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Chapter I

Introduction

1 Simplicial nonpositive curvature

Systolic complexes and systolic groups were introduced by T. Januszkiewicz
and J. Świątkowski in [6] and independently by F. Haglund in [4]. Systolic
complexes are simply–connected simplicial complexes satisfying certain link
conditions (see Definition 3.2). Some of their properties are very similar to
the properties of CAT(0) (i.e. metrically nonpositively curved or satisfying
the Alexandrov condition) metric spaces, therefore one calls them complexes
of simplicial nonpositive curvature. On the other hand, all systolic groups
(which are groups acting on systolic complexes properly and cocompactly)
satisfy some exotic properties that make them in dimension≥ 3 different from
the previously studied classes of groups. There is a variety of examples, since
systolic groups can have arbitrarily large virtual cohomological dimension [6].

Let us first list the similarities between systolic complexes and groups
and CAT(0) metric spaces and groups. First we want to point out that a
simplicial complex of dimension 2 is systolic iff it is CAT(0) with respect to
the piecewise Euclidean metric, for which edges have length 1 (this makes
the triangles equilateral). In higher dimension, however, there are examples
of a group G acting by simplicial automorphisms on systolic complex X, for
which there does not exist a G–invariant piecewise Euclidean metric on X,
which is CAT(0). It is not known if all systolic groups act properly and
cocompactly on some CAT(0) spaces.

One of the most important similarities is that systolic complexes are
contractible (Theorem 4.1(1) in [6]). This can be thought of as an ana-
logue of the Cartan–Hadamard theorem in the systolic setting. Moreover,

3



any simplicially nonpositively curved complex of groups is developable [6].
This should be compared with the theorem that all metrically nonpositively
curved complexes of groups are developable (Theorem 4.17, Chapter III.C in
[1]). Januszkiewicz and Świątkowski established the previously mentioned
properties of systolic complexes by introducing and exploiting the notion of
convexity. They have also found a particularly nice system of geodesics (so
called bicombing), which turns out to satisfy the so called fellow traveler
property. In particular they proved that systolic groups are biautomatic [6].
This implies, for example, that free abelian subgroups (which in fact must
have rank ≤ 2, see below) of systolic groups are undistorted.

This direction was pursued by T. Elsner in [2] and [3]. In [2] Elsner
proved that for any group H ∼= Z2 acting properly on a systolic complex X
there is an associated so called flat systolic plane in X, which is H–invariant.
In CAT(0) setting this is known as the Flat Torus Theorem (Theorem 7.1,
Chapter II.7 of [1]). Elsner also proved that for any H ∼= Z there exists a
1–skeleton geodesic, invariant under some finite index subgroup of H (see
[3]).

Our dissertation, which concerns the fixed point theorem for finite au-
tomorphism groups, is a part of the program of seeking analogies between
systolic complexes and CAT(0) metric spaces. See Section 2 for the overview
of the results in the dissertation.

It should be mentioned that systolic complexes are not far from being
Gromov hyperbolic. In fact any systolic complex with no flat systolic planes
is Gromov hyperbolic, as shown in [10], and independently in [2]. For exam-
ple, if one puts a slightly stronger condition on links of a systolic complex
(7-largeness, c.f. Definition 3.2), it turns out to be Gromov hyperbolic [6].
Moreover, for each natural number n there exists a number k(n) such that
if all links of a systolic complex of dimension ≤ n are k(n)–large, then this
complex is CAT(0) with respect to the piecewise Euclidean metric, for which
the lengths of edges equal 1, see [6]. Although many of the known construc-
tions of systolic groups (see [6], for example) yield word–hyperbolic groups,
in general systolic groups are not word–hyperbolic.

Now let us list some exotic properties of systolic groups. Januszkiewicz
and Świątkowski observed in [7] that all full subcomplexes of systolic com-
plexes are aspherical. This has the following consequences. First of all, for
7–systolic groups (which are word–hyperbolic) one can study their Gromov
boundary. It was established by D. Osajda [9] that this boundary is hered-
itary aspherical. Very roughly, this means that all closed subspaces of the
boundary are aspherical. Recently Świątkowski has obtained another result
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of this kind. Namely, he proved that for a closed subspace F of the Gromov
boundary ∂G of a 7–systolic group G, the morphism induced by the inclusion
F ⊂ ∂G on the associated pro–fundamental groups is a monomorphism. See
[16] for details. Both of the above mentioned properties of the boundaries
are exotic for topological spaces of dimension ≥ 2, i.e. for groups of virtual
cohomological dimension ≥ 3.

Another application of the asphericity of full subcomplexes of a systolic
complex is establishing the so called asymptotic hereditary asphericity for
systolic groups [7]. One should view it as a coarse version of the notion
of hereditary asphericity described above. Groups that are asymptotically
hereditary aspherical do not allow subgroups isomorphic to fundamental
groups of nonpositively curved closed riemannian manifolds of dimension
≥ 3. In particular they do not allow free abelian subgroups of rank ≥ 3.

2 Overview of the results

Now let us give an overview of the results, which constitute the dissertation,
although for a more detailed introduction we refer to the introductory sec-
tions of Chapter II and Chapter III. The content of the dissertation, up to
some rearrangements, agrees with papers [11] and [12].

The main objective of the dissertation is to consider systolic analogues
of the following CAT(0) fixed point theorem. Namely, if X is a complete
CAT(0) space and G is a finite group of isometries of X then the fixed–
point set of G is non–empty and convex, hence contractible (Corollary 2.8,
Chapter II.2 in [1]). In systolic setting one asks if for any finite group G of
simplicial automorphisms of a systolic complex X the fixed point set of G is
non–empty. While the proof of the CAT(0) fixed point theorem is quite easy,
in systolic setting it is highly nontrivial. In fact, we are only able to establish
a coarse analogue of the fixed point theorem for general systolic complexes,
which suffices, however, for applications. Namely, we prove that for a finite
group G acting by simplicial automorphisms on a systolic complex X there
exists a G–invariant subcomplex of X of diameter ≤ 5. As a consequence,
we prove that systolic groups have only finitely many conjugacy classes of
finite subgroups.

We provide a proof of the honest fixed point theorem for locally finite 7–
systolic complexes, though. We deduce from this that the family of k–systolic
groups, for k ≥ 7, is closed under amalgamating over finite subgroups and
taking HNN extensions over finite subgroups. However, the honest fixed
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point theorem for general systolic complexes is out of reach via our current
techniques, though we have some partial results, which could turn out to be
useful in future attempts.

One can further analyze the structure of the fixed point set. In fact, we
prove that for any group G acting by simplicial automorphisms on a systolic
complex X, the fixed point set of G is either empty or contractible. Moreover,
this statement remains valid if we substitute the complex X with its Rips
complex Xn for any n ≥ 1, where Xn is obtained from X by adding simplices
spanned on sets of vertices of X which have diameter ≤ n.

Combining the coarse fixed point theorem for systolic complexes with the
above alternative for the fixed point set in the Rips complex of a systolic
complex, we obtain the following. Let G be a group acting properly on a
systolic complex X, this action extends to the proper action of G on Xn.
Then for n ≥ 5 the fixed point set in Xn for any finite subgroup of G is
contractible. CW–complexes equipped with the proper action of G satisfying
this last property are called models for EG, see [8]. Thus Xn is a finite
dimensional model for EG. Moreover, if the action of G on X is cocompact
(i.e. when G is systolic), then Xn is a so called finite model for EG.

EG is also called a classifying space for finite subgroups (or for proper
actions). The geometry of EG reflects many algebraic properties of the group
G, see Section 5 in [8]. In particular EG appears in the formulation of the fa-
mous Baum–Connes Conjecture. Moreover, among the geometrical methods
of proving the Novikov Conjecture, there is a method via constructing the
boundary of a model for EG, see [13]. The boundaries that can be used in
this approach need to satisfy properties similar to the properties of Gromov
boundaries for word–hyperbolic groups. This is the current area of research
of D. Osajda and the author.

Let us state very briefly how the dissertation is organized. In Section 3
of Chapter I we recall the basic notions and properties of systolic complexes
and groups which will be used throughout the dissertation.

In Chapter II we prove that for an action of a finite group G on a systolic
complex X there exists a G–invariant subcomplex of X of diameter ≤ 5.
We deduce from this that systolic groups have only finitely many conjugacy
classes of finite subgroups. For 7–systolic locally finite complexes we prove
that there is a fixed point for an action of any finite G. From this we deduce
that free products with amalgamation (and HNN extensions) of 7–systolic
groups over finite subgroups are also 7–systolic.

In Chapter III we prove that the fixed point set of an action of any group
on a systolic complex or its Rips complex is either empty or contractible. We
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deduce from this that if a group G acts properly by simplicial automorphisms
on a systolic complex X, then Xn is a finite dimensional model for EG, for
n ≥ 5.

I would like to thank my supervisor Jacek Świątkowski for posing the
problems and for advice, Tomasz Elsner, Frederic Haglund, Tadeusz Janusz-
kiewicz, Damian Osajda and for discussions, Paweł Zawiślak for developing
the approach described in Remark 5.1, and Jolanta Słomińska for introducing
to me the methods of Section 13.

3 Systolic complexes

Let us recall (from [6]) the definition of a systolic complex and a systolic
group.

Definition 3.1. A subcomplex K of a simplicial complex X is called full in
X if any simplex of X spanned by vertices of K is a simplex of K. The span
of a subcomplex K ⊂ X is the smallest full subcomplex of X containing K.
We will denote it by span(K). A simplicial complex X is called flag if any
set of vertices, which are pairwise connected by edges of X, spans a simplex
in X. A simplicial complex X is called k–large, k ≥ 4, if X is flag and there
are no embedded cycles of length < k, which are full subcomplexes of X (i.e.
X is flag and every simplicial loop of length < k and ≥ 4 ”has a diagonal”).

Definition 3.2. A simplicial complex X is called systolic if it is connected,
simply connected and links of all simplices in X are 6–large. A group Γ
is called systolic if it acts cocompactly and properly by simplicial automor-
phisms on a systolic complex X. (Properly means X is locally finite and for
each compact subcomplex K ⊂ X the set of γ ∈ Γ such that γ(K)∩K 6= ∅ is
finite.) If the links of all simplices of X are additionally k–large with k ≥ 6
we call it (and the group) k–systolic.

Recall [6], Proposition 1.4, that systolic complexes are themselves 6–large.
In particular they are flag. Moreover, connected and simply connected full
subcomplexes of systolic (respectively k–systolic) complexes are themselves
systolic (resp. k–systolic). It turns out a simplicial complex is k–systolic
with k ≥ 6 iff it is connected, simply connected and k–large.

Now we briefly treat the definitions and facts concerning convexity.

Definition 3.3. For every pair of subcomplexes (usually vertices) A,B in
a simplicial complex X denote by |A,B| (|ab| for vertices a, b ∈ X) the
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combinatorial distance between A(0), B(0) in X(1), the 1–skeleton of X. The
diameter diam(A) is the maximum of |a1a2| over vertices a1, a2 in A.

A subcomplex K of a simplicial complex X is called 3–convex if it is a full
subcomplex ofX and for every pair of edges ab, bc such that a, c ∈ K, |ac| = 2,
we have b ∈ K. A nonempty subcomplex K of a systolic complex X is
called convex if it is connected and links of all simplices in K are 3–convex
subcomplexes of links of those simplices in X.

In Lemma 7.2 of [6] authors conclude that convex subcomplexes of a sys-
tolic complex X are contractible, full and 3–convex in X. For a subcomplex
Y ⊂ X, n ≥ 0, the combinatorial ball Bn(Y ) of radius n around Y is the span
of {p ∈ X(0) : |p, Y | ≤ n}. (Similarly Sn(Y ) = span{p ∈ X(0) : |p, Y | = n}.)
If Y is convex (in particular, if Y is a simplex) then Bn(Y ) is also convex,
as proved in [6], Corollary 7.5. The intersection of a family of convex sub-
complexes is convex and we can define the convex hull of any subcomplex
Y ⊂ X as the intersection of all convex subcomplexes of X containing Y .
We denote the convex hull of Y by conv(Y ).

We include the proof of the following easy but useful lemma, since it does
not appear elsewhere.

Lemma 3.4. diam(conv(Y )) = diam(Y ).

Proof. If Y is unbounded then there is nothing to prove. Otherwise, denote
d = diam(Y ). The inequality diam(conv(Y )) ≥ d is obvious. For the other
direction, let y1, y2 be any two vertices in conv(Y ). We want to prove that
|y1y2| ≤ d. Observe that for any vertex y ∈ Y the ball Bd(y) is convex and
contains Y , hence by the definition of the convex hull we have conv(Y ) ⊂
Bd(y). This means that |yy1| ≤ d. Thus Y is contained in Bd(y1) and by
convexity of balls we have conv(Y ) ⊂ Bd(y1). We get |y1y2| ≤ d, as desired.

�

The paper [5] of F. Haglund and J. Świątkowski contains a proof of the
following proposition, which will be used throughout the dissertation.

Proposition 3.5 ([5], Proposition 4.9). A nonempty full subcomplex Y of a
systolic complex X is convex if and only if Y (1) is geodesically convex in X(1)

(i.e. if all geodesics in X(1) joining vertices of Y lie in Y (1)).

We will need a crucial projection lemma. The residue of a simplex σ in
X is the union of all simplices in X, which contain σ.
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Lemma 3.6 ([6], Lemma 7.7). Let Y be a convex subcomplex of a systolic
complex X and let σ be a simplex in B1(Y ) disjoint with Y . Then the inter-
section of the residue of σ and of the complex Y is a simplex (in particular
it is nonempty).

Definition 3.7. The simplex as in Lemma 3.6 is called the projection of σ
onto Y .

Now let us recall some definitions and facts concerning flat minimal sur-
faces in systolic complexes proved by T. Elsner in [2].

Definition 3.8. The flat systolic plane is a systolic 2–complex obtained
by equilaterally triangulating Euclidean plane. We denote it by E2

∆. A
systolic disc is a systolic triangulation of a 2–disc and a flat disc is any
systolic disc ∆, which can be embedded into E2

∆, such that ∆(1) is embedded
isometrically into 1–skeleton of E2

∆. A systolic disc ∆ is called wide if ∂∆ is
a full subcomplex of ∆. For any vertex v ∈ ∆ the defect of v (denoted by
def(v)) is defined as 6− t(v) for v /∈ ∂∆, and as 3− t(v) for v ∈ ∂∆, where
t(v) is the number of triangles in ∆ containing v. It is clear that internal
vertices of a systolic disc have nonpositive defects.

We will need the following easy and well known fact.

Lemma 3.9 (Gauss-Bonnet Lemma). If ∆ is any triangulation of a 2–disc,
then ∑

v∈∆(0)

def(v) = 6

Definition 3.10. Let X be a systolic complex. Any simplicial map S : ∆→
X, where ∆ is a triangulation of a 2–disc, is called a surface. A surface S is
systolic, flat or wide if the disc ∆ satisfies the corresponding property. If S is
injective on ∂∆ and minimal (the smallest number of triangles in ∆) among
surfaces with the given image of ∂∆, then S is called minimal. A geodesic in
∆(1) is called neat if it stays out of ∂∆ except possibly at its ends. A surface
S is called almost geodesic if it maps neat geodesics in ∆(1) isometrically into
X(1).

Lemma 3.11 ([2], Lemma 2.5). A systolic disc D is flat if and only if it
satisfies the following three conditions:

(i) D has no internal vertices of defect < 0

(ii) D has no boundary vertices of defect < −1
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(iii) any segment in ∂D connecting vertices with defect < 0 contains a vertex
of defect > 0.

Theorem 3.12 ([2], Theorem 3.1). Let X be a systolic complex. If S is a
wide flat minimal surface in X then S is almost geodesic.

Finally, recall the following powerful observation.

Lemma 3.13 ([7], Lemma 4.4). Every full subcomplex of a systolic complex
is aspherical.
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Chapter II

The fixed point theorem

4 Introduction

For CAT(0) spaces we have the following fixed point theorem.

Theorem 4.1 ([1], Chapter II.2, Corollary 2.8). If X is a complete CAT(0)
space and G is a finite group of isometries then the fixed–point set of G is
non–empty.

Theorem 4.1 follows from an observation that for every bounded sub-
set Y of a CAT(0) space we can define a special point y, the circumcenter
of Y , which is the center of the (unique) minimal ball containing Y . The
circumcenter y is invariant under isometries which leave Y invariant.

For simplicial nonpositive curvature a minimal combinatorial ball con-
taining finite set is not unique and the distance between centers of various
minimal balls can be arbitrarily large. Thus there is no immediate way to
define circumcenter.

We have found an analogue of Theorem 4.1 for actions of finite groups
on systolic complexes. This chapter is devoted to the proof of the following
theorem.

Theorem 4.2. Let G be a finite group acting by simplicial automorphisms
on a systolic complex X. Then there exists a bounded subcomplex Y ⊂ X
which is invariant under the action of G and whose diameter is ≤ 5.

This is a coarse version of the fixed point theorem. We use it to obtain in
systolic setting the property, which for CAT(0) groups is implied by Theorem
4.1.
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Corollary 4.3. Any systolic group contains only finitely many conjugacy
classes of finite subgroups.

The class of 7–systolic complexes is a special subclass of the class of
systolic complexes. 7–systolic complexes are hyperbolic metric spaces ([6],
Theorem 2.1) thus 7–systolic groups (defined as the groups which act properly
and cocompactly on 7–systolic complexes) are hyperbolic. All hyperbolic
groups have finitely many conjugacy classes of finite subgroups, so Corollary
4.3 is nothing new for 7–systolic groups. However, for locally finite 7–systolic
complexes we can go further than Theorem 4.2 and obtain an honest fixed
point theorem.

Theorem 4.4. Let G be a finite group acting by simplicial automorphisms
on a locally finite 7–systolic complex X . Then there exists a simplex σ ∈ X,
which is invariant under the action of G. (The barycenter of σ is a fixed
point for G).

We apply Theorem 4.4 to show that the class of 7–systolic groups is closed
under certain algebraic operations.

Theorem 4.5. Free products of 7–systolic groups amalgamated over finite
subgroups are 7–systolic. HNN extensions of 7–systolic groups over finite
subgroups are 7–systolic.

The chapter is organized in the following way. In Section 5 we intro-
duce the notion of round complexes (which are an obstruction to finding the
circumcenter) and study their properties. In Section 6 we obtain a weaker
version of Theorem 4.2, which still implies Corollary 4.3. This weaker ver-
sion is more elegant in proof and it serves as a demonstration of our method,
which is fully applied in Section 7. In Section 8 we prove Theorem 4.4 and
in Section 9 we apply it to prove Theorem 4.5.

5 Round complexes

Let us make some remarks to motivate the forthcoming definition.

Remark 5.1.

(1) If a finite group G acts by simplicial automorphisms on a systolic complex,
then there exists a bounded convex subcomplex Y ⊂ X that is invariant
under the action of G. To see this, take any vertex x ∈ X and take the
convex hull Y of the set Gx = {g(x) : g ∈ G}. Since the set Gx is finite,
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the points of Gx are at distance < d from x for some finite d. Convexity
of combinatorial balls implies that the points of Y are also at distance < d
from x. The fact that Y is invariant under the action of G is immediate.

(2) Let Y be a bounded systolic complex of diameter d and let G be a group
acting on Y by simplicial automorphisms. Then the convex subcomplex⋂
y∈Y (0) Bd−1(y) is invariant under the action of G and its diameter is ≤ d−1.

(3) This looks like a plan for getting invariant subcomplexes of arbitrarily
small diameter. However, this plan is difficult to execute, since it is unclear
how to exclude the possibility that

⋂
y∈Y (0) Bd−1(y) is empty.

Definition 5.2. A bounded systolic complex Y of diameter d is called round
if ⋂

y∈Y (0)

Bd−1(y) = ∅.

Note that this is equivalent to the property that for each vertex v ∈ Y (0)

there is a vertex w ∈ Y (0) such that |vw| = d.

We now start developing properties of round complexes, which will result
in establishing a bound for their diameter.

Lemma 5.3. Let Y be a round complex of diameter d. Then there exists
an edge ab ∈ Y and vertices v, w ∈ Y such that |vb| = |wa| = d and |va| =
|wb| = d− 1.

Proof. Fix any maximal simplex σ ⊂ Y . Let k be the maximal number
such that for each simplex σ′ ⊂ σ of dimension k there exists a vertex v ∈ Y
with |v, σ′| = d. Note that since Y is round we have k ≥ 0. On the other
hand if we denote by n the dimension of σ we have k < n, since if σ would
be at distance d from some vertex v, then the projection of σ onto Bd−1(v)
together with σ would form a strictly greater simplex (c.f. Lemma 3.6 and
Definition 3.7).

Take a simplex τ ⊂ σ of dimension k + 1 for which there does not exist
a vertex v ∈ Y with |v, τ | = d. Denote by a, b any two vertices of τ . Denote
by τa, τb faces of codimension 1 in τ not containing a, b respectively. By
definition of k there exist vertices v, w such that |v, τa| = |w, τb| = d. This
implies |vb| = |wa| = d. The choice of τ implies |va| = |wb| = d− 1. �

Definition 5.4. A k–hexagon is a subcomplex of E2
∆ obtained by taking 6k2

2–dimensional simplices forming a regular hexagon of edge length k. A k–
triangle is a subcomplex of E2

∆ obtained by taking k2 2–dimensional simplices
forming a triangle of edge length k.
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Lemma 5.5. Let k ≥ 1 be an integer and let Y be a round complex of
diameter d ≥ 3k. Then there exists a k–hexagon H ⊂ Y whose 1–skeleton is
isometrically emdedded in the 1–skeleton Y (1).

Proof. Lemma 5.3 guarantees the existence of the vertices a, b, v, w ∈ Y at
appropriate distances.

Let v′ ∈ Y be the furthermost vertex from v which is common for some
geodesics connecting v to a and v to w. Then let w′ ∈ Y be the furthermost
vertex from w which is common for some geodesics connecting w to b and w
to v′. Take any loop obtained by concatenating some 1–skeleton geodesics
connecting a to v′, v′ to w′ then w′ to b and then the edge ba. We claim
that this loop does not have self–intersections. Indeed, the segments av′ and
bw′ do not intersect by the choice of a, b, v, w (any geodesics av and bw must
be disjoint, since vertices on av are further from b than from a and vertices
on bw are nearer to b that to a). The segment v′w′ does not intersect av′

(outside of v′) by the choice of v′. Finally, v′w′ does not intersect bw′ (outside
of w′) by the choice of w′.

Now among all surfaces, whose boundary is any such piecewise geodesic
loop av′w′ba choose a surface S : ∆ → X of minimal area. Clearly, S is a
minimal surface. Moreover, since our loop is piecewise geodesic and these
geodesics are chosen arbitrarily, the defect at every boundary vertex of ∆
different from a, b, v′, w′ is at most 0. Since the segments ab and bw′ form a
geodesic, the defect at b is at most 1, and similar argument shows the same
for a. Gauss–Bonnet Lemma 3.9 implies now that the defects at v′ and w′ are
equal to 2, at a, b equal to 1, at other boundary and interior vertices equal
to 0. Lemma 3.11 implies that ∆ is flat. Analyzing possible subcomplexes of
E2

∆ one easily sees that ∆ has to be a trapezoid with sides ab, v′w′ parallel.
Denote d′ = |v′w′| ≤ d, so that the other edges of the trapezoid ∆

have lengths |av′| = |bw′| = d′ − 1, |ab| = 1. Then |vv′| = |av| − |av′| =
(d−1)− (d′−1) and similarly |ww′| = |bw|− |bw′| = (d−1)− (d′−1). Then
the geodesic vw has length |vv′|+ |v′w′|+ |w′w| = 2d− d′ = d+ (d− d′) ≥ d.
Since the diameter of Y is d we must have d′ = d, which implies v = v′ and
w = w′.

Since 3k ≤ d, there exists a k–hexagon H ⊂ ∆. Let T be a subcomplex
obtained from ∆ by deleting the two triangles containing S−1(v) and S−1(w).
Then our surface S restricted to T is flat, wide and minimal. Therefore, by
Elsner’s Theorem 3.12, all neat geodesics in T (1) are mapped by S onto
geodesics in Y (1). This implies that the 1–skeleton of the k–hexagon H ⊂ T
is mapped isometrically into Y (1). Identification of H with S(H) finishes the
proof. �
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Lemma 5.6. Let Y be a bounded systolic complex of diameter d, and let
H ⊂ Y be a k–hexagon, whose 1–skeleton is isometrically embedded into
Y (1). Let v ∈ H be the vertex, which is the Euclidean center of H. Take m
such that 2m ≤ k. Suppose that w ∈ Y is a vertex at distance d from v.
Then there exists an m–hexagon H ′ ⊂ H, such that H ′ ⊂ Sd(w).

Proof. Since H(1) is isometrically embedded in Y (1), the intersection C =
H ∩Bd−1(w) is convex in H (Proposition 3.5). Denote by S0, . . . , S5 the six
k–triangles in H whose vertices are v and two consecutive vertices (in the
Euclidean sense) of the boundary of H. Notice that since v is not in C, then
for each i = 0, 1, 2 at least one of the opposite Si, Si+3 must have empty
intersection with C. Moreover, if C ∩ Si 6= ∅ and C ∩ Si+2 6= ∅ (we treat
indices i = 0, . . . , 5 modulo 6) then C ∩ Si+1 6= ∅. Together this implies that
we have an i such that C ∩

(
Si ∪ Si+1 ∪ Si+2

)
= ∅. We find the m–hexagon

H ′ inside the union of these k–triangles. �

Corollary 5.7. Let Y be a round complex of diameter d ≥ 12. Then there
exists a vertex w and a 2–hexagon H ′ ⊂ Y , whose 1–skeleton is isometrically
embedded into Y (1) and such that H ′ ⊂ Sd(w).

Proof. We apply Lemma 5.5 to Y and obtain a 4–hexagon H, whose 1–
skeleton is isometrically embedded into Y (1). Let v ∈ H be the vertex, which
is the Euclidean center of H. Since Y is round, there exists a vertex w ∈ Y
such that |vw| = d. Now applying Lemma 5.6 gives us the desired 2–hexagon
H ′. �

6 The main argument

Lemma 6.1. Let w ∈ Y be a vertex in a systolic complex. Then for any
sphere Sn(w) ⊂ Y with n ≥ 1 there is no 2–hexagon H ⊂ Sn(w), whose
1–skeleton is isometrically embedded into Y (1).

Before we present the proof, we note that Corollary 5.7 and Lemma 6.1
immediately imply the following.

Corollary 6.2. The diameter of any round complex is ≤ 11.

Proof of Lemma 6.1. We will prove the lemma by contradiction. Suppose
there is a 2–hexagon H ⊂ Sn(w), whose 1–skeleton is isometrically embed-
ded into Y (1). Then n ≥ 2 (because the diameter of H is 4). Denote by
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a0, a1 . . . , a11 the vertices of the boundary of H in their natural cyclic order.
Now from the projections of the edges aiai+1 (we treat i’s modulo 12) onto
Bn−1(w) choose single vertices bi. Denote B = span(

⋃
i bi). Note that for any

i the vertices bi, bi+1 are either equal or connected by an edge (this follows
from projection Lemma 3.6).

Let us denote D1 = span(B∪H), D2 = span(B∪Bn−2(w)). Observe first
that D1 ∪D2 ⊂ Y is full because there are no edges between the complexes
H ⊂ Sn(w) and Bn−2(w). We will use Meyer–Vietoris sequence for the pair
D1, D2. Namely consider the loop b0b1 . . . b11b0, which is contractible both in
D1 and D2 (which is clear). These contractions form a 2–sphere in D1 ∪D2

which is contractible, as D1 ∪ D2 is aspherical (Lemma 3.13). Thus the
existence (and the form) of the homomorphism H2(D1∪D2)→ H1(D1∩D2)
in the Meyer–Vietoris sequence implies b0b1 . . . b11b0 is homological to zero in
D1 ∩D2 = B.

We will show this is not possible. Namely, we will construct a continuous
mapping from B into R2 \ {0} such that the loop b0b1 . . . b11b0 is mapped to
a nontrivial loop. First we construct a map f : B(0) → R2. Denote ek =
e2πi k

12 ∈ C = R2. For each vertex of B we choose any i such that this vertex
is equal to bi and we map it to ei (this mapping is not unique only if for some
i 6= j we have bi = bj). Then we extend linearly to all simplices of B. Let
〈·, ·〉 denote the standard scalar product in R2. Fix a simplex σ ⊂ B and
suppose that bi, bj ∈ σ, where i, j are the indices chosen when we defined
f on B(0). Since |bibj| ≤ 1 we have |aiaj| ≤ 3, so |i − j| ≤ 3 and thus
〈f(bi), f(bj)〉 ≥ 0. If we fix i, j and consider some other bk ∈ σ (if k is the
index chosen for bk) then the same observation yields that f(bk) belongs to
{v : ‖v‖2 = 1, 〈v, f(bi)〉 ≥ 0, 〈v, f(bj)〉 ≥ 0}. The convex hull of this set
omits 0. This proves that the image of f lies in R2 \ {0}. Now observe
that if bi = bj for i 6= j (now the indices are arbitrary), then the distances
|aiaj|, |aiaj+1|, |ai+1aj|, |ai+1aj+1| are all ≤ 2, which implies |i− j| = 1. From
this we see that the image under f of each bi is ei−1, ei or ei+1. It follows
that the image of each edge bibi+1 lies in the sector between ei−1 and ei+2.
This implies that the loop b0b1 . . . b11b0 is mapped to a nontrivial loop. Thus
we have reached a contradiction. �

Proof of Theorem 4.2 with bound ≤ 11 instead of ≤ 5. Let Y ⊂ X
be a bounded convex subcomplex invariant under the action of G, with the
minimal possible (nonzero) diameter d. Such subcomplexes exist, as it follows
from Remark 5.1(1). Now let Y ′ = Y ∩

(⋂
y∈Y (0) Bd−1(y)

)
. As it was noticed

in Remark 5.1(2), the diameter of Y ′ is < d, so by minimality of the diameter
of Y , Y ′ must be empty. Thus Y is a round complex and by Corollary 6.2
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its diameter is ≤ 11. �

Remark 6.3. For any bounded convex subcomplex Y ⊂ X of a systolic
complex X we can define a sequence Y = Y0, Y1, Y2 . . . by the formula Yi+1 =
Yi ∩

(⋂
y∈Y (0)

i
Bd(Yi)−1(y)

)
, where d(Yi) is the diameter of Yi. The round

complex on which this sequence terminates can be treated as the circumcenter
of Y .

Proof of Corollary 4.3. We argue by contradiction. Suppose we have in-
finitely many conjugacy classes of finite subgroups represented byH1, H2, . . . ⊂
G. Denote by K ⊂ X the compact subset such that

⋃
g∈G g(K) = X. For all

i ≥ 1 let Ki be bounded subcomplexes of X with diameter ≤ 11 invariant un-
der Hi. Find gi ∈ G such that gi(Ki)∩K 6= ∅. Then the subgroups giHig

−1
i ,

which leave gi(Ki) invariant, still represent different conjugacy classes. In
particular, the union

⋃
i giHig

−1
i is infinite. But for all elements g of this

union we have g(B11(K))∩B11(K) 6= ∅, which contradicts the properness of
the action of G. �

7 Round complexes have diameter ≤ 5

In this section we give the proof of even sharper bound for diameter of round
complexes. It involves the same techniques, but takes considerably more
case checking. First observe that as a special case of Lemma 5.5 we get the
following.

Corollary 7.1. Let Y be a round complex of diameter d ≥ 6. Then there
exists a 2–hexagon H ⊂ Y whose 1–skeleton is isometrically emdedded in the
1–skeleton Y (1).

Lemma 7.2. Let Y be a bounded systolic complex of diameter d, and let
H ⊂ Y be a 2–hexagon, whose 1–skeleton is isometrically embedded into
Y (1). Let v ∈ H be the vertex, which is the Euclidean center of H. Suppose
w ∈ Y is a vertex at distance d from v. Denote by a0a1 . . . a11a0 the boundary
of H. Then there exists a simplicial loop γ = b0b1 . . . b11b0 in Sd−1(w), such
that each bi is connected by an edge with ai and ai+1 (or is equal to one of
them) and γ is contractible in span(γ ∪ (H ∩ Sd(w))).

Proof. As in the proof of Lemma 5.6 we obtain three consecutive 2–triangles
in H, say S0, S1, S2, such that S0 ∪ S1 ∪ S2 ⊂ Sd(w). Denote the boundary
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vertices of H by a0, . . . , a11 so that a5, a6, . . . , a11 lie in S0 ∪ S1 ∪ S2. Pick
vertices bi with 5 ≤ i ≤ 10 from the projections of edges aiai+1 onto Bd−1(w).

Now we will pick b4 and b11. If a0 ∈ Sd(w), then pick b11 in the projection
of a11a0 onto Bd−1(w). In the other case pick b11 = a0. Similarly pick b4 from
the projection of a4a5 if a4 ∈ Sd(w) or pick b4 = a4 in the other case.

Now we will pick b0 and b1. Denote by u the vertex in H which is the
common neighbor of a0, a2 and v. Note that since u is a neighbor of v, we
have either u ∈ Sd−1(w) or u ∈ Sd(w). In the first case, pick b0 = b1 = u. In
the second case proceed as follows. First we will pick b0. Consider the edge
a0a1. If it lies in Sd(w), pick b0 from the projection of a0a1 onto Bd−1(w), as
usual. If not, choose b0 = a1 if a1 ∈ Sd−1(w) and b0 = a0 in the other case.
Now we will pick b1. If a1a2 lies in Sd(w) then pick b1 from the projection of
a1a2, as usual. If not, choose b1 = a2 if a2 lies in Sd−1(w) and b1 = a1 in the
other case.

Define b3, b2 exactly as b0, b1 substituting b0, b1, a0, a1 with b3, b2, a4, a3

respectively in the previous construction.
Note that our choice guarantees that for each 0 ≤ i ≤ 11 the vertex bi is

connected by an edge with ai and ai+1 (or is equal to one of them).
First we will check that b0b11 . . . b11b0 is a simplicial loop, i.e. that |bibi+1| ≤

1 for all 0 ≤ i ≤ 11. For 4 ≤ i ≤ 10 this follows from the projection Lemma
3.6. Now consider i = 11. If a0 ∈ Sd(w) then |b11b0| ≤ 1 follows again from
the projection Lemma 3.6. In the other case b11 = a0, so it is also a neighbor
of b0. The analogous argument works for i = 3.

Now focus on i = 0. If u ∈ Sd−1(w) (where u is defined as in the construc-
tion of b0, b1), then b0 = u = b1 and we are done. If not, then if a1 ∈ Sd(w)
then both b0, b1 are neighbors of a1 in Sd−1(w), so they are neighbors by
Lemma 3.6. If a1 /∈ Sd(w), then b0 = a1, so b1 is its neighbor and we are also
done. The analogous argument works for i = 1.

Finally consider i = 2. Define u′ to be the common neighbor in H of
a2, a4, v. If both u and u′ are in Sd−1(w), then b1 = u, b2 = u′ and we
are done. If any of u, u′ lies in Sd−1(w), then a2 lies either in Sd(w) or in
Sd−1(w). In the first case, both b1, b2 are neighbors of a2 in Sd−1(w), so they
are connected by Lemma 3.6. In the second case b1 = a2 = b2 and we are
also done.

We have thus proved that b0b1 . . . b11b0 is a simplicial loop, which we now
denote by γ. We will prove that γ is contractible in span(γ ∪ (H ∩ Sd(w))).
First observe that if the vertex u (defined as before) is not in H ∩ Sd(w)
then, by the construction of b0, u = b0 lies in γ. The same holds for u′. So
S0 ∪ S1 ∪ S2 ∪ u ∪ u′ ⊂ γ ∪ (H ∩ Sd(w). This is enough to guarantee that
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span
(
H ∩

(
γ ∪ (H ∩Sd(w)

))
⊂ H is contractible. Denote this subcomplex of

H by H0.
Thus it is enough to prove that γ can be homotoped into H0 in span(γ ∪

(H ∩ Sd(w))). If γ is disjoint with H0, then γ is disjoint with H and, by
the construction of γ, we have H0 = H ⊂ Sd(w). Hence, in this case, γ
is homotopic to ∂H in span(γ ∪ (H ∩ Sd(w))) (as in Lemma 6.1) and we
are done. If γ intersects H0, then let bibi+1 . . . bj denote any segment of
γ such that bi, bj ∈ H0 and bl /∈ H0 for all i < l < j (with respect to
the cyclic order). Then, by the construction of bl, we have al ∈ Sd for
i < l < j + 1, which implies al ∈ H0. Thus the segment bibi+1 . . . bj is
homotopic (relative its endpoints) to the segment biai+1ai+2 . . . ajbj ⊂ H0

in span(γ ∪ (H ∩ Sd(w))). Thus all segments of γ lying outside H0 can be
homotoped into H0 in span(γ ∪ (H ∩ Sd(w))) and we are done. �

Lemma 7.3. Every round complex has diameter ≤ 5.

Proof. Suppose, on the contrary, that Y is a round complex of diameter
d ≥ 6. Then, by Corollary 7.1, we get a 2–hexagon H ⊂ Y whose 1–skeleton
is isometrically embedded in Y (1). Let v ∈ H be the Euclidean center of H.
Since Y is round, there exists a vertex w at distance d from v. Denote by
a0a1 . . . a11a0 the boundary of H. Then, by Lemma 7.2, there exists a loop
γ = b0b1 . . . b11b0 in Sd−1(w), such that bi is connected by an edge with ai
and ai+1 and γ is contractible in span (γ∪ (H ∩Sd(w))). Let us denote D1 =
span(γ ∪ (H ∩Sd(w))), D2 = span(γ ∪Bn−2(w)). Observe that D1 ∪D2 ⊂ Y
is full because there are no edges between the vertices in Sd(w) and Bn−2(w).
Now we can proceed word–by–word following the proof of Lemma 6.1 and
get a contradiction. �

Proof of Theorem 4.2. As in the previous version of the proof in Section
6, we obtain an invariant convex subcomplex, which is round, so by Lemma
7.3 its diameter is ≤ 5. �

8 Fixed point for 7–systolic complexes

In this section we prove Theorem 4.4, the fixed point theorem for 7–systolic
complexes (c.f. Definition 3.2). Notice that we already know that round
7–systolic complexes have diameter ≤ 2, since for diameter ≥ 3 Lemma 5.5
would produce a 1-hexagon with 1–skeleton isometrically embedded, which
is not allowed in a 7–systolic complex. We can however skip this argument
using a lemma by D. Osajda.
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Lemma 8.1 ([9], Lemma 3.1). Suppose |vq| = |wq| = n > 0 for some vertices
v, w, q of a 7–systolic complex X. Denote by P (v), P (w) the projections onto
Bn−1(q) of v, w respectively. Then either P (v) ⊂ P (w) or P (w) ⊂ P (v) (or
both).

Proof of Theorem 4.4. Let Y be a minimal (nonempty) connected and
simply connected full subcomplex of X invariant under G. By Remark 5.1(1)
such subcomplexes exist. Y is round by Remark 5.1(2). Moreover, Y is 7–
systolic, since it is a connected and simply connected full subcomplex of a
7–systolic complex X. We will show that Y must be a simplex. Suppose on
the contrary that d = diam(Y ) ≥ 2.

We will show there exists a vertex v ∈ Y such that for some vertex w
with |vw| = 1 we have B1(v) ( B1(w). In other words, (excluding v and w)
the set of neighbors of w is strictly greater than the set of neighbors of v.
One may then view v as ”more exposed” in Y than w.

To prove this, pick any vertex q ∈ Y and consider the family {P (v)}v∈Sd(q)

of all projections P (v) onto Bd−1(q) of vertices in v ∈ Sd(q). Since Y is
round this family is nonempty. By projection Lemma 3.6 the elements of
this family are simplices. Now consider a vertex v such that P (v) is minimal
(for inclusion) simplex of the family. Take any vertex w ∈ P (v). We will
prove that v, w have the desired property. Consider any neighbor u of v. If
u ∈ Sd−1(q), then u ∈ P (v), so u is a neighbor of w. If u ∈ Sd(v), then
by Lemma 8.1 and by minimality of P (v) we get that P (v) ⊂ P (u), hence
w ∈ P (u) and in this case also u is a neighbor of w. Note that if we project
w onto Bd−2(q) (recall that d ≥ 2) we obtain some neighbor of w, which is
not a neighbor of v. This ends the proof of B1(v) ( B1(w).

Notice that since the strict inclusion of 1–balls is a transitive relation and
since Y is finite, there exists a pair of vertices |vw| = 1, B1(v) ( B1(w),
such that no neighbor u of v satisfies B1(u) ( B1(v) (i.e. v is a minimal
element of this relation). Now consider the set V of all vertices v ∈ Y , which
have the above minimality property. For each such vertex denote by v′ its
corresponding vertex w (this choice may be not unique). Notice that for all
v ∈ V we have v′ /∈ V , since v′ cannot be minimal. We will now show that the
subcomplex Y ′ ⊂ Y spanned on the vertices Y (0) \V is connected and simply
connected. Since it is nonempty, invariant under G and a strict subset of Y
this will contradict the minimality of Y and will finish the proof.

To prove that Y ′ is connected and simply connected, we will construct a
retraction r : Y → Y ′. First we define r on Y (0). For v ∈ Y ′(0) put r(v) = v.
For v ∈ V put r(v) = v′. We will prove that r can be extended to a simplicial
mapping. Since Y ′ is flag all we have to show is that for any adjacent vertices
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v1, v2 ∈ Y (1) we have |r(v1)r(v2)| ≤ 1. If v1, v2 ∈ Y ′ then this is obvious. If
v1 ∈ Y ′, v2 ∈ V , then since r(v1) = v1 is a neighbor of v2, it is also a neighbor
of r(v2) and we are done. If v1, v2 ∈ V then since v1 is neighbor of v2, it is
also a neighbor of r(v2) and now since r(v2) is a neighbor of v1, it is also a
neighbor of r(v1) or equals r(v1) and we are done. Thus we can extend r
to a simplicial mapping r : Y → Y ′ fixing Y ′ and thus, since Y is connected
and simply connected, so is Y ′. As observed earlier, this contradicts the
minimality of Y . Thus d ≤ 1 and Y is a simplex. �

Remark 8.2. We do not know if the assumption of Theorem 4.4 that X is
locally finite may be omitted.

9 Amalgamated free products of 7–systolic
groups

We will prove Theorem 4.5 by constructing 7–systolic complexes on which
the amalgamated products and HNN extensions act. These complexes will
have a form of trees of 7–systolic complexes, as defined below, related to the
Bass-Serre trees of the corresponding products.

Definition 9.1. A tree of k–systolic complexes (k ≥ 6) is a simplicial com-
plex E together with a simplicial mapping p : E → T onto a simplicial tree
T satisfying the following properties. For a vertex v ∈ T the preimage
p−1(v) ⊂ E is a k–systolic complex. For an open edge e ∈ T the closure of
the preimage p−1(e) ⊂ E is a simplex.

Lemma 9.2. If p : E → T is a tree of k–systolic complexes, k ≥ 6, then E
is itself k–systolic.

Proof. To prove E is k–systolic we need to prove E is connected, simply
connected and k–large (c.f. remarks after Definition 2.2). Obviously, E is
connected, simply connected and flag, since the preimage of each vertex and
the closure of the preimage of each open edge in T is flag and contractible
and the same holds for their intersections. Let γ be any loop of length l with
4 ≤ l < k in E. Then p(γ) is a loop in the tree T . If p(γ) is a single vertex,
then γ lies in a k–systolic subcomplex of E and thus has a diagonal. If p(γ)
is not a vertex, then there exists two different edges ab, a′b′ ∈ γ such that
p(ab) = p(a′b′). This implies that a, b, a′, b′ lie in a common simplex. Since at
least three of those vertices are different vertices of γ, we obtain a diagonal
in the loop γ. �
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Construction 9.3. Let G,H be 7–systolic groups acting properly and co-
compactly on 7–systolic complexes X, Y , respectively. Let F ⊂ G,F ⊂ H
be some finite common subgroup. Let σ ⊂ X, τ ⊂ Y be some simplices fixed
under F , as guaranteed by Theorem 1.4. We define the amalgamated complex
X ∗ Y for G ∗F H as follows. Take the product space G ∗F H ×X t Y and
identify (ag, x) with (a, gx) and (ah, y) with (a, hy) for all a ∈ G ∗F H, g ∈
G, h ∈ H, x ∈ X, y ∈ Y . Note that this is an equivalence relation. As for now
this is just a disjoint union of copies of X and Y corresponding to right cosets
of G and H in G ∗F H respectively. Let α be an abstract simplex spanned
on σ and τ (the join of σ and τ). Extend the action of F on σ and τ to an
affine (i.e. simplicial) action on α. Now add extra simplicies (a, α) spanned
on the pairs (a, σ), (a, τ) for a ∈ G ∗F H and identify (af, z) with (a, fz) for
a ∈ G ∗F H, f ∈ F, z ∈ α. Hence we added a copy of α for each coset aF of
F in G∗F H. This copy of α is glued to the copies of X and Y corresponding
to aG and aH respectively. Note that what we get is a simplicial complex,
i.e. there are no multiple edges. The only multiple edges could occur as a
result of gluing two copies of α, say (a, α), (b, α), where a, b ∈ G ∗F H, to
the same pair of copies of X and Y . This would imply (a,X) = (b,X) and
(a, Y ) = (b, Y ). Thus b−1a ∈ G ∩ H = F , hence (a, α) = (b, α). Also note
that since the action of G on X and H on Y is proper, the complex X ∗ Y
is locally finite.

Now we define the action of G ∗F H on X ∗ Y . Take a, b ∈ G ∗F H
and z ∈ X t Y or z ∈ α. Define a(b, z) = (ab, z). This is a simplicial
automorphism of X ∗ Y .

Construction 9.4. Let G be a 7–systolic group acting properly and cocom-
pactly on a 7–systolic complex X. Let F1, F2 be some finite subgroups of G
isomorphic through a fixed isomorphism i : F1 → F2. Let σ, τ ⊂ X be some
simplices fixed under F1, F2 respectively, as guaranteed by Theorem 1.4. We
define the HNN extended complex X∗ for G∗i as follows. Denote by t the ele-
ment of G∗i given in the presentation t−1ft = i(f), f ∈ F1. Take the product
space G∗i×X and identify (ag, x) with (a, gx) for all a ∈ G∗i, g ∈ G, x ∈ X.
Let α be an abstract simplex spanned on σ and τ (treated as disjoint ab-
stract simplices). Extend the action of F1 on σ and τ (on which F1 acts as
F2 = i(F1)) to an affine (i.e. simplicial) action on α. Now add extra simpli-
cies (a, α) spanned on the pairs (a, σ), (at, τ) for a ∈ G∗i and identify (af, z)
with (a, fz) for a ∈ G∗i, f ∈ F1, z ∈ α. Again what we get is a simplicial
complex. Loops cannot occur since t /∈ G ⊂ G∗i in the HNN extension and
thus the copies of X corresponding to cosets aG and atG are different. The
only multiple edges could occur as a result of gluing two copies of α, say
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(a, α), (b, α), where a, b ∈ G∗i, to the same pair of copies of X. This would
imply (a,X) = (b,X) and (at, Y ) = (bt, Y ). Thus b−1a ∈ G ∩ tGt−1 = F1,
hence (a, α) = (b, α). Since the action of G on X is proper, the complex X∗
we obtained is locally finite.

Now we define the action of G∗i on X∗. Take a, b ∈ G∗i and z ∈ X or
z ∈ α. Define a(b, z) = (ab, z). This is a simplicial automorphism of X∗.

Lemma 9.5. Consider the complexes and groups acting on them from the
Construction 9.3 and the Construction 9.4. The action of G ∗F H on X ∗ Y
is proper and cocompact. The action of G∗i on X∗ is proper and cocompact.

Proof. We prove the first part of the lemma. Let KX ⊂ X and KY ⊂ Y
be compact sets, such that their translates through the elements of G,H
respectively fill in the corresponding complexes. Take K ⊂ X ∗ Y defined as
K = (1, KX) t (1, KY ) t (1, α). The translates of K through G ∗F H fill in
X ∗ Y , so the action is cocompact.

Now to prove the properness, since X ∗ Y is locally finite, it is enough to
show that vertex stabilizers are finite. To do this, fix b ∈ G∗F H, x ∈ X, and
suppose that a(b, x) = (b, x) for some a ∈ G ∗F H. Then there exists g ∈ G
such that gx = x, a = bgb−1. Since g determines a and since the set of such
g is finite by the properness of the action of G on X, the stabilizer of (b, x)
is finite. For x ∈ Y the argument is the same.

The second part of the lemma can be proved in the same fashion. �

Lemma 9.6. Consider the complexes from the Construction 9.3 and the
Construction 9.4. Then X ∗Y and X∗ are both trees of 7–systolic complexes.

Proof. We prove the first part of the lemma. Define a graph T as follows.
Let VG, VH be right cosets of the subgroups G,H in G∗FH. Let V = VGtVH
be the set of vertices of T . Let edges of T be right cosets aF of F in G ∗F H
joining the vertices aG and aH. This graph is a tree, in fact it is the Bass–
Serre tree of this amalgamated free product [14] (special case of Theorem
3.14). Now define the simplicial mapping p from X ∗ Y onto T . Define
p(a, x) = aG for x ∈ X and p(a, y) = aH for y ∈ Y . We can extend p
to a simplicial mapping. Then p(a, α) = aF , where by aF we mean the
corresponding edge of T . From this construction it follows immediately that
the closures of preimages of open edges in T are simplices (the copies of α)
and that the preimages of vertices in T are 7–systolic (these are copies of X
or Y ).

For the second part, let V be the set of the right cosets of G in G∗i and let
edges be cosets aF1 of F1 in G∗i joining the vertices aG and atG in V . This
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graph T is again a tree and we can define the simplicial mapping p : X∗ → T

by p(a, x) = aG for a ∈ G∗i, x ∈ X∗ and p(a, α) = aF1. As before, the
preimages of vertices are 7–systolic copies of X and the closures of preimages
of open edges are simplices. �

Proof of Theorem 4.5. Groups we consider act properly and cocompactly
(Lemma 9.5) on trees of 7–systolic complexes (Lemma 9.6), which are 7–
systolic by Lemma 9.2. �

Remark 9.7. Using the same argument one can prove the following exten-
sion of Theorem 4.5. Let k ≥ 7. Free products of k–systolic groups amal-
gamated over finite subgroups are k–systolic. HNN extensions of k–systolic
groups over finite subgroups are k–systolic.

Remark 9.8. Note that the Constructions 9.3 and 9.4 work also for general
(6–)systolic complexes whenever we amalgamate over groups which fix some
simplices (for example if we amalgamate over the trivial group). We do not
know if in general amalgamated products (and HNN extensions) of systolic
groups over finite subgroups are systolic.

10 Final remarks on the general systolic case

Remark 10.1. It seems that with current techniques we cannot get a sharper
bound for the diameter of round complexes. We suspect, however, that round
complexes have diameter ≤ 2, because all round complexes we know have
diameter ≤ 2. An example of a round complex of diameter 2 is the 2–triangle.

If it was true that round complexes have diameter ≤ 2, we claim we could
prove there is a fixed point for any simplicial action of a finite group on a
locally finite systolic complex (and this would imply that amalgamates of
systolic groups over finite subgroups are systolic). As a first step, we would
find, like in the proof of Theorem 4.2, an invariant round complex, whose
diameter would be ≤ 2. Then we would use the following lemma that we
proved together with P. Zawiślak.

Lemma 10.2. In every finite systolic complex Y of diameter ≤ 2 there is a
simplex, which is invariant under simplicial automorphisms of Y .

Note that we could have used Lemma 10.2 to prove Theorem 4.4. How-
ever, the proof of Theorem 4.4 we presented is simpler than the proof of
Lemma 10.2. Since we treat Lemma 10.2 only as a digression, we do not
enclose the proof.
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Chapter III

EG for systolic groups

11 Introduction

Recall that it was shown in [6], Theorem 4.1(1), that systolic complexes are
contractible. Thus if a group G is systolic and torsion free, then X is a finite
model for EG.

Similarly, if G acts properly on a CAT(0) space X and if G is torsion free,
then X is a model for EG. If we do not assume that G is torsion free, then
the stabilizer of any point in X is finite and the fixed point set of any finite
subgroup of G is contractible (in particular nonempty). This means that X
is the so called model for EG — the classifying space for finite subgroups [8].

There are other families of groups G, which admit nice models for EG.
For example, if G is word–hyperbolic, and if S is a finite generating set for
G, then for sufficiently large real number d the Rips complex Pd(G,S) is a
model for EG. What makes this model attractive for applications is that it
is a finite model, i.e. the action of G on it is cocompact. See [8] for details.

In this chapter we give an explicit finite model for EG for a systolic group
G. We prove that an appropriate Rips complex of any systolic complex X

on which G acts properly is a model for EG. We define the Rips complex in
our context as follows.

Definition 11.1. Let X be any simplicial complex. For any n ≥ 1, the Rips
complex Xn is a simplicial complex with the same set of vertices as X and
with a simplex spanned on any subset S ⊂ X(0) such that diam(S) ≤ n in
X(1). If G acts on X properly (and cocompactly), then the natural extension
of this action to Xn is also proper (and cocompact).
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Our main result is the following.

Theorem 11.2. Let X be a systolic complex on which a group G acts prop-
erly. Then for n ≥ 5 the Rips complex Xn is a finite dimensional model for
EG. If additionally G acts cocompactly on X then Xn is a finite model for
EG.

Theorem 11.2 extends and its proof is based on Theorem 4.2 (which also
explains the appearance of the constant 5 in the above formulation). To
apply Theorem 4.2, let H be a group acting by automorphisms on a simplicial
complex X. Then the fixed point set of the action of H on X is a subcomplex
of the barycentric subdivision X ′ of X. Denote this subcomplex by FixHX ′.
Similarly denote the fixed point set of the action of H on the Rips complex
Xn by FixHX ′n. It is a subcomplex of X ′n. By Theorem 4.2, if X is systolic,
H is finite and n ≥ 5, then FixHX ′n is nonempty.

Now the proof of Theorem 11.2 reduces to the following.

Proposition 11.3. Let H be any group acting by automorphisms on a sys-
tolic complex X. Then for any n ≥ 1 the complex FixHX ′n is either empty
or contractible.

The remaining part of this chapter is devoted to the proof of Proposition
11.3. This will be done without using the contractibility of systolic complexes
[6]. In fact, by applying Proposition 11.3 to the case of H trivial and n = 1,
we reprove that systolic complexes are contractible (since X1 = X by flagness
of systolic complexes).

Our proof may seem more sophisticated than the original proof [6], but
the reason for this is that we deal at the same time with contractibility of
the systolic complex X and with contractibility of its Rips complexes.

In fact, our proof is simpler than the original proof. By using the methods
of Section 11 (not present in [6]), we are able to avoid writing down explicit
homotopies.

Note that if Theorem 4.2 could be strengthened to guarantee a true fixed
point instead of an invariant subcomplex (which is possible for example for 7–
systolic complexes, by Theorem 4.4), then under the hypothesis of Theorem
11.2 we would get a stronger assertion: Proposition 11.3 would imply that
the original complex X is a model for EG.

This chapter is organized as follows. In Section 12 we introduce the
key notion of the chapter, the expansion by projection, and establish its
basic properties. In Section 13 we present two abstract ways of producing
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homotopies in geometric realizations of posets, which will be needed later.
The proof of Proposition 11.3 occupies Section 14.

12 Expansion by projection

The proof of contractibility of systolic complexes given by T. Januszkiewicz
and J. Świątkowski in [6] uses Lemma 3.6 and the notion of projection (Def-
inition 3.7). To be able to deal with the Rips complex we need to extend
this notion: we need to be able to project not only simplices, but all convex
subcomplexes. In this section we introduce the necessary definitions for this
and establish the basic properties of the corresponding notions.

Definition 12.1. Let Y be a convex subcomplex of a systolic complex X
and let σ be a simplex in B1(Y ). The expansion by projection of σ (denoted
by eY (σ)) is a simplex in B1(Y ) defined in the following way. If σ ⊂ Y then
eY (σ) = σ. Otherwise eY (σ) is the join of σ ∩ S1(Y ) (which is nonempty)
and its projection (c.f. Definition 3.7) onto Y .

Remark 12.2. Observe that σ ⊂ eY (σ). Moreover, by Lemma 3.6, eY (σ)∩Y
is nonempty.

Definition 12.3. Let Y be a convex subcomplex of a systolic complex X
and let Z be a convex subcomplex in B1(Y ). The expansion by projection of
Z (denoted by eY (Z)) is a subcomplex of B1(Y ) defined in the following way.
Let eY (Z) be the span of the union of eY (σ) over all maximal (with respect
to inclusion) simplices σ ⊂ Z. Clearly this definition extends Definition 12.1.

Remark 12.4. Observe that Z ⊂ eY (Z). Moreover eY (Z)∩ Y is nonempty.
Note that eY (Z) does not have to be convex.

Remark 12.5. Let g be an automorphism of X which leaves Y and Z
invariant. Then g leaves also eY (Z) invariant.

The following property of the expansion by projection is not at all obvious.

Lemma 12.6. diam(eY (Z)) ≤ max{diam(Z), 1}.

In fact, since by Remark 12.4 we have Z ⊂ eY (Z), this is an equality
unless Z is a single vertex of Y .

Before giving the proof we need to establish some facts about the distance
between maximal simplices in convex subcomplexes.

27



Lemma 12.7. Let Z be a convex subcomplex in a systolic complex X. Let d
be the diameter of Z. Assume d ≥ 2. Let σ, τ be any maximal simplices of
Z and let v be any vertex of Z. Then

(1) |σ, v| ≤ d− 1,

(2) |σ, τ | ≤ d− 2.

Proof. First we prove assertion (1). We do this by contradiction. Assume
|σ, v| = d. This means that σ ⊂ Sd(v), so eBd−1(v)(σ) (the expansion by
projection onto Bd−1(v), c.f. Definition 12.1 and Remark 12.2) is a simplex
strictly greater than σ. All vertices in eBd−1(v)(σ) lie on some 1–skeleton
geodesics from v to vertices in σ. Hence by Proposition 3.5 and by convexity
of Z we have eBd−1(v)(σ) ⊂ Z. Thus σ is not maximal in Z, contradiction.

Now we prove assertion (2). We do this again by contradiction. As-
sume |σ, τ | > d − 2. By (1) this implies that |σ, v| = d − 1 for all v ∈ τ .
Thus τ ⊂ Sd−1(σ). As before, by Proposition 3.5 and by convexity of Z we
get eBd−2(σ)(τ) ⊂ Z. Since eBd−2(σ)(τ) is strictly greater than τ , we obtain
contradiction with maximality of τ . �

Proof of Lemma 12.6 Denote by d the diameter of Z. Suppose d ≥ 2
(otherwise the lemma is obvious). Take any v, w ∈ eY (Z). We must prove
that |vw| ≤ d. If v, w ∈ Z then there is nothing to prove. Now assume
that v ∈ Z,w /∈ Z. Thus there exists a maximal simplex σ ⊂ Z such that
w ∈ eY (σ). By Lemma 12.7(1) we have |σ, v| ≤ d − 1, hence there exists a
vertex s ∈ σ such that |vs| ≤ d− 1. Since |sw| ≤ 1, we are done.

Now assume that both v, w /∈ Z. Thus there exist maximal simplices
σ, τ ⊂ Z such that v ∈ eY (σ), w ∈ eY (τ). By Lemma 12.7(2) there exist
vertices s ∈ σ, t ∈ τ such that |st| ≤ d − 2. Since |vs| ≤ 1 and |wt| ≤ 1, we
are done. �

We end this section with a lemma which though seems technical, nev-
ertheless lies at the heart of the proof of Proposition 11.3, which will be
presented in Section 12. This lemma states, roughly speaking, that expand-
ing by projection has not too bad monotonicity properties (although usually
it is not true that Z ⊂ Z ′ implies eY (Z) ⊂ eY (Z ′) or eY (Z) ⊃ eY (Z ′)).

Lemma 12.8. Let Z1 ⊂ Z2 ⊂ . . . ⊂ Zn ⊂ B1(Y ) be an increasing sequence
of convex subcomplexes of B1(Y ). Then the intersection( n⋂

i=1

eY (Zi)
)
∩ Y

is nonempty.
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Proof. If Z1 ∩ Y is nonempty then any vertex v ∈ Z1 ∩ Y belongs to the
required intersection. Otherwise take any maximal (in Z1) simplex σ1 ⊂ Z1.
We define inductively an increasing sequence of simplices σi ⊂ Zi for i =
2, . . . , n. Namely choose σi to be any maximal simplex in Zi containing σi−1.
Take any vertex v ∈ eY (σn) ∩ Y . Since σi do not lie entirely in Y , we have
by definition of eY (σi) that v ∈ eY (σi) for all i. Since each σi is maximal in
the corresponding Zi, this implies that v ∈ eY (Zi) for all i, hence v belongs
to the required intersection. �

13 Homotopies

We will use the following well known results. The proof of the first proposition
can be found, for example, in the paper of G. Segal [15]. However, for
completeness, we give an indication of an argument.

Proposition 13.1 ([15], Proposition 1.2). If C,D are posets and F0, F1 : C →
D are functors (i.e. they respect the order) such that for each c ∈ C we have
F0(c) ≤ F1(c), then the maps induced by F0, F1 on geometric realizations of
C,D are homotopic. Moreover this homotopy is constant on the geometric
realization of the subposet of C of objects on which F0 and F1 agree.

Proof. We need to extend the natural homotopy on vertices of geometric
realizations to higher skeleta. This is done by performing the so called prism
subdivision of the cells of the homotopy. Then the homotopy can be realized
simplicially, it can be explicitly written down. �

In the next proposition we will consider a functor F : C ′ → C from the flag
poset C ′ of a poset C into the poset C, assigning to each object in C ′, which
is a chain of objects of C, its minimal element. F is covariant if we take on
C ′ the partial order inverse to the inclusion. Geometric realizations of C, C ′
are homeomorphic in a canonical way (one is the barycentric subdivision of
the other), which allows us to identify them.

Proposition 13.2. The map induced by F on geometric realizations of C ′, C
is homotopic to identity.

Proof. We give only a sketch. Take any simplex in the geometric realization
of C ′, suppose it corresponds to a chain c′1 ⊂ . . . ⊂ c′n (c′i are chains of objects
in C). This simplex and its image under the map induced by F both lie in the
simplex of the image, which corresponds to the chain c′n. Thus the homotopy
can be realized affinely on each simplex. �
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14 Nonempty fixed point sets are contractible

As observed in Section 11, Theorem 11.2 is implied by Theorem 4.2 and
Proposition 11.3. Thus to prove Theorem 11.2 it is enough to prove Propo-
sition 11.3, which we do in this section.

Let us give an outline of the proof. Suppose the fixed point set we are
considering is nonempty. We define an increasing sequence of subcomplexes
exhausting the Rips complex, with an invariant simplex as the first sub-
complex. We then prove that the intersection of the fixed point set with
a subcomplex from our family is homotopy equivalent to the intersection of
the fixed point set with the subsequent subcomplex. Since we know that the
first of those intersections is contractible, it follows by induction that any of
the intersections is contractible. Since we choose an exhausting family, this
means that the whole fixed point set is contractible.

We define now this exhausting family.

Definition 14.1. Let X be any simplicial complex. Let σ ⊂ Xn be any
simplex in the Rips complex of X for some n ≥ 1. Let A ⊂ X

(0)
n = X(0) be

the set of vertices of σ. Recall that Bi(A) is the combinatorial ball of radius
i around A in X. Now define an increasing sequence of full subcomplexes
Di(σ) ⊂ X ′n, where i ≥ 0, in the following way. Let D2i(σ) be the span of all
vertices in X ′n corresponding to simplices in Xn, which have all their vertices
in Bi(A) (i.e. D2i(σ) is equal to the barycentric subdivision of the span in
Xn of vertices in Bi(A) ⊂ X). Let D2i+1(σ) be the span of those vertices in
X ′n, which correspond to those simplices in Xn that have all their vertices in
Bi+1(A) and at least one vertex in Bi(A) (where the balls are taken in X).

In case of a flag complex X for n = 1 we have X1 = X and the subcom-
plexes Di(σ) are combinatorial balls in X ′ around the barycentric subdivision
of σ.

Remark 14.2. Notice that
⋃∞
i=0Di(σ) = X ′n. Moreover, any compact sub-

complex of X ′n is contained in some Di(σ).

Proof of Proposition 11.3 Assume that FixHX ′n is nonempty. Let σ ⊂ Xn

be a maximal H–invariant simplex in Xn. Denote the set of vertices of σ in
X

(0)
n = X(0) by A. We claim that the span of A in X is convex. Otherwise,

by Lemma 3.4, the vertices of conv(A) in X span a simplex in Xn, which is
also H–invariant and strictly greater than σ, contradiction. Let Di(σ) ⊂ X ′n
be as in Definition 14.1. In the further discussion we will use an abbreviated
notation Di = Di(σ).
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We will prove the following three assertions.

(i) D0 ∩ FixHX ′n is contractible,

(ii) the inclusion D2i ∩ FixHX ′n ⊂ D2i+1 ∩ FixHX ′n is a homotopy equiv-
alence,

(iii) the identity on D2i+2 ∩ FixHX ′n is homotopic to a mapping with
image in D2i+1 ∩ FixHX ′n ⊂ D2i+2 ∩ FixHX ′n.

Suppose for a moment that (i)–(iii) hold. We will show how this implies
the theorem. We will prove by induction on k the following.

Claim. Dk ∩ FixHX ′n is contractible.

For k = 0 this is stated in assertion (i). Suppose we have proved the
claim for some k ≥ 0. If k is even, k = 2i ≥ 0, then assertion (ii) implies
the claim for k = 2i + 1. If k is odd, k = 2i + 1, then the identity mapping
from assertion (iii) is homotopic to the mapping with image in a contractible
subspace, hence the identity mapping is homotopically trivial. This proves
the claim for k = 2i+ 2. We have thus completed the induction step.

By Remark 14.2, the image of any sphere mapped into FixHX ′n is con-
tained in some Di∩FixHX ′n, which is contractible. Thus all homotopy groups
of FixHX ′n are trivial and since FixHX ′n is a simplicial complex, it is con-
tractible, by Whitehead’s Theorem, as desired. To complete the proof we
must now prove assertions (i)–(iii).

Assertion (i). Since D0 is the barycentric subdivision of the simplex
σ ⊂ Xn and the barycenter of σ belongs to FixHX ′n, we have thatD0∩FixHX ′n
is a cone over the barycenter of σ, hence it is contractible.

Assertion (ii). Let C be the poset of H–invariant simplices in Xn with
vertices in Bi+1(A) (ball in X) and at least one vertex in Bi(A). Its geometric
realization is D2i+1 ∩ FixHX ′n. Consider a functor F : C → C assigning to
each object of C i.e. a simplex in Xn its subsimplex spanned by vertices in
Bi(A). Notice that this subsimplex is H–invariant (i.e. it is an object of C)
since A and hence Bi(A) are H–invariant. By Proposition 13.1 the geometric
realization of F is homotopic to identity (which is the geometric realization of
the identity functor). Moreover this homotopy is constant on D2i ∩FixHX ′n.
The image of the geometric realization of F is contained in D2i ∩ FixHX ′n.
Hence D2i∩FixHX ′n is a deformation retract of D2i+1∩FixHX ′n, as desired.

Assertion (iii). Let C be the poset of H–invariant simplices in X ′n with
vertices in Bi+1(A) and let C ′ be its flag poset, with the partial order inverse
to the inclusion. Let F0 : C ′ → C be the functor (from Proposition 13.2)
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assigning to each object in C ′, which is a chain of objects of C, its minimal
element. The geometric realization of both C and C ′ is equal to D2i+2 ∩
FixHX ′n and by Proposition 13.2 the geometric realization of F0 is homotopic
to identity.

Now we define another functor F1 : C ′ → C. This is the heart of the proof.
First notice that since span(A) is convex in X, we have that the ball Bi(A)
is also convex. Hence for any convex subcomplex Z ⊂ Bi+1(A) there exists
its expansion by projection (c.f. Definition 12.3) eBi(A)(Z). Now we define
F1. For any object c′ ∈ C ′, which is a chain of objects c1 < c2 < . . . < ck
of C, recall that cj (where 1 ≤ j ≤ k) are some H–invariant simplices in
Xn with vertices in Bi+1(A). Denote the set of vertices of cj by Sj and
treat it as a subset of X(0). Notice that the subcomplexes conv(Sj) ⊂ X
are of diameter ≤ n (by Lemma 3.4), they form an increasing sequence and
they are all contained in Bi+1(A) by monotonicity of taking the convex hull
and by convexity of balls. Thus if we define S ′j to be the set of vertices
in eBi(A)(conv(Sj)), then by Lemma 12.8 the intersection

⋂k
j=1 S

′
j contains

at least one vertex in Bi(A). Also note that this intersection is contained
in Bi+1(A). Moreover, by Lemma 12.6, all the sets S ′j, and hence their
intersection, have diameter ≤ n. Thus we can treat the set

⋂k
j=1 S

′
j as a

simplex in Xn with vertices in Bi+1(A). By Remark 12.5 this simplex is
H–invariant, hence it is an object in C. We define F1(c′) to be this object.
In geometric realization of C, which is D2i+2 ∩ FixHX ′n the object F1(c′)
corresponds to a vertex in D2i+1 ∩ FixHX ′n, by our previous remarks. It is
obvious that F1 preserves the partial order (inverse to the inclusion on C ′),
since the greater the chain, the more sets S ′j we have to intersect.

Now notice that by Remark 12.4 for any c′ ∈ C ′ we have F0(c′) ⊂ F1(c′),
hence by Proposition 13.1 the geometric realizations of F0 and F1 are homo-
topic. But as observed at the beginning, F0 is homotopic to the identity. On
the other hand, F1 has image in D2i+1 ∩ FixHX ′n. Thus we are done. �
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