
that are pairwise non-homotopic and intersecting at most once is

f(|χ|) = 2|χ|(|χ| + 1).

Example 1.3. This bound is sharp. The surface S can be cut along disjoint arcs into
an ideal polygon P . Since the Euler characteristic of P equals 1, the number of arcs
we have cut along equals 1 − χ = |χ| + 1, so that P is a (2|χ| + 2)–gon. We consider
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the union A of the set of all diagonals of P , which has cardinality (2|χ|+2)(2|χ|−1)
2 ,

with the set of |χ| + 1 arcs we have cut along. In total,

|A| =
(2|χ| + 2)(2|χ| − 1)

2
+ (|χ| + 1) = (|χ| + 1)

(
(2|χ| − 1) + 1

)
.

We deduce a (non-sharp) cubic bound on curves pairwise intersecting at most
once. Let g be the genus of S. We now allow S to be closed. Let f(·) be the function
from Theorem 1.2.

Theorem 1.4. The cardinality of a set C of nonperipheral essential simple closed
curves on S that are pairwise non-homotopic and intersecting at most once is at
most

g · (2f(|χ|) + 1
)

+ |χ| − 1.

The question about the maximal cardinality of C was asked by Farb and
Leininger. Apart from the intrinsic beauty of the problem, one motivation to com-
pute this value is that it is one more than the dimension of the 1-curve complex, see
[Suo07, Quest 1]. This complex is constructed by taking the flag span of the graph
whose vertices correspond to curves on S and edges join the vertices corresponding
to curves intersecting at most once, as opposed to disjoint curves for the usual curve
complex. The 1-curve complex might have better properties than the usual one (like
the Rips complex versus the Cayley complex of a hyperbolic group), in particular
it might be contractible [Suo07, Quest 2] as opposed to the usual curve complex
[Har86]. Another interpretation of the condition on C, this time in the terms of the
mapping class group of S, is that Dehn twists around the curves in C pairwise either
commute or satisfy the braid relation.

For S a torus, C consists of at most 3 curves. For S a closed genus 2 surface, the
maximal cardinality of C is 12, as proved by Malestein, Rivin, and Theran [MRT14].
They also gave examples of C with size quadratic in |χ| for arbitrary surfaces. Note
that these sets are not the sets of systoles (shortest curves) for any hyperbolic metric
as it was shown by Parlier that sizes of such sets grow subquadratically [Par13].
Until our work, the best upper bound for the cardinality of C was only exponential
[MRT14]. Farb and Leininger obtained the lower quadratic and upper exponential
bounds as well [Lei11].

The question of Farb and Leininger is a particular case of a problem studied by
Juvan, Malnič and Mohar [JMM96], who allowed the curves to intersect at most
a fixed number of times k. They proved that there exists an upper bound on the
cardinality of C if the surface is fixed. We establish upper bounds polynomial in |χ|
for the sets of either curves or arcs, where for the arcs we give also lower bounds of
the same degree. We do not have, even for arcs and k = 2, a guess of an explicit
formula.

Theorem 1.5. The maximal cardinality of a set A of essential simple arcs on
S that are pairwise non-homotopic and intersecting at most k times grows as a
polynomial of degree k + 1 in |χ|.
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Corollary 1.6. The maximal cardinality of a set C of nonperipheral essential sim-
ple closed curves on S that are pairwise non-homotopic and intersecting at most k
times grows at most as a polynomial of degree k2 + k + 1 in |χ|.

Note that in Corollary 1.6 the upper bound does not match Aougab’s recent
lower bound, which is polynomial of degree �k+1

2 �+1 [Aou14], improving the degree
k
4 from [JMM96]. Thus in Corollary 1.6, similarly as in Theorem 1.4, there is still
room for improvement. Our upper bound is also not efficient if we fix the surface
and vary k, compared to [JMM96].

Finally, we prove the following variation of Theorem 1.2.

Theorem 1.7. Let S be a punctured sphere, and let p, p′ be its (not necessarily
distinct) punctures. Then the maximal cardinality of a set A of essential simple arcs
on S that are starting at p and ending at p′, and pairwise intersecting at most once
is

1
2
|χ|(|χ| + 1).

Organisation. The outline of the proof of Theorem 1.2 and the deduction of
Theorem 1.4 is given in Sect. 2. The two key lemmas are proved in Sect. 3. In Sect. 4
we prove Theorem 1.5 and Corollary 1.6. We prove Theorem 1.7 in Sect. 5.

2 Nibs

In this section, we give the proof of Theorem 1.2, up to two lemmas postponed
to Sect. 3. Then we deduce Theorem 1.4. A rough idea is that we generalise the
argument of Remark 1.1. We replace disjoint triangles of the triangulation with
nibs, which have also area π but might (self-)intersect. However, we have a linear
bound of the number of nibs at a point (Proposition 2.2).

As in the introduction, S is an oriented punctured surface with Euler character-
istic χ < 0. An arc is a map (−∞, ∞) → S that converges to punctures at infinities.
An arc is simple if it is embedded and essential if it is not homotopic into a punc-
ture neighbourhood (called a cusp). Unless stated otherwise, all arcs are simple and
essential and sets of arcs consist of arcs that are pairwise non-homotopic. Assume
that we have a set A of arcs on S. We fix an arbitrary complete hyperbolic metric
on S and assume that all arcs in A are realised as geodesics. In particular they are
pairwise in minimal position, that is minimising the number of intersection points
in their homotopy classes.

Definition 2.1. A tip τ of A is a pair (α, β) of oriented arcs in A starting at the
same puncture and consecutive. That is to say that there is no other arc in A issuing
from this puncture in the clockwise oriented cusp sector from α to β. We allow β = α
or β = α−1.

Let τ = (α, β) be a tip and let Nτ be an open abstract ideal hyperbolic triangle
with vertices a, t, b. The tip τ determines a unique local isometry ντ : Nτ → S sending
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Figure 1: A tip, its nib and a slit

ta to α, tb to β and mapping a neighbourhood of t to the clockwise oriented cusp
sector from α to β. We call ντ the nib of τ .

Proposition 2.2. Suppose that the arcs in A pairwise intersect at most once. Let
ν : N =

⊔
τ Nτ → S be the disjoint union of all the nibs ντ . Then for each s ∈ S the

preimage ν−1(s) consists of at most 2(|χ| + 1) points.

Here are the ingredients of the proof of Proposition 2.2.

Lemma 2.3. Suppose that we have a partition of the set of punctures of S into P1

and P2. The maximal cardinality of a set of pairwise non-homotopic disjoint essential
simple arcs that start in P1 and end in P2 is 2|χ|.
Proof. Without loss of generality we can assume that the set of arcs is maximal.
Then all the complementary components are ideal squares, so that each of them has
area 2π. Since the area of S is 2π|χ|, there are |χ| such squares. Each square has 4
sides and each arc is a side of two squares. Thus there are 2|χ| arcs. ��
Definition 2.4. Let n ∈ Nτ be a point in the domain of a nib. The slit at n is the
restriction of ντ to the geodesic ray in Nτ joining t with n. See Figure 1.

By a geodesic ray we will always mean a geodesic joining a point at infinity or
a puncture with a point in the interior of H2 or S. We postpone the proofs of the
following two lemmas to Sect. 3.

Lemma 2.5. A slit is an embedding.

Actually, it can be proved that if α and β are disjoint, then the entire nib embeds.
Otherwise it is at worst 2 to 1. We emphasise that in Lemma 2.5 we do not assume
that the arcs in A pairwise intersect at most once.

Lemma 2.6. Suppose that the arcs in A pairwise intersect at most once. If for dis-
tinct n, n′ ∈ N we have ν(n) = ν(n′), then the images in S of the slits at n, n′ are
disjoint except at the endpoint.
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Proof of Proposition 2.2. Let S′ be the surface obtained from S by introducing an
additional puncture at s. Then the absolute value of the Euler characteristic of S′

is |χ| + 1. Consider the collection of all slits at preimages of s, and let S be the set
of corresponding arcs on S′. The arcs in S are simple by Lemma 2.5 and pairwise
disjoint by Lemma 2.6. The set of punctures of S′ decomposes into P1 = {s} and
P2, which are the punctures inherited from the punctures of S. Each arc in S joins
P1 with P2, hence by Lemma 2.3 we have |S| ≤ 2(|χ| + 1). ��
Proof of Theorem 1.2. Each arc in A is the first arc of exactly two tips, depending
on its orientation, so the area of N equals 2|A|π. The area of S equals 2π|χ|. By
Proposition 2.2, the map ν : N → S is at most 2(|χ| + 1) to 1, so we have

2|A|π ≤ 2π|χ| · 2(|χ| + 1). ��
Question 2.7. Example 1.3 does not exploit all configurations of 2|χ|(|χ| + 1) arcs
pairwise intersecting at most once. An example of another configuration is obtained
by viewing the four-punctured sphere S as the boundary of a tetrahedron T with
vertices removed. Consider the following set of 12 arcs on S. The first six arcs are
the six edges of T . Each of the other six arcs is obtained by taking the midpoint
m of one of the edges and concatenating at m the medians of the two faces of T
containing m.

What can one say about the space of all configurations of 2|χ|(|χ| + 1) arcs
pairwise intersecting at most once?

We now deduce Theorem 1.4. A closed curve on S is simple if it is embedded,
essential if it is homotopically nontrivial, and nonperipheral if it is not homotopic
into a cusp. In what follows, unless stated otherwise, all curves are closed, simple,
essential, nonperipheral and sets of curves consist of curves that are pairwise non-
homotopic. We fix an arbitrary hyperbolic metric on S and realise all curves as
geodesics, so that they are pairwise in minimal position.

Proof of Theorem 1.4. Note that if all the curves in C are separating, then they are
disjoint. The theorem follows since a set of disjoint separating curves has cardinality
bounded by |χ| − 1. Henceforth we will assume that there is a non-separating curve
in C.

We prove the bound by induction on g assuming χ is fixed. If g = 0, then all
curves are separating, a case which we have already discussed. If g > 0, choose a
non-separating curve α in C. Then C − {α} partitions into the set Cdis of curves
disjoint from α and the set Cint of curves intersecting α. Let S′ be the punctured
surface obtained from S by cutting along α. Note that the Euler characteristic of S′

equals the Euler characteristic χ of S and the genus of S′ is one less than that of S.
By the inductive hypothesis we have |Cdis| ≤ (g − 1)(2f(|χ|) + 1) + |χ| − 1.

Each curve in Cint is cut to an arc on S′. Two different curves cut to the same arc
differ by a power of the Dehn twist D along α. Since curves differing by Dl intersect
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in l points, there might be at most 2 such curves in Cint for each arc on S′. Thus by
Theorem 1.2 we have |Cint| ≤ 2f(|χ|). Hence

|C| = 1 + |Cdis| + |Cint| ≤ 1 + (g − 1)(2f(|χ|) + 1) + |χ| − 1 + 2f(|χ|) =
= g · (2f(|χ|) + 1) + |χ| − 1. ��

3 Slits

In this section we complete the proof of Theorem 1.2, by proving Lemmas 2.5 and 2.6
about slits.

Proof of Lemma 2.5. We identify the universal cover of S with the hyperbolic plane
H2 and π1S with the deck transformation group. Orient the circle at infinity. For
points x, x′ at infinity we will use the notation [x, x′] for the oriented sub-interval
of the circle at infinity, and notation xx′ for the geodesic arc inside H2. Choose a
lift of ντ to H2, and identify its image with Nτ . Extend the slit to a ray γ joining t
with the side ab of Nτ . We need to show that the interior of γ embeds in S.

Suppose that γ intersects its translate g(γ) in a point O for some nontrivial
g ∈ π1S. Without loss of generality assume that g(O) is farther from g(t) than O on
g(γ). Let q be the point at infinity that is the endpoint of the geodesic extension of
g(γ). See Figure 2. We analyse where are the fixed point(s) of g. Since O and g(O)
lie in that order on g(t)q, in the case where g is hyperbolic both fixed points lie on
one side of g(t)q, and on that side the repelling point separates the attracting point
from g(t). Hence t also has to lie on that side, between the repelling point and g(t).
Without loss of generality assume that t, g(t), q are cyclically ordered. We conclude
that the fixed points lie in the interval [q, t]. Moreover, g restricts on the interval

Figure 2: Here we must take x = a, since b lies on the wrong side of g(t)q
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[g(t), q] to an increasing function into [g(t), t]. The same holds in the case where g
is parabolic.

There is x ∈ {a, b} that lies in the interval [g(t), q]. Then the points t, g(t), x, g(x)
lie at the circle at infinity in that cyclic order. This means that the projection of
the arc tx to S self-intersects, which is a contradiction with the fact that it belongs
to A. ��

In the proof of Lemma 2.6 we will need the following. We parametrise a ray
(−∞, 0] → S so that the limit at −∞ is a puncture and the image of 0 is a point on
S.

Sublemma 3.1. Let H, H ′ : (−∞, 0] × [−1, 1] be homotopies of rays on S, such that

• H(0, ·) = H ′(0, ·),
• arcs H(·, y) and H ′(·, y) are in minimal position on the surface S − H(0, y) for

y = −1, 1,
• rays H(·, y) and H ′(·, y) are embedded for y ∈ [−1, 1].

Then the arcs H(·, −1) and H ′(·, −1) on S −H(0, −1) intersect the same number of
times as the arcs H(·, 1) and H ′(·, 1) on S − H(0, 1).

Proof. We identify (up to homotopy) the surfaces S − H(0, y) for y ∈ [−1, 1] by
pushing the puncture H(0, y) = H ′(0, y). The last condition, saying that all the rays
are embedded, ensures that the arcs H(·, y) (respectively H ′(·, y)) on S − H(0, y)
can be identified. The assertion follows from the fact that the number of intersection
points between arcs in minimal position for y = −1, 1 is a homotopy invariant. ��
Proof of Lemma 2.6. Let τ, τ ′ be tips with distinct n ∈ Nτ , n′ ∈ Nτ ′ and ν(n) =
ν(n′). Note that by the requirement in Definition 2.1 of a tip that α and β are
consecutive, the slits at n, n′ are distinct rays on S. Choose lifts of Nτ , Nτ ′ to H2

so that n is identified with n′. Extend the slits at n, n′ to geodesic rays γ, γ′ from
t, t′ to ab, a′b′. Without loss of generality suppose that the interval (t, t′) at infinity
contains the endpoints of the geodesic extensions of γ, γ′.

First consider the case where there are x ∈ {a, b}, x′ ∈ {a′, b′} that lie in (t, t′)
so that x′ < x, see the left side of Figure 3. Then the geodesic arcs tx, t′x′ intersect
at a point m. Let H(·, ·) be the projection to S of the homotopy of geodesic rays
joining tn to tm ending in the geodesic segment nm. By Lemma 2.5, these rays
embed in S. Similarly let H ′(·, ·) be the projection of the homotopy joining t′n to
t′m. Since the rays are geodesic, the arcs H(·, y), H ′(·, y) are in minimal position on
S − H(0, y). By Sublemma 3.1, if the slits at n, n′ intersect outside the endpoint,
then the projections to S of tx and t′x′ intersect at least once outside the projection
of m, hence at least twice in total, which is a contradiction with the definition of A.

The other case is that a, b′ ∈ [t′, t] and b ≤ a′ ∈ (t, t′), see the right side of
Figure 3. If a = t′ or b′ = t, then we have also the second equality, since α and β
were required to be consecutive in Definition 2.1 of a tip. In this situation, let m be
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Figure 3: Instance of the first case with x = a, x′ = a′ on the left, and the second case on
the right

any point on the geodesic arc tt′. Construct H, H ′ as before. By Sublemma 3.1, if the
slits at n, n′ intersect outside the endpoint, then the projections to S of tm and t′m
intersect outside the projection of m. This contradicts the fact that the projection
of tt′ = ta is in A, hence simple.

Thus we can assume t′ < a < b′ < t. Then the geodesic arcs ta, t′b′ intersect. We
denote their intersection point by m and apply Sublemma 3.1 as in the first case.

��
The same proof gives also the following.

Lemma 3.2. Suppose that the arcs in A pairwise intersect at most k ≥ 1 times. If
for distinct n, n′ ∈ N we have ν(n) = ν(n′), then the images in S of slits at n, n′

intersect at most k − 1 times outside the endpoint.

Question 3.3. A slit can be viewed as an interpolation between the arcs ta and tb
of a nib. Is there an alternate proof of Lemmas 2.5 and 2.6 using convexity of the
distance function?

4 Multiple Intersections

In this section we prove Theorem 1.5 and Corollary 1.6, starting with the lower
bound in Theorem 1.5.

Example 4.1. Consider a twice punctured sphere with punctures p, p′ viewed as a
cylinder. Let S be the surface obtained by putting on each of k+1 concentric circles
separating p from p′ a set of |χ|

k+1 punctures. Let α be an arc joining p to p′ crossing
each of these concentric circles exactly once. Consider the set A of arcs joining p to
p′ crossing each of these concentric circles exactly once, and disjoint from α. Arcs in
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A pairwise intersect at most k times, since there might be at most one intersection
point in each sub-cylinder bounded by consecutive concentric circles. Each arc in A
is determined by the locations of its intersection points with concentric circles, for
each of which there are |χ|

k+1 + 1 possibilities. Moreover, these locations determine
the arc uniquely, except that an arc homotopic to α will be given two times, by the
two extreme sets of locations. Thus

|A| =
( |χ|

k + 1
+ 1

)k+1

− 1.

Proof of Theorem 1.5. By Example 4.1 it remains to prove the upper bound. We
prove it by induction on the number k of allowed intersections. Case k = 0 is
discussed in Remark 1.1. The inductive step from k = 0 to k = 1 has been performed
in the proof of Theorem 1.2, and we now generalise it to any k. Suppose that we have
proved that the maximal cardinality of a set of arcs on S pairwise intersecting at
most k ≥ 0 times is ≤ C(k)|χ|k+1 for some constant C(k) depending only on k. Let
A be a set of arcs on S pairwise intersecting at most k + 1 times. They give rise to
2|A| tips. Let s ∈ S. By Lemmas 2.5 and 3.2 the slits at the preimage ν−1(s) in the
union of all the nibs form a set of simple arcs on S − s pairwise intersecting at most
k times. Thus by the inductive assumption the map ν is at most C(k)(|χ| + 1)k+1

to 1. Hence the area 2|A|π of the domain of ν is bounded by

2π|χ| · C(k)(|χ| + 1)k+1 ≤ 2πC(k + 1)|χ|k+2,

for some C(k + 1), as desired. ��

Proof of Corollary 1.6. We orient all the curves. We cut the surface along an arbi-
trary curve α ∈ C, possibly separating. The surface S−α is either connected of Euler
characteristic χ or consists of two components with Euler characteristics χ1, χ2 sat-
isfying χ1 + χ2 = χ, hence |χ1|k+1 + |χ2|k+1 < |χ|k+1.

Let Cint denote the set of curves in C intersecting α. Each curve in Cint splits
into ≤ k oriented arcs on S − α. These arcs pairwise intersect at most k times,
hence by Theorem 1.5 there is at most C(k)|χ|k+1 of them. Each curve in Cint can
be reconstructed from an ordered k′-tuple of k′ ≤ k of these arcs, so this gives
≤ k

(
C(k)|χ|k+1

)k possibilities, where the factor k comes from varying by a power
Dl of the Dehn twist D around α with l ≤ k. (Note that we do not need to consider
partial twists since the k′-tuple of arcs is ordered.) Altogether this yields |Cint| ≤
C ′(k)|χ|k(k+1).

To bound |C − Cint|, we need to continue performing the cutting procedure. The
number of cutting steps is bounded by the cardinality of the maximal set of disjoint
curves on S, which equals |χ| − 1 + g < 2|χ|. Thus we obtain a polynomial bound of
degree 1 + k(k + 1) in |χ| for |C|. ��
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5 Punctured Spheres

In this section we prove Theorem 1.7. We start with giving the lower bounds. The
construction will be different depending on whether the ending puncture p′ is the
same or distinct from the starting puncture p.

Example 5.1. Let S be a punctured sphere. We construct a set of 1
2 |χ|(|χ|+1) arcs

on S that are starting and ending at a specified puncture p, pairwise intersecting at
most once.

View S as a punctured disc with the outer boundary corresponding to p and
other |χ| + 1 punctures lying on a circle c parallel to the outer boundary, dividing
c into |χ| + 1 segments. Up to homotopy, there are |χ| + 1 rays joining the centre
of the disc with p and intersecting c only once, at |χ| + 1 possible segments of c.
Consider

(|χ|+1
2

)
arcs obtained by merging a pair of such rays. Up to homotopy they

pairwise intersect at most once, at the centre of the disc.

Example 5.2. Let S be a punctured sphere. We construct a set A of 1
2 |χ|(|χ| + 1)

arcs on S that are starting at a specified puncture p and ending at a distinct specified
puncture p′, pairwise intersecting at most once.

Consider a cylinder with boundary components corresponding to p, p′, and place
other |χ| punctures on an arc α joining p with p′ dividing it into an ordered set of
|χ| + 1 segments. There are

(|χ|+1
2

)
choices of a pair α1 < α2 of such segments. For

each such pair we construct the following arc in A. We start at the starting point of
α and follow it on its left avoiding the punctures until we find ourselves on the level
of α1. Then we cross α1 and change to the right side of α. We stay on the right side
until we reach α2, where we switch again to the left side and continue till the ending
point of α. It is easy to verify that arcs in A pairwise intersect at most once.

In the proof of the upper bound in Theorem 1.7 we need the following.

Lemma 5.3. Suppose that we have l points on the unit circle in R2 and a set I
of pairwise intersecting chords between them. We allow degenerate chords that are
single points. Then |I| ≤ l.

Up to considering separately the (easy) case where there is a degenerate chord,
this lemma follows from the linear case of the thrackle conjecture, proved by Paul
Erdös [Erd46]. This was pointed out to us by Sergey Norin. Here we give a proof
found by Marcin Sabok.

Proof. We label the points cyclically by the set {0, . . . , l−1} ⊂ N and assign to each
chord the interval of R with corresponding endpoints. We keep the notation I for
this set of intervals. By Helly’s Theorem, there is a point i ∈ {0, . . . , l−1} belonging
to all the intervals in I. The centres of the intervals in I lie in the intersection of
1
2N with [ i

2 , i + l−1−i
2 ], which has cardinality l. Thus if |I| ≥ l + 1, then by the

pigeon principle two intervals in I have the same centres. But this means that their
corresponding chords are disjoint. ��
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Proof of Theorem 1.7. By Examples 5.1 and 5.2 it suffices to prove the upper bound,
which we do by induction. We first treat the case where the arcs in A are required
to start and end at the same puncture p.

For |χ| = 1 the theorem is trivial as on the thrice-punctured sphere there is only
one essential arc joining p with itself. Suppose that we have proved the theorem for
smaller |χ|, in particular for the surface S̄ obtained from S by forgetting a puncture
r distinct from p. For an arc α ∈ A on S let ᾱ be the corresponding possibly non-
essential arc on S̄. Let Ā denote the union of all essential ᾱ. We will now analyse to
what extent this map A → Ā is well-defined and injective. To this end, we consider
the following exceptional arcs in A, and an associated collection I of rays on S̄ from
p to r and arcs from p to p passing through r.

The first instance of an exceptional arc α is when ᾱ is non-essential. This happens
if and only if α separates r from all other punctures. We include in I the unique ray
on S̄ joining p with r disjoint from α.

Secondly, observe that if ᾱ = ᾱ′ for α �= α′, then since α and α′ intersect at
most once, they are in fact disjoint (up to homotopy) and bound a bigon with one
puncture r. There is no third arc α′′ ∈ A with ᾱ′′ = ᾱ, since at most one component
of S − α ∪ α′ ∪ α′′ contains r. We call such α and α′ exceptional as well. We include
in I the unique essential arc on S̄ joining p with p and passing through r that is
disjoint from both α and α′.

Summarising, the map A → Ā is well-defined and injective outside the set of
exceptional arcs of cardinality |I|, where we avoid only one exceptional arc from
each pair bounding a bigon with puncture r. By the inductive assumption we have
|Ā| ≤ 1

2(|χ| − 1)|χ|, so it suffices to prove |I| ≤ |χ|.
Let H be the set of arcs on S obtained from I by reintroducing the puncture

r and thus splitting some arcs of I in half. Note that if some halves coincide, we
keep only one copy in H. Observe that the arcs in H are disjoint, since if we had
two intersecting halves of two arcs in I, then we could choose two corresponding
exceptional arcs intersecting at least twice. See the left side of Figure 4. Arcs in H
connect r with p, hence their complementary components are punctured bigons, thus
of area ≥ 2π. Hence there are at most |χ| such components and thus |H| ≤ |χ|. We
now intersect H with a small circle centred at r. Each arc in I is determined by a
pair of points or a point of this intersection, and we connect them by a chord. These
chords satisfy the hypothesis of Lemma 5.3, since otherwise we could choose two cor-
responding exceptional arcs intersecting at least twice. See the right side of Figure 4.
By Lemma 5.3 we have |I| ≤ |χ|, which finishes the proof in the case where p′ = p.

We now consider the case where p′ �= p. The argument is the same, with the
following modifications. The puncture r that we are forgetting is required to be dis-
tinct from both p and p′. All ᾱ are essential, since they connect different punctures.
However, it is no longer true that if ᾱ = ᾱ′ for α �= α′, then α and α′ are disjoint.
Nevertheless, it is easy to see that they may intersect only in the configuration illus-
trated in Figure 5. In that case all arcs in A are disjoint from arc α′′ from Figure 5,
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Figure 4: On the left why the halves of the arcs in I are disjoint, on the right why I satisfies
the hypothesis of Lemma 5.3

Figure 5: The unique configuration of three arcs with common ᾱ

thus without loss of generality we can assume α′′ ∈ A. We then have ᾱ′′ = ᾱ. More-
over, there are no other arcs in A with the same ᾱ. We call both α, α′ exceptional
and associate to them the bigons that they bound with α′′ containing r.

We construct I and H as before. However, as pointed out to us by one of the
referees, among the complementary components of H, except for the punctured
bigons, there is a square, possibly with no punctures, hence also only of area ≥ 2π.
Thus we can only conclude with |H| ≤ |χ| + 1. We again intersect H with a small
circle centred at r. We assign chords to arcs in I as before. Note that the points
of the intersection of the circle with H, depending on whether the arc in H joins r
to p or p′, are partitioned in two families Q, Q′ of consecutive points. We consider
an additional chord joining the two outermost points of Q. Since each of the other
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chords connects a point in Q to a point in Q′, it intersects the additional chord. Hence
the chords satisfy the hypothesis of Lemma 5.3. Thus |I|+1 ≤ |χ|+1, as desired. ��
Question 5.4. Is there a way to make the proof of Theorem 1.2 work to prove
Theorem 1.7 or vice-versa?
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