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Abstract. We prove that the smallest elements of Shi parts and cone type parts
exist and form Garside shadows. The latter resolves a conjecture of Parkinson
and the second author as well as a conjecture of Hohlweg, Nadeau and Williams.

1. Introduction

A Coxeter group W is a group generated by a finite set S subject only to relations
s2 = 1 for s ∈ S and (st)mst = 1 for s ̸= t ∈ S, where mst = mts ∈ {2, 3, . . . ,∞}.
Here the convention is that mst = ∞ means that we do not impose a relation
between s and t. By X1 we denote the Cayley graph of W , that is, the graph with
vertex set X0 = W and with edges (of length 1) joining each g ∈ W with gs, for
s ∈ S. For g ∈ W , let ℓ(g) denote the word length of g, that is, the distance in X1

from g to id. We consider the action of W on X0 = W by left multiplication. This
induces an action of W on X1.
For r ∈ W a conjugate of an element of S, the wall Wr of r is the fixed point set
of r in X1. We call r the reflection in Wr (for fixed Wr such r is unique). Each
wall W separates X1 into two components, called half-spaces, and a geodesic edge-
path in X1 intersectsW at most once [Ron09, Lem 2.5]. Consequently, the distance
in X1 between g, h ∈ W is the number of walls separating g and h.
We consider the partial order ⪯ on W (called the ‘weak order’ in algebraic com-
binatorics), where p ⪯ g if p lies on a geodesic in X1 from id to g. Equivalently,
there is no wall separating p from both id and g.

Shi parts. Let E be the set of walls W such that there is no wall separating W
from id (these walls correspond to so-called ‘elementary roots’). The components
of X1 \

⋃
E are Shi components. For a Shi component Y , we call P = Y ∩X0 the

corresponding Shi part.
Our first result is the following.

Theorem 1.1. Let P be a Shi part. Then P has a smallest element with respect
to ⪯.

Theorem 1.1 was proved independently in a more general form by Dyer, Fishel,
Hohlweg and Mark in [DFHM23, Theorem 1.1(1)]). Here we give a short proof
following the lines of the proof of a related result of the first author and Osajda
[OP22, Thm 2.1].
In [Shi87], Shi proved Theorem 1.1 for affine W . The family E , which is finite by
[BH93], has been extensively studied ever since and has become an important object
in algebraic combinatorics, geometric group theory and representation theory. See
for example see the survey article [Fis20].
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By [BH93], Shi parts are in correspondence with the states of an automaton
recognising the language of reduced words of the Coxeter group. This partition of a
Coxeter group is thus one of the primary examples of ‘regular’ partitions, see [PY22].
For g ∈ W , let m(g) be the smallest element in the Shi part containing g, guar-
anteed by Theorem 1.1. Let M ⊂ W be the set of elements of the form m(g) for
g ∈ W .
The join of g, g′ ∈ W is the smallest element h (if it exists) satisfying g ⪯ h and

g′ ⪯ h. A subset B ⊆ W is a Garside shadow if it contains S, contains g−1h for
every h ∈ B and g ⪯ h, and contains the join, if it exists, of every g, g′ ∈ B.

Theorem 1.2. M is a Garside shadow.

Theorem 1.2 was also obtained in [DFHM23, Thm 1.1(2)], where the authors
showed thatM is the set of so-called ‘low elements’ introduced in [DH16]. We give an
alternative proof using ‘bipodality’, a notion introduced in [DH16] and rediscovered
in [OP22].

Cone type parts. For each g ∈ W , let T (g) = {h ∈ W | ℓ(gh) = ℓ(g) + ℓ(h)}. For
T ⊂ W , the cone type part Q(T ) ⊂ W is the set of all g−1 with T (g) = T . In other
words, Q(T ) consists of g such that T is the set of vertices on geodesic edge-paths
starting at g and passing through id that appear after id, including id.
We obtain a new proof of the following.

Theorem 1.3. [PY22, Thm 1] Let Q be a cone type part. Then Q has a smallest
element with respect to ⪯.

For g ∈ W , let µ(g) be the smallest element in the cone type part containing g.
Let Γ ⊂ W be the set of elements of form µ(g) for g ∈ W These elements are called
the gates of the cone type partition in [PY22].
We also obtain the following new result, confirming in part [PY22, Conj 1].

Theorem 1.4. For any g, g′ ∈ Γ, if the join of g and g′ exists, then it belongs to Γ.

By [PY22, Prop 4.27(i)], this implies that Γ is a Garside shadow. Furthermore,
Γ is the set of states of a the minimal automaton (in terms of the number of
states) recognising the language of reduced words of a Coxeter group. This ver-
ifies [HNW16, Conj 1].

The paper is organised as follows. In Section 2 we discuss ‘bipodality’ and use
it to prove Theorem 1.1 and Theorem 1.2. In Section 3 we focus on the cone type
parts and give the proofs of Theorem 1.3 and Theorem 1.4.

Acknowledgements. We thank Christophe Hohlweg and Damian Osajda for dis-
cussions and feedback.

2. Shi parts

The following property was called bipodality in [DH16]. It was rediscovered in
[OP22].

Definition 2.1. Let r, q ∈ W be reflections. Distinct walls Wr,Wq intersect, if Wr

is not contained in a half-space for Wq (this relation is symmetric). Equivalently,
⟨r, q⟩ is a finite group. We say that such r, q are sharp-angled, if r and q do not
commute and {r, q} is conjugate into S. In particular, there is a component of
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X1 \ (Wr ∪ Wq) whose intersection F with X0 is a fundamental domain for the
action of ⟨r, q⟩ on X0. We call such F a geometric fundamental domain for ⟨r, q⟩.
Lemma 2.2 ( [OP22, Lem 3.2], special case of [DH16, Thm 4.18]). Suppose that re-
flections r, q ∈ W are sharp-angled, and that g ∈ W lies in a geometric fundamental
domain for ⟨r, q⟩. Assume that there is a wall U separating g from Wr or from Wq.
Let W ′ be a wall distinct from Wr,Wq that is the translate of Wr or Wq under an
element of ⟨r, q⟩. Then there is a wall U ′ separating g from W ′.

Wr

Wq

W ′ U

U ′

g

Figure 1. Lemma 2.2 for the case mrq = 4

The following proof is surprisingly the same as that for a different result [OP22,
Thm 2.1].

Proof of Theorem 1.1. Let P = Y ∩ X0, where Y is a Shi component. It suffices
to show that for each p0, pn ∈ P there is p ∈ P satisfying p0 ⪰ p ⪯ pn. Let
(p0, p1, . . . , pn) be the vertices of a geodesic edge-path π in X1 from p0 to pn, which
lies in Y . Let L = maxni=0 ℓ(pi).
We will now modify π and replace it by another embedded edge-path from p0
to pn with vertices in P , so that there is no pi with pi−1 ≺ pi ≻ pi+1. Then we will
be able to choose p to be the smallest pi with respect to ⪯.
If pi−1 ≺ pi ≻ pi+1, then let Wr,Wq be the (intersecting) walls separating pi from

pi−1, pi+1, respectively. Moreover, if r and q do not commute, then r, q are sharp-
angled, with id in a geometric fundamental domain for ⟨r, q⟩. We claim that all the
elements of the residue R = ⟨r, q⟩(pi) lie in P .
Indeed, since pi−1, pi+1 are both in P , we have that Wr,Wq /∈ E . It remains to
justify that each wall W ′ ̸= Wr,Wq that is the translate of Wr or Wq under an
element of ⟨r, q⟩ does not belong to E . We can thus assume that r and q do not
commute, since otherwise there is no such W ′. Since Wr /∈ E , there is a wall U
separating id from Wr. By Lemma 2.2, there is a wall U ′ separating id from W ′,
justifying the claim.
We now replace the subpath (pi−1, pi, pi+1) of π by the second embedded edge-
path with vertices in the residue R from pi−1 to pi+1. Since all the elements of R
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are ≺ pi [Ron09, Thm 2.9], this decreases the complexity of π defined as the tuple
(nL, . . . , n2, n1), where nj is the number of pi in π with ℓ(pi) = j, with lexicographic
order. After possibly removing a subpath, we can assume that the new edge-path is
embedded. After finitely many such modifications, we obtain the desired path. □

Lemma 2.3. For g ⪯ h, we have m(g) ⪯ m(h).

Proof. Let k be the minimal number of distinct Shi components traversed by a
geodesic edge-path γ from h to g. We proceed by induction on k, where for k = 1
we havem(g) = m(h). Suppose now k > 1. If a neighbour f of h on γ lies in the same
Shi component as h, then we can replace h by f . Thus we can assume that f lies in
a different Shi component than h. Consequently, the wall Wr separating h from f
belongs to E . Since g ⪯ f , by the inductive assumption we have m(g) ⪯ m(f).
Thus it suffices to prove m(f) ⪯ m(h).
In the first case, where for every neighbour h′ of h on a geodesic edge-path from h
to id, the wall separating h from h′ belongs to E , we have h = m(h) and we are
done. Otherwise, let Wq be such a wall separating h from h′ outside E . If r and q
do not commute, then r, q are sharp-angled, with id in a geometric fundamental
domain for ⟨r, q⟩. By Lemma 2.2, among the walls in ⟨r, q⟩{Wr,Wq} onlyWr belongs
to E . Let h̄, f̄ be the vertices opposite to f, h in the residue ⟨r, q⟩h. We have
m(h̄) = m(h),m(f̄) = m(f). Replacing h, f by h̄, f̄ , and possibly repeating this
procedure finitely many times, we arrive at the first case. □

Lemma 2.3 has the following immediate consequence.

Corollary 2.4. For any g, g′ ∈ M , if the join of g and g′ exists, then it belongs
to M .

For completeness, we include the proof of the following.

Lemma 2.5 ([DH16, Prop 4.16]). For any h ∈ M and g ⪯ h, we have g−1h ∈ M .

Proof. For any neighbour h′ of h on a geodesic edge-path from h to g, the wall W
separating h from h′ belongs to E . Consequently, we also have g−1W ∈ E , and so
g−1h ∈ M . □

Also note that for each s ∈ S, we haveWs ∈ E and so m(s) = s implying S ⊂ M .
Thus Corollary 2.4 and Lemma 2.5 imply Theorem 1.2.

3. Cone type parts

Let T = T (g) for some g ∈ W . We denote by ∂T the set of walls separating
adjacent vertices h ∈ T and h′ /∈ T . In particular, the walls in ∂T separate id
from g−1.
We note that one of the primary differences between the cone type parts and the
Shi parts is that the cone type parts do not correspond to a ‘hyperplane arrange-
ment’. See for example Figure 2.
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Figure 2. Shi parts and cone type parts for the Coxeter group of type G̃2

Remark 3.1. Note that for g, g′ ∈ Q(T ) any geodesic edge-path from g to g′ has
all vertices f in Q(T ). Indeed, for h ∈ T , any wall separating id from f separates
id from g or g′ and so it does not separate id from h. Thus h ∈ T (f−1) and so
T ⊆ T (f−1). Conversely, if we had T ⊊ T (f−1) then there would be a vertex
h ∈ T with a neighbour h′ ∈ T (f−1) \ T separated from h by a wall W (in ∂T )
that does not separate h from f . The wall W would not separate h′ from g or g′,
contradicting h′ /∈ T (g−1) or h′ /∈ T (g′−1). See also [PY22, Thm 2.14] for a more
general statement.

Proof of Theorem 1.3. The proof is identical to that of Theorem 1.1, with P replaced
by Q. The vertices of a geodesic edge-path π in X1 from p0 to pn belong to Q by
Remark 3.1. We also make the following change in the proof of the claim that all
the elements of R = ⟨r, q⟩(pi) lie in Q. Namely, since T = T (p−1

i ) equals T (p−1
i−1),

we have Wr /∈ ∂T . Analogously we obtain Wq /∈ ∂T . If r and q do not commute,
we have that T is contained in a geometric fundamental domain for ⟨r, q⟩, and so
we also have W ′ /∈ ∂T for any W ′ that is a translate of Wr or Wq under an element
of ⟨r, q⟩. This justifies the claim. □

Proof of Theorem 1.4. The proof structure is similar to that of Lemma 2.3. We need
to justify that for g ⪯ h, we have µ(g) ⪯ µ(h), where we induct on the minimal
number k of distinct cone type components traversed by a geodesic edge-path γ from
h to g. Suppose k > 1, and let Q = Q(T ) be the cone type component containing h.
If a neighbour f of h on γ lies in Q, then we can replace h by f . Thus we can
assume f /∈ Q. Consequently, the wallWr separating h from f belongs to ∂T . Since
g ⪯ f , by the inductive assumption we have µ(g) ⪯ µ(f). Thus it suffices to prove
µ(f) ⪯ µ(h).
If for every neighbour h′ of h on a geodesic edge-path from h to id, the wall
separating h from h′ belongs to ∂T , we have h = µ(h) and we are done. Otherwise,
let Wq be such a wall separating h from h′ outside ∂T . Let h̄, f̄ be the vertices
opposite to f, h in the residue ⟨r, q⟩h, and let f ′ = rqh. It suffices to prove µ(h̄) =
µ(h), µ(f̄) = µ(f). To justify µ(h̄) = µ(h), or, equivalently, h̄ ∈ Q, it suffices to
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observe that among the walls in ⟨r, q⟩{Wr,Wq} only Wr belongs to ∂T : Indeed,
if r and q do not commute, then r, q are sharp-angled, with T in the geometric
fundamental domain F for ⟨r, q⟩ containing id.
It remains to justify µ(f̄) = µ(f), or, equivalently, T (f̄−1) = T̃ for T̃ = T (f−1).
Since T̃ ∩ F = T , to show, for example, T (f ′−1) = T̃ , it suffices to show that the
wall W = rWq does not belong to ∂T̃ .
Otherwise, let b ∈ T̃ be adjacent to W . Then rb ∈ F is adjacent to Wq, which
is outside ∂T . Consequently, rb /∈ T . Thus there is a wall W ′ separating id from
h and rb. Note that W ′ ̸= Wr and so W ′ separates id from f . Since id lies on
a geodesic edge-path from f to b, we have that W ′ does not separate id from b.
Thus rW ′ separates r and rb from f, h, b, and id, since, again, id lies on a geodesic
edge-path from f to b.
Consider the distinct connected components Λ1,Λ2,Λ3,Λ4 of X1\(Wr∪rW ′) with

id ∈ Λ1, b ∈ Λ2, r ∈ Λ3, rb ∈ Λ4. Since id and r are interchanged by the reflection r
and they lie in the opposite connected components, we have rΛ2 ⊊ Λ1. On the other
hand, since b and rb lie in the opposite connected components, we have rΛ1 ⊊ Λ2,
which is a contradiction.
This proves that the wall W does not belong to ∂T̃ , and hence neither does any
other wall in ⟨r, q⟩{Wr,Wq}. Consequently T (f̄−1) = T̃ , as desired. □

Wr

Wq

W = rWq

hf
f ′

h̄f̄

id

r b

rb
Λ1

Λ4 Λ3

Λ2

rW ′

Figure 3. Proof of Theorem 1.4, the case of mrq = 3
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