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Abstract. Under the assumption that a de�ning graph of a Coxeter

group admits only twists in Z2 and is of type FC, we prove Mühlherr's

Twist Conjeture.
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1 Introduction

A Coxeter generating set S of a group W is a set suh that (W,S) is a Coxeter
system. This means that S generates W subjet only to relations of the form

s2 = 1 for s ∈ S and (st)mst = 1, where mst = mts ≥ 2 for s 6= t ∈ S (possibly

there is no relation between s and t, and then we put by onvention mst = ∞).

An S-re�etion (or a re�etion, if the dependene on S does not need to be

emphasised) is an element of W onjugate to some element of S. We say that

S is re�etion-ompatible with another Coxeter generating set S′
if every S-

re�etion is an S′
-re�etion. Furthermore, S is angle-ompatible with S′

if for

every s, t ∈ S with 〈s, t〉 �nite, the set {s, t} is onjugate to some {s′, t′} ⊂ S′
.

(Setting s = t shows that angle-ompatible implies re�etion-ompatible.)

Mühlherr's Twist Conjeture predits that angle-ompatible Coxeter generating

sets of a Coxeter group di�er by a sequene of elementary twists. We postpone

the de�nition of an elementary twist to give a brief historial bakground. For

an exhaustive 2006 state of a�airs, see [11℄.

The Isomorphism Problem for Coxeter groups asks for an algorithm to de-

termine if Coxeter systems (W,S), (W ′, S′) de�ned by mst,m
′
st give rise to

isomorphi groups W and W ′
. Hene listing all Coxeter generating sets S of

W ′
solves the Isomorphism Problem. The artiles of Howlett and Mühlherr

[7℄, and Marquis and Mühlherr [9℄ redue the question of listing all suh sets

S to the problem of listing all S angle-ompatible with S′
. In this way the
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Twist Conjeture desribes a possible solution to the Isomorphism Problem for

Coxeter groups.

The �rst substantial work on the Twist Conjeture is the one by Charney

and Davis [4℄, where they prove that if a group ats e�etively, properly, and

oompatly on a ontratible manifold, then all its Coxeter generating sets are

onjugate. Caprae and Mühlherr [2℄ proved that for all mst < ∞, a Coxeter

generating set S angle-ompatible with S′
is onjugate to S′

. This is what was

predited by the Twist Conjeture, sine S with all mst < ∞ does not admit

any elementary twist. Building on that, Caprae and Przytyki [3℄ proved that

an arbitrary S not admitting any elementary twist, and angle-ompatible with

S′
, is in fat onjugate to S′

. This should be onsidered as the �base ase� of

the Twist Conjeture.

In a foundational artile [12℄ Mühlherr and Weidmann veri�ed the Twist Con-

jeture in the ase where all mst ≥ 3. In that ase there our twists in Z2 as

well as in dihedral groups. There is a more reent ontribution of Weigel [15℄

whih improves the result of [12℄. Ratli�e and Tshantz proved the Twist Con-

jeture for hordal Coxeter groups [13℄. The Twist Conjeture is also known

for the right-angled Coxeter groups (before the onjeture was stated), where

the proof is impliit in the work of Laurene [8℄ and is expliit in [10℄. In these

papers the assumptions on mst seem an artefat of the proposed proof. In our

paper, we propose the following �step one� of a systemati approah towards

Twist Conjeture. Our �rst assumption below is natural from the point of view

of the statement of the onjeture, sine it says that the ourring elementary

twists are as simple as possible. Our seond assumption is that S is of type

FC meaning that for any T ⊆ S with mtr �nite for all t, r ∈ T , we have that
〈T 〉 is �nite. This assumption seems less natural from the point of view of

the onjeture statement, but plays a role already in our proof of the �base

ase�. More preisely, [3, �3�7℄ resolve (impliitly) the �base ase� under FC

assumption, and [3, �8℄ is devoted to removing FC assumption.

Main Theorem. Let S be a Coxeter generating set angle-ompatible with S′
.

Suppose that S admits only twists in Z2, and is of type FC. Then S′
is obtained

from S by a sequene of elementary twists and a onjugation.

We �nally de�ne an elementary twist. Let (W,S) be a Coxeter system. Given

a subset J ⊆ S, we denote by WJ the subgroup of W generated by J . We all

J spherial if WJ is �nite. If J is spherial, let wJ denote the longest element

of WJ . We say that two elements s 6= t ∈ S are adjaent if {s, t} is spherial.

This gives rise to a graph whose verties are S and whose edges (labelled bymst)

orrespond to adjaent pairs of S. This graph is alled the de�ning graph of S.
Oasionally, when all mst are �nite, we will use another graph, whose verties

are still S, but (labelled) edges orrespond to pairs of non-ommuting elements

of S. This graph is alled the Coxeter�Dynkin diagram of S. Whenever we talk

about adjaeny of elements of S, we always mean adjaeny in the de�ning

graph unless otherwise spei�ed.

Given a subset J ⊆ S, we denote by J⊥
the set of those elements of S \ J that
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ommute with J . A subset J ⊆ S is irreduible if it is not ontained in K∪K⊥

for some non-empty proper subset K ⊂ J .
Let J ⊆ S be an irreduible spherial subset. We say that C ⊆ S \ (J ∪ J⊥)
is a omponent, if the subgraph indued on C in the de�ning graph of S is a

onneted omponent of the subgraph indued on S \ (J ∪ J⊥). Assume that

we have a nontrivial partition S \ (J ∪ J⊥) = A⊔B, where eah omponent C
is ontained entirely in A or in B. In other words, for all a ∈ A and b ∈ B, we

have that a and b are non-adjaent. We then say that J weakly separates S. In
the language of groups, this means that W splits as an amalgamated produt

over WJ∪J⊥ . Note that A and B are in general not uniquely determined by J .
We then onsider the map τ : S → W de�ned by

τ(s) =

{

s for s ∈ A ∪ J ∪ J⊥,
wJsw

−1
J for s ∈ B,

whih is alled an elementary twist in 〈J〉 (see [1, Def 4.4℄).
Coxeter generating sets S and S′

ofW are twist equivalent if S′
an be obtained

from S by a �nite sequene of elementary twists and a onjugation. We say

that S is k-rigid if for eah weakly separating J ⊂ S we have |J | < k. Thus

1-rigid means that there are no elementary twists (this was alled twist-rigid

in [3℄). Our Main Theorem states that if a Coxeter generating set S is 2-rigid,
of type FC, and angle-ompatible to S′

, then it is twist equivalent to S′
. Sine

twists in Z2 do not hange the de�ning graph, it follows that S and S′
have

the same de�ning graphs. Note that right-angled Coxeter groups are 2-rigid.

Organisation. In Setion 2 we reall some basi properties of the Davis

omplex and geometri sets of re�etions. In Setion 3 we reall the notions

of bases and markings from [3℄. In Setion 4 we extend in two di�erent ways

a marking ompatibility result from [3℄. Setion 5 ontains a tehnial result

required for the de�nition of omplexity in Setion 6. We prove the Main

Theorem in Setion 7.

Acknowledgements. We thank Pierre-Emmanuel Caprae, with whom we

designed the strategy arried out in the paper. We also thank the referee

for many helpful suggestions. The seond author was partially supported by

NSERC, FRQNT, and UMO-2015/18/M/ST1/00050.

2 Preliminaries

2.1 Davis complex

Let A be the Davis omplex of a Coxeter system (W,S). The 1-skeleton of A
is the Cayley graph of (W,S) with vertex set W and a single edge spanned on

{w,ws} for eah w ∈ W, s ∈ S. Higher dimensional ells of A are spanned on

left osets in W of remaining �nite WJ . The left ation of W on itself extends

to the ation on A. Note that A arries a natural CAT(0) metri; however this

metri will not play a role in the artile.
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A hamber is a vertex of A. Colletions of hambers orresponding to osets

wWJ are alled J-residues of A. A gallery is an edge-path in A. For two

hambers c1, c2 ∈ A, we de�ne their gallery distane, denoted by d(c1, c2),
to be the length of a shortest gallery from c1 to c2 (this oinides with the

word-metri w.r.t. S).
Let r ∈ W be an S-re�etion. The �xed point set of the ation of r on A
is alled its wall Wr. The wall Wr determines r uniquely. Moreover, Wr

separates A into two onneted omponents, whih are alled half-spaes (for

r). If a non-empty K ⊂ A is ontained in a single half-spae (this happens

for example if K is onneted and disjoint from Wr), then Φ(Wr ,K) denotes
this half-spae. An edge of A rossed by Wr is dual to Wr. A hamber is

inident to Wr if it is an endpoint of an edge dual to Wr. The distane of a

hamber c to Wr, denoted by d(c,Wr), is the minimal gallery distane from c
to a hamber inident to Wr.

The following fat is standard, see eg. [14, Thm 2.9℄.

Theorem 2.1. Let R be a residue and let x ∈ R and y ∈ W be hambers.

Then there is a hamber x′ ∈ R on a minimal length gallery from y to x suh

that Φ(Wr, y) = Φ(Wr, x
′) for any re�etion r �xing R.

2.2 Geometric set of reflections

Let (W,S) be a Coxeter system. Let Aref be the Davis omplex for (W,S)
(�ref� stands for �referene omplex�). For eah re�etion r, let Yr be its wall

in Aref . Note that this notation di�ers from the one in Subsetion 2.1.

Suppose that S is angle-compatible with another Coxeter generating set

S′
. Let Aamb be the Davis omplex for (W,S′) (�amb� stands for �ambient

omplex�). For eah re�etion r, let Wr be its wall in Aamb. Let P ⊆ S.

Definition 2.2. Let {Φp}p∈P be a olletion of half-spaes of Aamb for p ∈
P . The olletion {Φp}p∈P is 2-geometri if for any pair p, r ∈ P , the set

Φp ∩ Φr ∩ A(0)
amb is a fundamental domain for the ation of 〈p, r〉 on A(0)

amb.

The olletion {Φp}p∈P is geometri if additionally F =
⋂

p∈P Φp ∩ A(0)
amb is

non-empty.

The set P is 2-geometri if there exists a 2-geometri olletion of half-spaes

{Φp}p∈P .

Theorem 2.3 ([2, Thm 4.2℄). If {Φp}p∈P is 2-geometri, then after possibly

replaing eah Φp by opposite half-spae, the olletion {Φp}p∈P is geometri.

Theorem 2.3 justi�es alling 2-geometri P geometri for simpliity. In fat,

by [5℄ (see also [6, Thm 1.2℄ and [2, Fat 1.6℄), we have:

Proposition 2.4. If P is geometri, then F is a fundamental domain for the

ation of 〈P 〉 on A(0)
amb, and for eah p ∈ P there is a hamber in F inident to

Wp. In partiular, if P = S, then S is onjugate to S′
.
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Note that sine S is angle-ompatible with S′
, every 2-element subset of S is

geometri. However, this does not mean that S is 2-geometri. Nevertheless, for

S spherial, it is easy to indutively hoose 2-geometri Φs, and by Theorem 2.3

and Proposition 2.4 we obtain the following.

Lemma 2.5. If S is spherial, then it is onjugate to S′
.

Corollary 2.6. Let J ⊂ S be spherial. Then J is onjugate to a spherial

J ′ ⊂ S′
. In partiular, J is geometri, and if it is irreduible, there exist exatly

2 fundamental domains F for the ation of 〈J〉 on A(0)
amb as in Proposition 2.4.

Proof. Let P ⊂ S be maximal spherial ontaining J . Then 〈P 〉 is a maximal

�nite subgroup of W . By [1, Thm 1.9℄, we have that 〈P 〉 is onjugate to 〈P ′〉
for a maximal spherial P ′ ⊂ S′

. Thus we an assume without loss of generality

that P = S and P ′ = S′
. It now su�es to apply Lemma 2.5.

2.3 Decomposition lemma

For J ⊆ S let J∞
be the set of those elements of S \ J that are not adjaent

to any element of J .

Lemma 2.7. Let S be 2-rigid. Let s, t ∈ S be adjaent and non-ommuting,

and let r ∈ S be neither adjaent to s nor to t. Suppose that t and r are in

distint omponents of S \ (s∪s⊥), and that s and r are in distint omponents

of S \ (t ∪ t⊥). Let J = {s, t}. Then S = J ∪ J⊥ ∪ J∞
.

Proof. Suppose by ontradition that the olletion of verties of S \ (J ∪ J⊥)
that are adjaent to s or to t is non-empty. Sine S is 2-rigid, there is a shortest

edge-path γ in the subgraph indued on S \(J∪J⊥) that onnets r to a vertex
p ∈ S \ (J ∪J⊥) adjaent to s or t. We assume without loss of generality that p
is adjaent to t. Sine r and t are in distint omponents of S \ (s∪ s⊥), there
is a vertex p′ of γ in s⊥. If p 6= p′, then the subpath γ′ ⊆ γ from r to p′ is
a shorter path from r to a vertex adjaent to s or t, whih is a ontradition.

If p = p′, then sine r and s are in distint omponents of S \ (t ∪ t⊥), there
exists a vertex p′′ of γ′ = γ in t⊥. If p′′ 6= p, then we an reah a ontradition

as before. If p′′ = p, then p ∈ J⊥
, whih is impossible by our hoie of γ.

3 Bases and markings

Heneforth, in the entire artile we assume that S is irreducible, non-

spherical, and of type FC. (The reduible ase easily follows from the

irreduible.)

In this setion we reall, in simpli�ed form, several entral notions from [3℄.

Let W,S,Aref ,Yr (and later S′,Aamb,Wr) be as in Setion 2.2. The aim is to

introdue several natural hoies for half-spaes for s ∈ S in Aamb, whih will

be done in De�nition 3.6. Let c0 be the identity hamber of Aref .
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3.1 Bases

Definition 3.1. A base is a pair (s, w) with ore s ∈ S and w ∈ W satisfying

(i) w = j1 · · · jn where ji are pairwise distint elements from S \ {s},

(ii) d(w.c0,Ys) = n,

(iii) the support J = {s, j1, . . . , jn} is spherial.

Note that in the language of [3, Def 3.1 and 3.6℄ our base would be alled a sim-

ple base with spherial support. Indeed, Condition (ii) from [3, Def 3.1℄ saying

that every wall that separates w.c0 from c0 intersets Ys follows immediately

from our Condition (iii); simpliity from [3, Def 3.6℄ is our Condition (i). Note

that our Condition (ii) implies that J is irreduible.

In [3, Lem 3.7℄ and the paragraph preeding it, we established the following.

Remark 3.2. (i) If J ⊂ S is irreduible spherial and s ∈ J , then there

exists a base with support J and ore s. Namely, it su�es to order the

elements of J \ {s} into a sequene (ji) so that for every 1 ≤ i ≤ n the

set {s, j1, . . . , ji} is irreduible. Then (s, j1 . . . jn) is a base.

(ii) The ore s and support J determine the base (s, w) uniquely. Hene we
sometimes write a base as (s, J), or even just J if the ore is �xed. When

J = {s}, we often write s instead of {s} for simpliity.

Lemma 3.3. Let J ⊂ S be irreduible spherial, and let F be a fundamental

domain for 〈J〉 in A(0)
amb guaranteed by Corollary 2.6. Let s ∈ J and de�ne

w ∈ W via (s, w) = (s, J). Then we have Φ(Ws, F ) = Φ(Ws, w.F ).

Proof. First suppose S = S′
. If c0 ∈ F , then by De�nition 3.1(ii) we have

Φ(Ws, c0) = Φ(Ws, w.c0), as desired. Otherwise, we have wJ .c0 ∈ F . The

half-spaes Φ(Ws, wJ .c0) and Φ(Ws, wwJ .c0) are opposite to Φ(Ws, c0) and

Φ(Ws, w.c0), so they oinide as well.

If S 6= S′
, then by Corollary 2.6 we have gJg−1 = J ′

, where J ′
is a spheri-

al subset of S′
. Then (gsg−1, gwg−1) is a base for S′

, and by the previous

paragraph we have Φ(Wgsg−1 , g.F ) = Φ(Wgsg−1 , gw.F ). Translating by g−1
we

obtain the statement in the lemma.

3.2 Markings

Definition 3.4. A marking is a pair µ = ((s, J),m), where (s, J) is a base

and where the marker m ∈ S is not adjaent to some element of J . The ore

and the support of the marking µ are the ore and the support of its base.

Our marking satis�es (but is not equivalent to the marking de�ned by) [3,

Def 3.8℄. To see that, note that by [3, Rem 3.12℄, we have that wYm is disjoint

from Ys.
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Remark 3.5. Let (s, J) be a base and m ∈ S \ (J ∪ J⊥). If J ∪ {m} is not

spherial, then sine S is of type FC, the pair ((s, J),m) is a marking. In

partiular, sine S is irreduible non-spherial, we have that for eah s ∈ S
there exists a marking with ore s, sine we an start with J ⊂ S maximal irre-

duible spherial ontaining s. Similarly, for eah s ∈ I ⊂ S with I irreduible

spherial, there exists a marking with ore s and support ontaining I.

The following piks up the geometry of the walls Ws for s ∈ S inside the

ambient omplex for S′
.

Definition 3.6. Let µ = ((s, w),m) be a marking. Sine wYm is disjoint from

Ys, the element wmw−1s is of in�nite order, and hene also wWm is disjoint

from Ws. We de�ne Φµ
s = Φ(Ws, wWm), whih is the half-spae for s in Aamb

ontaining wWm.

The next result is essentially [3, Prop 5.2℄. Exept for Lemma 2.5 this is the only

plae where we use angle-ompatibility (instead of re�etion-ompatibility).

Note that our markings are partiular markings of [3℄, but the proof of [3,

Prop 5.2℄ only uses suh markings if S is of type FC.

Proposition 3.7. Suppose that P ⊆ S is irreduible and non-spherial. Let

p1, p2 ∈ P . Suppose that for eah i = 1, 2, any marking µ with ore pi and

support and marker in P gives the same Φpi
= Φµ

pi
. Then the pair {Φp1

,Φp2
}

is geometri.

We summarise Proposition 3.7, Theorem 2.3, and Proposition 2.4 in the fol-

lowing.

Corollary 3.8. If for eah s ∈ S any marking µ with ore s gives rise to the

same Φµ
s , then S is onjugate to S′

.

Also note that sine S is of type FC, by [3, Lem 4.2 and Thm 4.5℄ a 1-rigid

subset P ⊆ S satis�es the hypothesis of Proposition 3.7.

Corollary 3.9. If P ⊆ S is 1-rigid, then it is geometri.

4 Compatibility of markings

Let S, S′,W,Aref and Aamb be as in Setion 3. The following trivially oinides

with [3, Def 4.1℄.

Definition 4.1. Let ((s, J),m), ((s, J ′),m′) be markings with ommon ore.

We say that they are related by move

(M1) if J = J ′
, and the markers m and m′

are adjaent;

(M2) if there is j ∈ S suh that J = J ′ ∪ {j} and moreover m equals m′
and is

adjaent to j.
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We will write ((s, J),m) ∼ ((s, J ′),m′) if there is a �nite sequene of moves of

type M1 or M2 that brings ((s, J),m) to ((s, J ′),m′).

The following is a speial ase of [3, Lem 4.2℄.

Lemma 4.2. If markings µ and µ′
with ommon ore s are related by move M1

or M2, then Φµ
s = Φµ′

s .

The goal of this setion is to provide two generalisations of [3, Thm 4.5℄.

Proposition 4.3. Let I ⊂ S be irreduible spherial. Suppose that no ir-

reduible spherial I ′ ) I weakly separates S. Let µ1 = (J1,m1) and µ2 =
(J2,m2) be markings with ommon ore s ∈ I and suh that I ⊆ J1, J2. More-

over, for i = 1, 2, de�ne Ki = Ji \ (I ∪ I⊥) when I ( Ji, and Ki = {mi} when

Ji = I. Suppose that K1 and K2 are in the same omponent C of S \ (I ∪ I⊥).
Then µ1 ∼ µ2. Consequently Φµ1

s = Φµ2

s .

Heneforth we will frequently use the FC assumption to say that J ⊂ S is

spherial if and only if it indues a lique in the de�ning graph. We will

not mention this eah time expliitly to be able to fous on the main line of

reasoning.

Proof. We follow the proof of Wojtaszzyk [3, App C℄, and argue by ontradi-

tion. Let I be maximal irreduible spherial satisfying the hypothesis of the

proposition but with µ1 6∼ µ2.

The I-distane between µ1 and µ2 is the length of a shortest edge-path in (the

subgraph indued on) C between a vertex of K1 and a vertex of K2. (Suh

a path exists by our hypotheses.) Among pairs µ1, µ2 as above hoose a pair

with minimal I-distane.
If the I-distane between µ1 and µ2 is 0, then �rst onsider the ase where one

of Ji, say J1, equals I. If also J2 = I, then {m1} = K1 = K2 = {m2} yielding

µ1 = µ2, whih is a ontradition. If I ( J2, then {m1} = K1 ⊆ K2 ⊂ J2 and

hene J1 ∪ {m1} ⊂ J2 is spherial, ontradition. It remains to onsider the

ase where I ( J1, J2. Then J1 ∩ J2 \ (I ∪ I⊥) 6= ∅ giving a ontradition with

the maximality of I.
Now assume that the I-distane between µ1 and µ2 is 1. First onsider the ase
where one of Ji, say J1, equals I. If also J2 = I, then m1 and m2 are adjaent.

Thus µ1 and µ2 are related by move M1, whih is a ontradition. If I ( J2,
then there exists k2 ∈ J2 \ (I ∪ I⊥) suh that k2 and m1 are adjaent. Thus µ1

is related to (I ∪ {k2},m1) by move M2. However, (I ∪ {k2},m1) ∼ µ2 by the

maximality of I, whih is a ontradition. It remains to onsider the seond

ase where I ( J1, J2. Then there exist ki ∈ Ji\(I∪I⊥) suh that k1 and k2 are
adjaent. Note that I ∪ {k1, k2} is spherial and irreduible. By Remark 3.5,

there exists a marking ν with ore s and support ontaining I ∪ {k1, k2}. By

the maximality of I, we have µ1 ∼ ν ∼ µ2, whih is a ontradition.

If the I-distane between µ1 and µ2 is ≥ 2, let γ be a shortest edge-path

in C onneting a vertex k1 ∈ K1 to a vertex k2 ∈ K2. Let k be the vertex
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on γ following k1. If I ∪ {k} is spherial, then again by Remark 3.5, there

exists a marking ν with ore s and support ontaining I ∪ {k}. Sine we

hose µ1 and µ2 to have minimal I-distane, we obtain µ1 ∼ ν ∼ µ2, whih

is a ontradition. If I ∪ {k} is not spherial, then (I, k) is a marking, hene

analogously µ1 ∼ (I, k) ∼ µ2, whih is a ontradition.

The following more tehnial proposition is used only in Case 4 of the proof of

Lemma 5.3 and we reommend to skip it at a �rst reading.

Definition 4.4. Let P ⊆ S be irreduible non-spherial. We say that P is

1-rigid in S if for any irreduible spherial L ⊂ S with L∩P 6= ∅, all elements

of P \ (L ∪ L⊥) are in one omponent of S \ (L ∪ L⊥).

Proposition 4.5. Let P ⊆ S be 1-rigid in S. Then for any markings µ1 and

µ2 with supports and markers in P and ommon ore p, we have µ1 ∼ µ2.

Consequently Φµ1

p = Φµ2

p and by Proposition 3.7, P is geometri.

In the proof we need the following terminology.

Definition 4.6. Let P be 1-rigid in S. Note that P \ (L ∪ L⊥) 6= ∅ for any

irreduible spherial p ∈ L ⊂ S. A marking µ = ((p, J),m) is (p, P )-admissible

(or shortly admissible if p and P are �xed) if

1. p ∈ P , and

2. if L ⊂ S is irreduible spherial suh that p ∈ L and J * L, then
J \ (L ∪ L⊥) (whih is non-empty) and P \ (L ∪ L⊥) are in the same

omponent of S \ (L ∪ L⊥), and

3. if L ⊂ S is irreduible spherial suh that J ⊆ L, then m and P \(L∪L⊥)
are in the same omponent of S \ (L ∪ L⊥).

A base (p, J) is (p, P )-admissible (or admissible) if it satis�es Conditions (1)

and (2).

Note that markings with ore p and supports and markers in P , suh as µ1, µ2

in Proposition 4.5, are (p, P )-admissible, but not vie-versa. The lass of (p, P )-
admissible markings is a ruial ingredient in the proof of Proposition 4.5. In

the remaining part of the setion we �x P 1-rigid in S, and we �x p ∈ P .

Lemma 4.7. Suppose that (p, J) is admissible. Let ν = ((p, J ′),m) be a marking

suh that J ⊆ J ′
, J ′ \ J ⊂ P and m ∈ P . Then ν is admissible.

Note that suh ν exists for eah J . Namely, one an take J ′ ⊇ J to be maximal

irreduible spherial with J ′ \J ⊂ P . Then take m inside P \ (J ′ ∪J ′⊥), whih
is non-empty sine P is irreduible non-spherial.

Proof. Condition (1) is immediate. For Condition (2), let L ⊂ S be irreduible

spherial and suh that p ∈ L and J ′ * L. If J * L, then ∅ 6= J \ (L ∪ L⊥) ⊆
J ′ \ (L∪L⊥). Sine (p, J) is admissible, Condition (2) holds for suh L and J ′

.

If J ⊆ L, then J ′ \ (L ∪ L⊥) ⊆ J ′ \ J ⊂ P , hene Condition (2) holds for suh

L and J ′
. Condition (3) is immediate, sine we have m ∈ P .
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Proof of Proposition 4.5. Note that both µ1 and µ2 are admissible. Hene to

prove the proposition it su�es to show that for any two admissible markings

µ1, µ2 with ommon ore p, we have µ1 ∼ µ2.

We argue by ontradition. Let I ∋ p be maximal irreduible spherial suh

that there are admissible markings µ1 = (J1,m1) and µ2 = (J2,m2) with

I ⊆ J1, J2, and µ1 6∼ µ2. We de�ne K1, K2, and the I-distane between µ1

and µ2 as in the proof of Proposition 4.3. Sine both µ1 and µ2 are admissible,

their I-distane is �nite (set L = I in the de�nition of admissible marking).

Among pairs µ1, µ2 as above hoose a pair with minimal I-distane.

If the I-distane is 0, then either µ1 = µ2, or one of Ji ∪ {mi} is spherial, or

there is irreduible I ′ ) I ontained in both J1 and J2, ontradition. Suppose
now that the I-distane is 1. There are two ases to onsider.

Case 1: J1 = I. If J2 = I, then µ1 and µ2 are related by move M1, ontradi-

tion. Now we assume I ( J2. Pik k2 ∈ K2 adjaent to m1. Then I ′ = I∪{k2}
is spherial and irreduible. Moreover, µ1 ∼ (I ′,m1) by move M2. We laim

that (I ′,m1) is admissible. Then (I ′,m1) ∼ µ2 by the maximality of I, whih
yields a ontradition. Now we prove the laim. For Condition (2), let p ∈ L
and I ′ * L. If I * L, it su�es to use Condition (2) in the admissibility of

µ1. Now suppose I ⊆ L. Then I ′ \ (L ∪ L⊥) = {k2}. By Condition (2) in the

admissibility of µ2, we have that k2 is in the same omponent of S \ (L ∪ L⊥)
as P \ (L∪L⊥), as desired. Condition (3) follows immediately from Condition

(3) in the admissibility of µ1.

Case 2: I ( J1 and I ( J2. For i = 1, 2, pik ki ∈ Ki suh that k1 and k2
are adjaent. Then J = I ∪ {k1, k2} is spherial and irreduible. It is easy to

show that J is admissible following the argument from Case 1. Let ν be an

admissible marking onstruted from J as in Lemma 4.7. Then µ1 ∼ ν ∼ µ2

by the maximality of I, whih yields a ontradition.

Finally suppose that the I-distane d between µ1 and µ2 is ≥ 2. Let γ be a

shortest edge-path in the subgraph indued on S \ (I ∪ I⊥) starting at k1 ∈ K1

and ending at k2 ∈ K2. Let k be the vertex on γ following k1. If J = I ∪ {k}
is not spherial, then let ν = (I, k), otherwise let ν be de�ned from J as in

Lemma 4.7. Sine the I-distane between ν and µ1, µ2 is < d, to reah a

ontradition it su�es to prove that ν is admissible.

Consider �rst the ase where J is spherial. By Lemma 4.7, it su�es to

prove that J is admissible. Let p ∈ L and J * L. If I * L, then we use the

admissibility of µ1. Otherwise, we have J\(L∪L
⊥) = {k}. Sine γ is a geodesi,

γ ∩ L is empty, a vertex, or an edge. Moreover, γ ∩ L⊥ = ∅, sine γ ∩ I⊥ = ∅
and I ⊆ L. Thus there is a subpath of γ from k to k1 or k2 outside L ∪ L⊥

.

Sine µ1, µ2 were admissible, k is in the omponent of S \ (L∪L⊥) ontaining
P \ (L ∪ L⊥), as desired.

If J is not spherial, then ν = (I, k). Condition (2) for ν follows from the

admissibility of µ1. For Condition (3), let I ⊆ L. As before, there is a subpath
of γ from k to k1 or k2 outside L∪L

⊥
. Thus, again, sine µ1, µ2 were admissible,

k is in the omponent of S \ (L ∪ L⊥) ontaining P \ (L ∪ L⊥).
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5 Good vertices

In this setion we introdue the notion of a good vertex t in an irreduible

spherial J ⊂ S w.r.t. r ∈ S \ J , and the related fundamental domain Et,r for

the ation of J on A(0)
amb. Then in Proposition 5.2 we prove that Et,r does not

depend on t. This will be ruial for the de�nition of the omplexity of S w.r.t.

S′
in Setion 6. Let S, S′,W,Aref and Aamb be as in Setion 3. Throughout

the remaining part of the article, we will also assume that S is

2-rigid.

Definition 5.1. Let J ⊂ S be irreduible spherial and r ∈ S \ J . A vertex

t ∈ J is good with respet to r, if t is adjaent to r, or J \ (t∪ t⊥) is non-empty

and in the same omponent of S \ (t∪ t⊥) as r. Note that being good depends

on J .
Let I ⊂ S be spherial. J is good with respet to I if there exist non-adjaent

t ∈ J and r ∈ I suh that t is good with respet to r. Then let Et,r be that

fundamental domain from Corollary 2.6 for the ation of J on A(0)
amb that is

ontained in Φ(Wt,Wr).

Proposition 5.2. Let J ⊂ S be irreduible spherial and I ⊂ S be spherial.

Suppose that we have pairs of non-adjaent verties (t, r) and (t′, r′) in J × I
suh that t is good with respet to r, and t′ is good with respet to r′. Then

Et,r = Et′,r′.

The proof of Proposition 5.2 is the most tehnial part of the artile, and we

reommend to skip it at �rst reading. We need a preparatory lemma.

Lemma 5.3. Let t, r ∈ S be non-adjaent. Let J ⊂ S be irreduible spherial

ontaining t. Let j0 ∈ J and let ω = (j0, j1, . . .) be the geodesi edge-path

in the Coxeter�Dynkin diagram of J that starts at j0 and ends at t (suh a

geodesi is unique sine the Coxeter�Dynkin diagram of a spherial subset is

a tree). Let jn be the �rst vertex of ω not adjaent to r (possibly jn = j0
or jn = t). Suppose that both t, j0 ∈ J are good w.r.t. r. Then we have

Φ(jnjn−1 · · · j1Wj0 , Et,r) = Φ(jnjn−1 · · · j1Wj0 ,Wr).

Proof. We write E = Et,r to shorten the notation.

We laim that for any non-ommuting j, j′ ∈ J at least one of j, j′ is good

(w.r.t. r; we will skip repeating this in this proof). To justify the laim, if both

j and j′ are not good, then r and j are in distint omponents of S \ (j′ ∪ j′
⊥
),

and r and j′ are in distint omponents of S \(j∪j⊥). If {j, j′} ( J , then there

is an element in S \ ({j, j′} ∪ {j, j′}⊥) adjaent to j and j′, whih ontradits

Lemma 2.7. If {j, j′} = J , then one of j, j′ equals t, whih was assumed to be

good, ontradition. This justi�es the laim.

If j0 = t, then there is nothing to prove. Otherwise, we indut on the length

of ω and assume that the onlusion of the lemma holds for all good ji distint
from j0. By the laim either j1 or j2 is good. We look �rst at the situation

where j1 is good. There are four ases to onsider.
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Case 1: both j0 and j1 are not adjacent to r. Sine j1 is good, j0
it is in the same omponent of S \ (j1 ∪ j⊥1 ) as r. Thus by Proposition 4.3

applied with I = {j1} and the assumption that S is 2-rigid we have (j1, r) ∼
((j1, j0), r). Analogously (j0, r) ∼ ((j0, j1), r). Let Σ ⊂ Aamb be the union

of the two setors of the form Φj0 ∩ Φj1 for {Φj0 ,Φj1} geometri. Denoting

Φj1 = Φ(Wj1 ,Wr), from (j1, r) ∼ ((j1, j0), r) we obtain Φj1 = Φ(Wj1 , j0Wr),
and so j0Φj1 ⊃ Wr. Consequently Wr ⊂ Φj1 ∩ j0Φj1 ⊂ Σ ∪ j0Σ. Analogously
(j0, r) ∼ ((j0, j1), r) implies Wr ⊂ Σ ∪ j1Σ, and so Wr ⊂ Σ. By indution

assumption, Φ(Wj1 , E) = Φ(Wj1 ,Wr), thus E and Wr are in the same setor

of Σ, and it follows that Φ(Wj0 , E) = Φ(Wj0 ,Wr).

Case 2: j1 is adjacent to r, but j0 is not adjacent to r. Then n = 0.
Let jm be the �rst vertex of ω distint from j0 not adjaent to r.
First, we laim Φ(j0Wj1 , E) = Φ(j0Wj1 ,Wr). Indeed, sine (j1, j0) and

(j1, j2 · · · jm) are bases, by two appliations of Lemma 3.3 we have

Φ(Wj1 , j0.E) = Φ(Wj1 , E) = Φ(Wj1 , j2 · · · jm.E),

whih equals Φ(Wj1 , j2 · · · jmWr) by indution. Furthermore, ((j1, j2 · · · jm), r)
is a marking and j2 is adjaent to j0. Thus by Proposition 4.3 and the fat

that S is 2-rigid, we obtain

((j1, j2 · · · jm), r) ∼ ((j1, j0), r),

and the laim follows.

Let Φj0 ,Φj1 be the half-spaes for j0, j1 ontaining E and let Λ = Φj0 ∩ Φj1 .

Sine Wr intersets Wj1 , by the laim we have that Wr intersets Λ. It follows
that Φ(Wj0 , E) = Φ(Wj0 ,Wr).

Case 3: j0 is adjacent to r, but j1 is not adjacent to r. By in-

dution, we have Φ(Wj1 , E) = Φ(Wj1 ,Wr). We need to show Φ(j1Wj0 , E) =
Φ(j1Wj0 ,Wr). To do this, it su�es to reverse the argument in the previous

paragraph.

Case 4: both j0 and j1 are adjacent to r. Let P = {j0, j1, . . . , jn, r}.
We laim that P is geometri. Indeed, by Proposition 4.5, to justify the laim

it su�es to prove that P is 1-rigid in S. We have that P is irreduible and

non-spherial. Now let L ⊂ S be irreduible spherial with L∩P 6= ∅. Sine S
is 2-rigid, it su�es to onsider L = {l} a singleton in P . Note that in P the

only two non-adjaent elements are r and jn. Thus the ases l = r, jn are lear.

It remains to onsider the ase l ∈ K = P \ {r, jn}. Sine K is irreduible and

|K| ≥ 2, we have K \ (l ∪ l⊥) 6= ∅. Consequently, {l} does not weakly separate

P , verifying the laim.

By Theorem 2.3 and Proposition 2.4, there are half-spaes

{Φj0 ,Φj1 , · · · ,Φjn ,Φr} whose intersetion ontains a vertex x inident to

Wr. Thus by indution we have

Φ(jnjn−1 · · · j2Wj1 , E) = Φ(jnjn−1 · · · j2Wj1 ,Wr) = Φ(jnjn−1 · · · j2Wj1 , x).
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Let F and Fant (resp. V and Vant) be the two fundamental domains for

{j0, j1, . . . , jn} (resp. {j1, . . . , jn}) from Corollary 2.6. Assume without loss

of generality F ⊂ V . Then x and E are both inside F or Fant, say F , otherwise
they would be separated by jnjn−1 · · · j2Wj1 . It follows that both x and E
are in V . In partiular, Φ(jnjn−1 · · · j1Wj0 , E) = Φ(jnjn−1 · · · j1Wj0 , x), whih
equals Φ(jnjn−1 · · · j1Wj0 ,Wr), as desired.
Now we turn to the situation where j1 is not good, hene j2 is good. Sine

j1 is not good, it is not adjaent to r, and furthermore r is not adjaent to

j0, nor to j2. Sine j2 is good and S is 2-rigid, by Proposition 4.3 we obtain

Φ(Wj2 ,Wr) = Φ(Wj2 , j1Wr). By indution, we have Φ(Wj2 ,Wr) = Φ(Wj2 , E).
Thus Lemma 5.4 below gives Φ(Wj1 , j2Wr) = Φ(Wj1 , E). Sine S is 2-rigid,

by Proposition 4.3 we have Φ(Wj1 , j2Wr) = Φ(Wj1 , j0j2Wr) = Φ(Wj1 , j0Wr),
and �nally Φ(Wj0 ,Wr) = Φ(Wj0 , j1Wr), sine j0 is good. Applying Lemma 5.4

with j0 in plae of j2 we obtain Φ(Wj0 ,Wr) = Φ(Wj0 , E), as desired.

Lemma 5.4. Let j1, j2 ∈ S be adjaent and non-ommuting. Suppose that

r ∈ S is not adjaent to j2 and Φ(Wj2 ,Wr) = Φ(Wj2 , j1Wr). Let F be a

fundamental domain for 〈j1, j2〉 in A(0)
amb from Corollary 2.6. Then we have

Φ(Wj2 ,Wr) = Φ(Wj2 , F ) if and only if Φ(Wj1 , j2Wr) = Φ(Wj1 , F ).

Proof. Denote Φj2 = Φ(Wj2 ,Wr), and hoose Φj1 so that Φj2 and Φj1 are

geometri. Let Λ = Φj2 ∩Φj1 . Sine Φ(Wj2 ,Wr) = Φ(Wj2 , j1Wr), as in Case 1

of the proof of Lemma 5.3 we obtain Wr ⊂ Λ ∪ j1Λ. Note that Λ ∪ j1Λ is

ontained entirely in one of the half-spaes for Wj2 , and in one of the half-

spaes for j2Wj1 . Thus Φ(Wj2 ,Wr) = Φ(Wj2 , F ) if and only if F ⊂ Λ if and

only if Φ(j2Wj1 ,Wr) = Φ(j2Wj1 , F ). By Lemma 3.3 the latter is equivalent to

Φ(Wj1 , j2Wr) = Φ(Wj1 , F ).

We are �nally ready for the following.

Proof of Proposition 5.2. We prove the proposition by indution on the dis-

tane between t and t′ in the Coxeter�Dynkin diagram of J . If t = t′, then
sineWr∩Wr′ 6= ∅, the proposition is lear. If r = r′, then we apply Lemma 5.3

with j0 = t′, where n = 0. By Lemma 5.3, we have Φ(Wt′ , Et,r) = Φ(Wt′ ,Wr)
and thus Et′,r = Et,r, as desired.

Now we assume t 6= t′ and r 6= r′. If t and r′ are non-adjaent, then t is good
with respet to r′ (sine r and r′ are adjaent). Thus we an pass from (t, r)
to (t′, r′) via (t, r′) by the previous disussion. The ase where t′ and r are

non-adjaent is analogous. Thus it remains to onsider the ase where t and r′

are adjaent, and t′ and r are adjaent.

We �rst look at the ase where t and t′ do not ommute. We onsider

P = {t, t′, r, r′}. Note that the de�ning graph of P is a square, thus P is

1-rigid. Hene P is geometri by Corollary 3.9. Let F ⊂ A(0)
amb be the funda-

mental domain for 〈P 〉 y A(0)
amb from Proposition 2.4. Let V ⊂ A(0)

amb be the
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fundamental domain for 〈t, t′〉 that ontains F . Sine t and t′ do not om-

mute, V is the only fundamental domain for 〈t, t′〉 ontained in Φ(Wt,Wr) and
the only one in Φ(Wt′ ,Wr′). Thus Et,r ⊂ V and Et′,r′ ⊂ V . It follows that

Et,r = Et′,r′.

Now we deal with the general situation. We onsider the geodesi edge-path

(ti)
n
i=0 from t0 = t to tn = t′ in the Coxeter�Dynkin diagram of J (whih is a

tree). Let i′ be minimal suh that ti′ is not adjaent to r′ and i maximal suh

that ti is not adjaent to r. Then ti′ is good respet to r′ (sine r′ and ti′−1

are adjaent) and ti is good with respet to r (sine r and ti+1 are adjaent).

Note that i′ ≥ 1 and i ≤ n− 1. If i′ ≤ n− 1, then by the indution assumption

we an pass from (t, r) to (t′, r′) via (ti′ , r
′). The ase i ≥ 1 is analogous. Thus

in the remaining part of the proof we assume i′ = n and i = 0, in other words,

ti is adjaent to both r and r′ for eah 1 ≤ i ≤ n− 1.
Let P = {t0, . . . , tn, r, r′}. Note that the de�ning graph of P is a join of a

4-yle (whose onseutive verties are t, r′, r, t′) and a omplete graph (whose

verties are t1, . . . , tn−1). Sine (ti) was an edge-path in the Coxeter�Dynkin

diagram, it is easy to prove that the de�ning graph of P is 1-rigid. Thus P

is geometri by Corollary 3.9. Let F ⊂ A(0)
amb be the fundamental domain for

〈P 〉 y A(0)
amb from Proposition 2.4. Let V ⊂ A(0)

amb be the fundamental domain

for 〈t0, . . . , tn〉 that ontains F . Sine {t0, . . . , tn} is irreduible, V is the only

fundamental domain for 〈t0, . . . , tn〉 ontained in Φ(Wt,Wr) and the only one

in Φ(Wt′ ,Wr′). Thus Et,r ⊂ V and Et′,r′ ⊂ V . Hene Et,r = Et′,r′ .

6 Complexity

In this setion, we introdue the omplexity of the Coxeter generating set S
w.r.t. S′

. We keep the setup from Setion 5. To start, we need to desribe

partiular subsets of pairs of maximal spherial residues.

Definition 6.1. Let J ⊂ S be a maximal spherial subset. By Corollary 2.6,

WJ stabilises a unique maximal ell σJ ⊂ Aamb. Let CJ be the olletion of

verties in σJ and let DJ be the elements of CJ inident to eah Wj for j ∈ J .

When J is irreduible, then by Corollary 2.6, it is easy to see that DJ onsists

of two antipodal verties. In general, let J = J1⊔· · ·⊔Jk be the deomposition

of J into maximal irreduible subsets. Let σJ = σ1 × · · · × σk be the indued

produt deomposition of the assoiated ell. Then DJ is a produt of pairs of

antipodal verties {ui, vi} for eah σi. Let πi : DJ → {ui, vi} be the oordinate
projetions.

Definition 6.2. For eah ordered pair (J, I) of maximal spherial subsets

of S, we de�ne the following subset EJ,I ⊆ DJ . First, for eah i, onsider
the following Ei

J,I ⊆ DJ . If Ji is not good with respet to I, then we take

Ei
J,I = DJ . If Ji is good, then let t and r be as in De�nition 5.1. Then we

take Ei
J,I = CJ ∩Et,r (whih is ontained in DJ and equal π−1

i (ui) or π
−1
i (vi)).
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Note that Ei
J,I does not depend on t and r by Proposition 5.2. We de�ne

EJ,I = E1
J,I ∩ · · · ∩ Ek

J,I .

Definition 6.3. We de�ne the omplexity of S, denoted K(S), to be the or-

dered pair of numbers

(

K1(S),K2(S)
)

=
(

∑

J 6=I d(CJ , CI),
∑

J 6=I d(EJ,I , EI,J)
)

,

where J and I range over all maximal spherial subsets of S, and EJ,I is de�ned

in De�nition 6.2. Note that the distane d is omputed in A(1)
amb and so we have

K1(S
′) = K2(S

′) = 0, sine c0 ∈ CJ , c0 ∈ EJ,I for all maximal spherial subsets

J, I ⊂ S′
.

For two Coxeter generating sets S and Sτ , we de�ne K(Sτ ) < K(S) if K1(Sτ ) <
K1(S), or K1(Sτ ) = K1(S) and K2(Sτ ) < K2(S).

7 Proof of the main theorem

We keep the setup from Setion 5. Note that sine S is 2-rigid, an elementary

twist does not hange its de�ning graph. Thus Main Theorem redues to the

following.

Theorem 7.1. Let S be angle-ompatible with S′
. Suppose that S is 2-rigid

and of type FC. Assume moreover that S has minimal omplexity among all

Coxeter generating sets twist-equivalent to S. Then S is onjugate to S′
.

The proof will take the remaining part of the artile, and we divide it into

several steps. For µ = ((s, w),m) a marking with support J , we de�ne Kµ =
J \ (s ∪ s⊥) if J 6= {s}, and Kµ = {m} otherwise.

By Corollary 3.8, to prove Theorem 7.1 it su�es to show that for any markings

µ and µ′
with ommon ore s ∈ S, we have Φµ

s = Φµ′

s . Note that for eah

omponent A of S \ (s ∪ s⊥), there exists a marking µ with Kµ ⊆ A. By

Proposition 4.3 and the fat that S is 2-rigid, if Kµ′ ⊆ A, then Φµ
s = Φµ′

s .

Thus eah omponent A of S \ (s ∪ s⊥) determines a half-spae ΦA := Φµ
s for

s. Two omponents A1 and A2 of S \ (s ∪ s⊥) are ompatible if ΦA1
= ΦA2

.

We will show that all the omponents of S \ (s ∪ s⊥) are ompatible. Fixing

s ∈ S, we shall divide these omponents into several lasses and ondut a ase

analysis.

7.1 Big components are compatible

Definition 7.2. A omponent A of S \ (s ∪ s⊥) is big if there is a ∈ A not

adjaent to s. Otherwise A is small.

Lemma 7.3. Any two big omponents are ompatible.

Proof. We argue by ontradition and assume that the big omponents of S \
(s ∪ s⊥) an be divided into two non-empty families {Ak} and {Bk} suh that
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all ΦAk
oinide (all that half-spae ΦA) and are distint from all ΦBk

, whih

also oinide (all that half-spae ΦB). Let B be the union of all the Bk. Let

τ be the elementary twist that sends eah element b ∈ B to sbs and �xes other

elements of S. For a ontradition, we will prove K1(τ(S)) < K1(S).
Let J ⊂ S be maximal spherial. J is twisted if it ontains an element of B
and s /∈ J . A twisted J exists, sine we an take any maximal spherial J
ontaining b ∈ B not adjaent to s. Note that if J is twisted, then for eah

j ∈ J we have Wτ(j) = sWj , and hene Cτ(J) = s.CJ . Moreover, there is an

element b ∈ J \{s} not adjaent to s, sine otherwise J∪{s} would be spherial

ontraditing the maximality of J . Then Φ(Ws, CJ ) = Φ(Ws,Wb) = ΦB.

Consider now maximal spherial I ⊂ S that is not twisted. If s ∈ I, then
Cτ(I) = s.CI = CI . If s /∈ I, then I ∩B = ∅, and we also have Cτ(I) = CI . As

before, there exists suh I with s /∈ I. Moreover, then there is a ∈ I \ {s} not

adjaent to s, and Φ(Ws, CI) = Φ(Ws,Wa) = ΦA.

Let J, I ⊂ S be maximal spherial. If both J and I are twisted or both are

not twisted, then d(CJ , CI) = d(Cτ(J), Cτ(I)). Now suppose that J is twisted

and I is not twisted. If s ∈ I, we still have d(CJ , CI) = d(Cτ(J), Cτ(I)).
If s /∈ I, then sine ΦB 6= ΦA, we have Φ(Ws, CJ) 6= Φ(Ws, CI). Hene a

minimal length gallery β from a hamber in CJ to a hamber in CI has an

edge dual to Ws. Removing this edge from β and re�eting β ∩ Φ(Ws, CJ )
by s, we obtain a shorter gallery from a hamber in s.CJ to a hamber in CI .

Thus d(Cτ(J), Cτ(I)) = d(s.CJ , CI) < d(CJ , CI). Consequently K1(τ(S)) <
K1(S).

7.2 Exposed components

Definition 7.4. A small omponent A is exposed if there is t ∈ A and r inside
a di�erent omponent of S\(s∪s⊥) suh that s and r are in distint omponents

of S \ (t ∪ t⊥).

Lemma 7.5. If there exists an exposed omponent, then all omponents are

ompatible.

Proof. Let t and r be as in De�nition 7.4. Note that r is adjaent to neither s
nor t. By Lemma 2.7, none of the elements of S \ ({s, t} ∪ {s, t}⊥) is adjaent
to s or t. It follows that there is only one small omponent of S \ (s∪ s⊥), and
this small omponent equals {t}.
Observe that a maximal spherial subset J ⊂ S ontains s if and only if it

ontains t. Indeed, if say s ∈ J , then eah element of J \ {s} is adjaent to s.
Hene J ⊆ {s, t} ∪ {s, t}⊥ by Lemma 2.7. If t /∈ J , then J ∪ {t} is spherial,

whih ontradits the maximality of J . We say that J is exposed if {s, t} ⊆ J .
LetW{s,t} be the union of all the walls in Aamb for the re�etions in the dihedral

group 〈s, t〉. Sine S is 2-rigid, the graph indued on S \ ({s, t} ∪ {s, t}⊥)
is onneted. Thus all the walls Wr for r ∈ S \ ({s, t} ∪ {s, t}⊥) lie in the

same onneted omponent Λ of Aamb \ W{s,t}. Consequently, all DJ for J
not exposed lie in Λ. Let Σ ⊂ Aamb be the union of the two setors of the
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form Φs ∩ Φt for {Φs,Φt} geometri. Assume �rst Λ ⊂ Σ. Then Φ(Ws,Λ) =
Φ(Ws, tΛ), hene Φ(Ws,Wr) = Φ(Ws, tWr). These half-spaes orrespond

to markings µ = ((s, t), r) with Kµ = {t} and µ′ = (s, r) with Kµ′ = {r}.
Consequently, the unique small omponent {t} of S\(s∪s⊥) is ompatible with

a big omponent. In view of Lemma 7.3, all the omponents are ompatible.

It remains to onsider the ase Λ 6⊂ Σ.

Let τs (resp. τt) be the elementary twist that sends t to sts (resp. s to tst) and
�xes other elements of S. For any w ∈ 〈s, t〉, omposing appropriately τs and

τt (while keeping the notation s, t for the images of s, t under the twist), we

obtain τ = τw sending s to wsw−1
, t to wtw−1

and �xing other elements of S.
We will justify the following.

1. Wτ(s) = wWs and Wτ(t) = wWt;

2. if J is maximal spherial that is exposed (resp. not exposed), thenDτ(J) =
w.DJ (resp. Dτ(J) = DJ);

3. if J and I are both maximal spherial and exposed (resp. not exposed),

then Eτ(J),τ(I) = w.EJ,I (resp. Eτ(J),τ(I) = EJ,I);

4. if J is maximal spherial that is exposed and I is maximal spherial that

is not exposed, then Eτ(J),τ(I) = w.EJ,I and Eτ(I),τ(J) = EI,J .

Here (1) is immediate and implies (2), while (3) follows from (2) and De�ni-

tion 6.2 (note that an elementary twist does hange the de�ning graph, so it

does not hange the good subsets of J and I). Now we prove (4). Note that for

eah j ∈ J , we have Wj ∩Wτ(j) 6= ∅. Moreover, τ �xes eah element of I. Thus
for non-adjaent i ∈ I and j ∈ J , the walls Wj and Wτ(j) are in the same half-

spae for i = τ(i). Hene it follows from De�nition 6.2 that Eτ(I),τ(J) = EI,J .

It remains to verify the �rst equality of (4). Note that the elements of J \{s, t}
are �xed by τ , and {s, t} ⊂ J is maximal irreduible that is not good in view

of De�nition 7.4 and Lemma 2.7. Thus Eτ(J),τ(I) = Dτ(J) = w.DJ = w.EJ,I ,

�nishing the proof of (4).

Coming bak to the ase Λ 6⊂ Σ, hoose τ = τw a omposition of twists

as above so that wΣ ontains Λ. We will reah a ontradition by show-

ing K1(τ(S)) = K1(S) and K2(τ(S)) < K2(S). The equality follows from

the fat that for any maximal spherial J ⊂ S, we have Cτ(J) = CJ . Now

we verify the inequality. Consider maximal spherial subsets J, I ⊂ S. If

both J and I are exposed or both are not exposed, then by (3) we have

d(Eτ(J),τ(I), Eτ(I),τ(J)) = d(EJ,I , EI,J).

Now we assume that J is exposed but I is not exposed. Let β be a shortest

gallery from a hamber y ∈ EI,J to a hamber x ∈ EJ,I . By angle-ompatibility,

{s, t} is onjugate to {s′, t′} ⊂ S′
. By Theorem 2.1, we an assume that β is

a onatenation of galleries β′
and β′′

, where β′
is a minimal gallery from y to

some hamber (all it x′
) in the {s′, t′}-residue R ontaining x. Furthermore,

β′ ⊂ Λ. Note that x 6= x′
sine Λ * Σ.
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We have x′ = w.x or x′ = w.xant, where xant is the hamber antipodal to x
in R. Note that xant ∈ EJ,I , sine {s, t} is an irreduible omponent of J that

is not good with respet to I. Thus from (4) we dedue x′ ∈ Eτ(J),τ(I) and

y ∈ Eτ(I),τ(J). Consequently d(Eτ(J),τ(I), Eτ(I),τ(J)) < d(EJ,I , EI,J), giving
K2(τ(S)) < K2(S).

7.3 Non-exposed small components

To prove Theorem 7.1, it remains to onsider the ase where all omponents of

S \ (s ∪ s⊥) are big, or small and not exposed. We argue by ontradition and

assume that the omponents of S \ (s∪ s⊥) an be divided into two non-empty

families {Ak} and {Bk} suh that all ΦAk
oinide and are distint from all

ΦBk
, whih also oinide. Let A (resp. B) be the union of all Bk (resp. Ak).

By Lemma 7.3, we an assume that all the big omponents (if they exist) are

in A. Let τ be the elementary twist that sends eah element b ∈ B to sbs and
�xes other elements of S.
Let J ⊂ S be a maximal spherial subset. J is twisted if it ontains an element

of B. In that ase, s is adjaent to eah element in J sine B is a union of small

omponents. Consequently J ∪ {s} is spherial so s ∈ J by the maximality of

J .
In partiular, τ preserves all CJ , and hene K1(S) = K1(τ(S)). For a ontra-

dition, we will prove K2(τ(S)) < K2(S).
Consider maximal spherial subsets J and I. If both of them are twisted or

both are not-twisted, then we have

d(Eτ(J),τ(I), Eτ(I),τ(J)) = d(EJ,I , EI,J). (7.1)

Now we assume that J is twisted and I is not twisted. If I ⊆ {s} ∪ {s}⊥,
then (7.1) holds as well. It remains to disuss the ase where I * s ∪ s⊥. We

will prove d(Eτ(J),τ(I), Eτ(I),τ(J)) < d(EJ,I , EI,J), whih implies K2(τ(S0)) <
K2(S0) and �nishes the proof of Theorem 7.1.

Case 1: I contains s. In that ase, pik r ∈ I \ (s ∪ s⊥). Let I1 ⊆ I be

maximal irreduible ontaining r. Then s ∈ I1, sine s and r do not ommute.

Pik t ∈ J \ (s ∪ s⊥). Let J1 ⊆ J be maximal irreduible ontaining t. Then

s ∈ J1. Sine both t and r are adjaent to s, we have that t ∈ J1 is good with

respet to r, and r ∈ I1 is good respet to t.
We �rst justify that EJ,I and EI,J lie in distint half-spaes for s. Otherwise,
{r, s, t} is geometri. In partiular, we have Φ(Ws, tWr) = Φ(Ws, rWt). These
half-spaes orrespond to markings µ = ((s, t), r) with Kµ = {t} and µ′ =
((s, r), t) with Kµ′ = {r}. This ontradits the assumption that t and r belong
to inompatible omponents.

We have Dτ(J) = s.DJ . Note that τ �xes all the elements of I and J \ J1, and
hene Eτ(J),τ(I) = s.EJ,I in view of

Φ(sWt,Wr) = Φ(sWt,Wr ∩Ws) = sΦ(Wt,Wr ∩Ws) = sΦ(Wt,Wr).
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On the other hand, we have Eτ(I),τ(J) = EI,J , sine Wj ∩ Wτ(j) 6= ∅ for eah

j ∈ J , and hene Wj and Wτ(j) are in the same half-spae for i = τ(i) ∈ I not

adjaent to j.
To onlude Case 1, pik a gallery β of minimal length from x ∈ EJ,I to

y ∈ EI,J . Sine hambers x and y lie in distint half-spaes for s and x is

inident to Ws, we an assume that the �rst edge of β is dual to Ws (Theo-

rem 2.1). Sine s.x ∈ s.EJ,I = Eτ(J),τ(I) and y ∈ EI,J = Eτ(I),τ(J), we have

d(Eτ(J),τ(I), Eτ(I),τ(J)) < d(EJ,I , EI,J), as desired.

Case 2: I contains an element not adjacent to s. Let this element

be r. Let t and J1 be as in Case 1. Sine t is inside a non-exposed small

omponent, t ∈ J1 is good with respet to r. In partiular, J1 is good with

respet to I.
Let Σ ⊂ Aamb be the union of the two setors of the form Φs ∩Φt for {Φs,Φt}
geometri. We �rst justify Wr ⊂ sΣ. Indeed, note that Wr is disjoint from

any wall in W{s,t}. Sine s and r are in the same omponent of S \ (t∪ t⊥), we
have (t, r) ∼ ((t, s), r) by Proposition 4.3 and the fat that S is 2-rigid. Thus

Φ(Wt,Wr) = Φ(Wt, sWr). It follows that Wr ⊂ Σ∪ sΣ. Now reall that t ∈ B
and r ∈ A, thus Φ(Ws,Wr) 6= Φ(Ws, tWr) by the inompatibility of A and B.

It follows that Wr ⊂ Σ is not possible, justifying Wr ⊂ sΣ.
Let Λ be the setor of Σ satisfying Wr ⊂ sΛ. It follows that EJ,I ⊂ Λ and

Eτ(J),τ(I) ⊂ sΛ. Consequently Eτ(J),τ(I) = sEJ,I . We also have Eτ(I),τ(J) =
EI,J as in Case 1. Note that EI,J and EJ,I are in distint half-spaes for s.
Now we an prove d(Eτ(J),τ(I), Eτ(I),τ(J)) < d(EJ,I , EI,J ) in the same way as

in Case 1.
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