
TORSION GROUPS DO NOT ACT ON
2-DIMENSIONAL CAT.0/ COMPLEXES

SERGEY NORIN, DAMIAN OSAJDA, and PIOTR PRZYTYCKI

Abstract
We show, under mild hypotheses, that if each element of a finitely generated group
acting on a 2-dimensional CAT.0/ complex has a fixed point, then there is a global
fixed point. In particular, all actions of finitely generated torsion groups on such
complexes have global fixed points. The proofs rely on Masur’s theorem on periodic
trajectories in rational billiards, and Ballmann–Brin’s methods for finding closed
geodesics in 2-dimensional locally CAT.0/ complexes. As another ingredient, we
prove that the image of an immersed loop in a graph of girth 2� with length not
commensurable with � has diameter > � . This is closely related to a theorem of
Dehn on tiling rectangles by squares.

1. Introduction
Let H be a group acting properly and cocompactly on a 2-dimensional CAT(0) com-
plex X . In [2], Ballmann and Brin proved rank rigidity for H , saying that if each
edge of X is in at least two 2-cells, then either H has an element of rank 1, or
X is a Euclidean building. Two other strongly related questions on CAT(0) groups
have remained open even in the same 2-dimensional setting. The first one is the Tits
alternative stating that subgroups of H are either virtually abelian or contain free
subgroups. The second one is even more basic (as it might be seen as a first step for
proving the Tits alternative).

Question
Can H have an infinite torsion subgroup G?

(See, e.g., [24], [4, Question 2.11], [5, Question 8.2], [15, Problem 24], [7, §IV.5]
for appearances of the problem.) Surprisingly, prior to our work the answer was not
known, even in the otherwise very-well-understood case of lattices in isometry groups
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of Euclidean buildings of type eA2. Swenson [24] proved that for 1-ended H , a neg-
ative answer to the Question implies the nonexistence of cut points in the CAT(0)
boundary of X . (Later, Papasoglu and Swenson [20] showed the nonexistence of
boundary cut points independent of the answer to the Question.) Moreover, Swenson
answered the Question in the negative for G DH . Recently, Papasoglu and Swen-
son [21] proved that if G < H is an infinite torsion subgroup, then G does not fix
a point in the limit set ƒG. (The above results are independent of the dimension of
the CAT(0) space.) Furthermore, if G is finitely presented, then it also acts properly
and cocompactly on a 2-dimensional CAT(0) complex [12, Theorem 1.1], so G is not
infinite torsion.

Generalizing the Question by discardingH , one can ask if there is an infinite tor-
sion groupG acting without a global fixed point on a 2-dimensional CAT(0) complex.
It is natural to ask this question for G finitely generated, since infinitely generated
countable torsion groups can act properly on trees (see [6, II.7.11]). We answer this
generalization of the Question, as well as the Question itself, in the negative in Corol-
laries 1.3 and 1.4. These are two consequences of our main Theorem 1.1, concerning
more general actions of groups on 2-dimensional CAT(0) complexes. Under mild
hypotheses, it states that locally elliptic actions have global fixed points. This result
and both corollaries are new, even in the case of 2-dimensional Euclidean buildings.
In particular, they confirm the corresponding special case of [17, Conjecture 1.2] and
extend results of [22]. Note that the finite-dimensionality assumption is important,
since there are infinite torsion Grigorchuk groups that are amenable (see [10]), and
hence they act properly on a Hilbert space, which is CAT(0). Also Burnside groups,
that is, infinite torsion groups of bounded exponent, can act without a global fixed
point on infinite-dimensional CAT(0) cubical complexes (see [19]).

We now pass to discussing the general setup for Theorem 1.1. Let X be a 2-
dimensional simplicial complex, which we will call a triangle complex. We assume
additionally that X has a piecewise smooth Riemannian metric, which is a family of
smooth Riemannian metrics �T , �e on the triangles and edges such that the restriction
of �T to e is �e for each e � T . Riemannian metrics �T , �e induce metrics (i.e.,
distance functions) dT , de on triangles and edges. We then equip X with the quotient
pseudometric d (see [6, I.5.19]).

We assume that the triangles containing each vertex v ofX belong to only finitely
many isometry classes of �T . We also assume that .X;d/ is a complete length space.
This holds, for example,
� if there are only finitely many isometry classes of �T (see [6, I.7.13] for X

an M� complex, meaning that each �T has Gaussian curvature � and geodesic
sides; the general case follows using a bilipschitz map from X to an M� com-
plex); or
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� if X is the space X for the tame automorphism group Tame.k3/, with k of
characteristic 0 (see [16, Proposition 5.4 and Lemma 5.8]); some cells of X
are polygons instead of triangles, but we can easily transform X into a triangle
complex by subdividing.

We consider an action of a group G on X by automorphisms, that is, simplicial
automorphisms that preserve the metrics �T . Consequently, they are isometries of
.X;d/.

See Section 2 for the discussion of the CAT(0) property and the definition of hav-
ing rational angles. For example, if the triangles of X have all angles commensurable
with � , then X has rational angles.

THEOREM 1.1
Let .X;d/ be a CAT.0/ triangle complex. Let G be a finitely generated group acting
on X without a global fixed point. Assume that
(i) each element of G fixing a point of X has finite order, or
(ii) X is locally finite, or
(iii) X has rational angles with respect to G.
Then G has an element with no fixed point in X .

While we believe that Theorem 1.1 holds also without (i), (ii), and (iii), this does
not seem to be tractable with our methods. For example, if we wanted to keep the
same line of argument as under condition (iii), then we would need in particular the
existence of periodic trajectories in triangular billiards, which is a major open problem
(see, e.g., [18]).

Note that we do not assume that the edges of a triangle T of X have geodesic
curvature 0 in �T (see X above for an example). On the other hand, if we made this
additional assumption, then we could replace each �T by the Euclidean metric, which
would allow us to discard Lemma 5.5 and the last three paragraphs of the proof of
Proposition 3.4, and which would simplify the proof of Lemma 2.1.

Applying Theorem 1.1 and then [8, Theorem 1.1] to the family of fixed point sets
for all finitely generated subgroups G of H below gives the following.

COROLLARY 1.2
Let .X;d/ be a CAT.0/ triangle complex. Let H be a group acting on X such that
each element of H fixes a point of X . Assume that (i), (ii), or (iii) holds, with respect
to H . Then H fixes a point of X [ @X .

Theorem 1.1 under condition (i) can be rephrased in the following way.
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COROLLARY 1.3
Let .X;d/ be a CAT.0/ triangle complex. Let G be a finitely generated group acting
on X without a global fixed point. Then G has an element of infinite order.

The following corollary answers the Question. Note that the finite generation
assumption is removed here.

COROLLARY 1.4
Let .X;d/ be a CAT.0/ triangle complex. Let H be a group acting properly and
cocompactly on X . Then any subgroup G of H is finite or has an element of infinite
order.

Proof
Suppose that all elements of G have finite order. By [6, II.2.8(2)], there is a finite
bound on the size of all finite subgroups of H . Let then F be a maximal finite sub-
group of G. We will prove that F DG. Otherwise, there is g 2G � F . Then hF;gi
is finitely generated, and thus by Corollary 1.3, it is finite. This contradicts the maxi-
mality of F .

In view of the Question and Corollary 1.3, we state the following conjecture,
which we could not find elsewhere in the literature. Observe that, as in the proof of
Corollary 1.4, the conjecture implies a negative answer to the Question in the setting
of finite-dimensional CAT(0) complexes.

CONJECTURE 1.5
Every finitely generated group acting without a global fixed point on a finite-
dimensional CAT.0/ complex contains an element of infinite order.

Note that the conjecture is known to hold for CAT.0/ cubical complexes by a
work of Sageev [23, Proof of Theorem 5.1]. The proof relies heavily on the structure
of the space with walls for such complexes.

In the proof of Theorem 1.1 under conditions (i) or (ii), we will need the following
graph-theoretic result of independent interest.

Below, by a graph we mean a (possibly infinite) metric graph with finitely many
possible edge lengths. A closed edge path embedded in a graph ƒ is a cycle of ƒ. An
embedded edge path P in ƒ is a segment ofƒ if the endpoints of P have degree (i.e.,
valence) at least 3 in ƒ, but every internal vertex of P has degree 2.
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THEOREM 1.6
Let � be a graph, and let � 0 be a finite subgraph of � with all vertices of degree at
least 2. Assume that
� the girth of � is � 2� , and
� each x, y in � 0 are at distance � � in � .
Then all cycles and segments of � 0 have length commensurable with � .

The special case of Theorem 1.6, where � 0 D � , was established by Ballmann
and Brin [2, Lemma 6.1], who proved additionally that such � is a spherical building,
and so in particular all its segments have the same length.

Theorem 1.6 has the following immediate consequence.

COROLLARY 1.7
Let � be a graph, and let � W C ! � be a closed edge path immersed in � . Assume
that
� the girth of � is � 2� , and
� each x, y in �.C / are at distance � � in � .
Then the length of � is commensurable with � .

Interestingly, Theorem 1.6 will follow from a generalization of a classical theo-
rem of Dehn [9] stating that a rectangle tiled by finitely many squares has commen-
surable side lengths.

Idea of proof of Theorem 1.1
Suppose by contradiction that for each f 2 G the set Fix.f / of fixed points of
f is nonempty. We wish to prove inductively that, for any finite set of elements
f1; : : : ; fn 2 G (in particular for a generating set), the intersection Fix.f1/ \ � � � \
Fix.fn/ is nonempty. Here we illustrate the induction step from nD 2 to nD 3. Sup-
pose that Fix.f1/, Fix.f2/, Fix.f3/ pairwise intersect but their triple intersection is
empty. We then find a simplicial disk� with decomposition of its boundary into three
paths @�D P [Q[R together with a simplicial map  from � to X that sends P ,
Q, R into Fix.f /, Fix.g/, Fix.h/, respectively. We suppose that � has minimal pos-
sible area. Under condition (iii) on rational angles we find a periodic billiard trajectory
! in� outside its 0-skeleton†. Then  .!/ develops to an axis in X of a loxodromic
element of G which leads to a contradiction. If the angle at a vertex v 2 † is not
commensurable with � , then developing the image under  of the link at v and using
condition (i) or (ii) we construct a closed edge path in the link of  .v/ in X of length
not commensurable with � . Applying Corollary 1.7 to that path, we obtain directions
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at  .v/ at distance > � . These directions permit to construct a trajectory through v
that develops to an axis of a loxodromic element.

Organization
In Section 2 we discuss CAT(0) spaces and the rational angles property. In Section 3
we outline the proof of Theorem 1.1 for 2-generated G. In Sections 4 and 5 we fill
in the details of that outline. In Section 6 we complete the proof of Theorem 1.1. The
proof of Theorem 1.6 is postponed until Section 7.

2. Rational angles
Let v be a vertex of a triangle complex X . Let lkv be the graph that is the link of v,
as defined in [2, p. 176]. Namely, vertices of lkv correspond to edges of X containing
v and edges of lkv correspond to triangles of X containing v. We treat lkv as a length
metric space .lkv; dv/, where the length of each edge is the angle in an appropriate
triangle of X . Since we assumed that triangles containing v belong to only finitely
many isometry classes of �T , there are only finitely many possible edge lengths in a
given lkv , and so lkv is complete.

For a piecewise smooth simplicial map � W X !X 0, we keep the notation � for
all the maps lkv! lk�.v/ induced by �.

The space of directions Sv at v is the set of geodesics issuing from v, where
we identify geodesics at Alexandrov angle 0 (see [6, II.3.18]). The Alexandrov angle
equips Sv with a metric.

Suppose that X is CAT.0/. Consider the map i W lkv n lk0v ! Sv mapping each
point in the interior of an edge of lkv to the class of the appropriate geodesic in
the corresponding triangle of X containing v (which remains a geodesic in X since
X is CAT.0/). Note that we cannot similarly define i on the vertex set lk0v , since, for
example, forX D T a single triangle with .T; �T / isometric to a sector of a Euclidean
disk, and v¤w vertices of T distinct from the center of the disk, there is no geodesic
issuing from v tangent to the edge vw of T .

LEMMA 2.1
Let v be a vertex of a CAT.0/ triangle complex X . Suppose that each edge of X
containing v is contained in a triangle of X . Then i extends to an isometry from lkv
considered with the metric that is the minimum of dv and � to the completion Sv of
Sv .

Proof
We first prove that the image of i is dense in Sv . Indeed, after possibly subdividing
X , we can assume that in each triangle T containing v, the geodesic �T starting at v
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and bisecting the angle of T at v ends at the opposite side of T . Since X is uniquely
geodesic, a geodesic vx cannot intersect �T transversely. Thus, if vx is contained
in the union St.v/ of all the closed triangles containing v, then vx cannot intersect
outside v two distinct edges containing v. Consequently, we have at least one of the
following situations. If vx contains a geodesic vy contained in a triangle of X , then
the class of vx in Sv lies in the closure of the image under i of the corresponding
open edge of lkv . If each vy � vx intersects infinitely many times the same edge e
containing v, then the class of vx in Sv lies in the closure of the image under i of any
open edge of lkv corresponding to a triangle containing e.

Since dv is a complete metric on lkv , the minimum of dv and � is also complete.
Thus, to prove the lemma it remains to justify that i is an isometric embedding. This
is easy in the special case where all the edges of X containing v are geodesics, and
we reduce the general case to that special case in the following way. It is easy to see
that i is 1-Lipschitz. Conversely, let 	; 
 2 lkv be at distance > " > 0 from lk0v , with
2" smaller than the length of the shortest edge of lkv . After possibly subdividing X ,
we can assume that in each triangle T containing v, the geodesics �eT , �fT starting
at v at angle " from the edges e, f of T end at the opposite side of T , and that for
given e, various �eT have the same length. Let St".v/ be the triangle complex obtained

from St.v/ by replacing each triangle T by the triangle T" � T bounded by �eT [ �
f
T

and an arc in the side of T opposite to v, and by identifying all �eT for given e. Let
p" W St.v/! St".v/ be the 1-Lipschitz map whose restriction to each T" is the identity,
and which maps each point x in the component of St.v/ n

S
T" containing e n v to

the point on �eT at distance min¹d.x; v/; j�eT jº from v. Let 	 0 and 
0 be geodesics in
St.v/ that represent i.	/ and i.
/. It is clear that the Alexandrov angle between p".	 0/
and p".
0/ does not exceed the Alexandrov angle between 	 0 and 
0. Furthermore, by
the special case above applied to St".v/, the former Alexandrov angle converges to
min¹dv.	; 
/;�º as "! 0. This justifies that i is an isometric embedding.

For X to be CAT.0/, it is necessary that
(a) the girth of each lkv is � 2� ,
(b) the Gaussian curvature of �T at any interior point of T is � 0,
(c) the sum of geodesic curvatures in any two distinct triangles at any interior

point of a common edge is � 0, and
(d) X is simply connected.

Note that condition (c) can be justified exactly as in the proof of [3, Theorem 7.1].
Condition (a) follows from Lemma 2.1, since we can assume without loss of general-
ity that each edge of X containing v is contained in a triangle of X , and Sv is CAT.1/
by [6, II.3.19].
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While it seems that (a)–(d) are also sufficient conditions for X to be CAT.0/ (one
would need to couple the ideas from [3] and [6]), only under the following assump-
tions has this been verified in the literature.
� X is locally finite (see [3, Theorem 7.1]), or
� X is an M� complex with � � 0 and there are only finitely many isometry

classes of �T (see [6, II.5.2 and II.5.4]), or
� X is the space X for the tame automorphism group Tame.k3/ (see [16, Theo-

rem A]).
The following lemma guarantees the existence of a sensible barycentric subdivi-

sion for triangle complexes.

LEMMA 2.2
Let X be a triangle complex. Then we can equip the barycentric subdivision X 0 of
X with a piecewise smooth Riemannian metric so that we have an isometry X !X 0

under which each automorphism of X is mapped to an automorphism of X 0.

Proof
To obtain X 0, we subdivide each edge of X into two edges of equal length. Now,
let .T; �T / be an isometry class of a triangle of X . Let Aut.T / be the automorphism
group of T . Our goal is to pick an interior pointm of T and a collection of six disjoint
smooth arcs in the interior of T joining m with the vertices and edge midpoints of T
that is invariant under Aut.T /.

If Aut.T / is trivial, then we can choose m and the arcs arbitrarily. If Aut.T /
contains only one nontrivial element f that fixes a vertex v of T , then Fix.f / is a
smooth arc from v to the midpoint of the opposite edge. We then pick m 2 Fix.f /,
two of the arcs of our collection inside Fix.f /, two others in one component of T �
Fix.f /, and two last ones in the other component, as the images under f of the
preceding ones. If Aut.T / is the dihedral group, with involutions f , g, h, then we
choose m to be the unique intersection point of Fix.f /, Fix.g/, Fix.h/, and choose
the arcs inside these fixed point sets. Finally, if Aut.T / D hf i is cyclic of order 3,
then let m be the unique fixed point of f . Inside the quotient orbifold T=Aut.T /
choose two disjoint smooth arcs joining m to the unique vertex and edge midpoint,
and lift them to T .

Definition 2.3
Let v be a vertex of X . An immersed edge path � in lkv is flat if
(i) each edge of � corresponds to a triangle T of X with Gaussian curvature 0 at

any point of T , and
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(ii) the sum of geodesic curvatures in any two such consecutive triangles T , T 0 at
any point of T \ T 0 is 0.

We say that X has rational angles with respect to an action of a group G, if for each
vertex v of X we have a discrete set ƒ� lkv that is
� invariant under the stabilizer Gv , and such that
� for any subdivision X 0 of X inducing a subdivision lk0v of lkv with ƒ con-

tained in the vertex set of lk0v , each flat immersed edge path � in lk0v that is
disjoint from ƒ, except possibly at the endpoints, is
– finite, and
– if it has endpoints in ƒ, then its length is commensurable with � .

For example, if all triangles of X have only angles commensurable with � , then
X has rational angles with respect to any automorphism group of X , since we can
take for ƒ all the vertices of lkv . This includes all eA2, eC2, and eG2 buildings.

Note that if a triangle complex X has rational angles with respect to an action
of a group G, then X has rational angles with respect to the action of any subgroup
of G.

LEMMA 2.4
Let X be a triangle complex that has rational angles with respect to an action of a
group G. Then its barycentric subdivision X 0 has also rational angles with respect
to G.

Proof
Let v be a vertex of X 0. We will denote by lk0v the link of v in X 0. Our goal is to find
ƒ0 � lk0v satisfying Definition 2.3.

If v is the barycenter of a triangle T of X , then lk0v is a cycle of combinatorial
length 6 and angular length 2� . Let � be a vertex of lk0v . In the case where Aut.T /
has order 2, we additionally require that � is fixed by Aut.T /. Then we can take
ƒ0 DAut.T /�. If v is the midpoint of an edge e of X , then we can take ƒ0 to consist
of the two vertices of lk0v corresponding to e.

Finally, assume that v is also a vertex of X . Then lk0v is a subdivision of lkv , the
link of v in X . Let ƒ � lkv be the set satisfying Definition 2.3. Then it suffices to
take ƒ0 Dƒ under the identification of lk0v with lkv .

LEMMA 2.5
The space X for Tame.k3/ constructed in [16] has rational angles.
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Proof
The proof is aimed at readers familiar with [16]. Let �C W X!rC be the folding
from [16, Corollary 2.5]. Let P � lk�C.v/ be the directions determined by the prin-
cipal lines: through �C.v/ and Œ1; 0; 0, Œ0; 1; 0, or Œ0; 0; 1. Let ƒD ��1C .P /. These
are the only possible directions of edges from �C.v/ that are geodesics, since all
edges lie in admissible lines (see [16, Section 4.A]), and the only admissible lines
that are geodesics are principal (equality case in [16, Lemma 5.1]). Let � be a flat
immersed edge path in a subdivision of lkv that is disjoint from ƒ, except possibly at
the endpoints. Thus by Definition 2.3(ii), the image of � under �C in lk�C.v/ might
not be immersed only at P . Since consecutive points of P are at distance �

3
(see [16,

Remark 5.2]), the length of � is bounded by �
3

with equality if and only if � has
endpoints in ƒ.

Lemma 2.5 and Theorem 1.1(iii) have the following immediate consequence,
which is the first step toward the Tits alternative for Tame.k3/.

COROLLARY 2.6
Let G be a finitely generated subgroup of Tame.k3/ acting on X without a global
fixed point. Then G has an element with no fixed point in X.

3. Pairs of generators
In this section we prove Theorem 1.1 for a 2-generated groupG. For an automorphism
f of a simplicial complex X , Fix.f /�X denotes the set of fixed points of f .

PROPOSITION 3.1
Let f , g be automorphisms of a CAT.0/ triangle complex X satisfying condition
(i), (ii), or (iii) of Theorem 1.1, with respect to hf;gi. Suppose that both Fix.f / and
Fix.g/ are nonempty. Then Fix.f / intersects Fix.g/, or hf;gi contains an element
with no fixed point in X .

In the proof we will need the following terminology. We say that an automor-
phism f of a simplicial complex X acts without inversions, if whenever f stabilizes
a simplex of X it fixes it pointwise.

Definition 3.2
Let S be a 2-sphere with three marked points p, q, r , and a basepoint z distinct from
p, q, r . Choose f �1S , gS and hS D g�1S ıfS to be elements of the fundamental group
�1.S �¹p;q; rº; z/, represented by embedded closed paths circling counterclockwise
the points p, q, r , respectively, as in Figure 1. Let eS be the branched cover of S over
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Figure 1. An equivariant triangulation.

p, q, r corresponding to the universal cover of S �¹p;q; rº. For a pair .f;g/ of auto-
morphisms of a 2-dimensional simplicial complex X , an equivariant triangulation ofeS with respect to .f;g/ is the following object.

First of all, it consists of a structure on S of a �-complex (as defined in [13,
Section 2.1]), which is a generalization of a simplicial complex allowing the simplices
not to be embedded, and allowing several simplices with the same boundary. We
require that p, q, and r are vertices. We pull back the �-complex structure on S to a
�-complex structure on eS .

Second, an equivariant triangulation consists of a simplicial map � from eS to
X that is equivariant with respect to the homomorphism from �1.S � ¹p;q; rº; z/ to
hf;gi defined by fS ! f , gS ! g, which we will denote by ��.

A simplicial map is nondegenerate if it does not collapse an edge to a vertex.
A nondegenerate simplicial map is a near-immersion if it is a local embedding at
each edge midpoint of the source complex.
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We begin with listing a lemma and a proposition that piece together a proof of
Proposition 3.1.

LEMMA 3.3
Let f;g;hD g�1 ı f be automorphisms of a simply connected 2-dimensional sim-
plicial complex X , with hf;gi acting without inversions. Suppose that all Fix.f /,
Fix.g/, Fix.h/ are nonempty and pairwise disjoint. Then there exists an equivariant
triangulation of eS with respect to .f;g/ with � a near-immersion.

Lemma 3.3 will be proved in Section 4.

PROPOSITION 3.4
Let f , g be automorphisms of a CAT.0/ triangle complex X satisfying condition (i),
(ii), or (iii) of Theorem 1.1, with respect to hf;gi. Suppose that we have an equiv-
ariant triangulation of eS with respect to .f;g/ with � a near-immersion. Then hf;gi
contains an element with no fixed point in X .

Proposition 3.4 will be proved in Section 5.

Proof of Proposition 3.1
After possibly passing to the barycentric subdivision of X (which obviously pre-
serves the conditions (i) and (ii) of Theorem 1.1, and preserves condition (iii) by
Lemma 2.4), we can assume that hf;gi acts without inversions. Let hD g�1 ı f . If
h does not have a fixed point in X , then the proof is complete, so we can assume that
Fix.h/ is nonempty. Similarly, we can suppose that Fix.f / is disjoint from Fix.g/.
Then Fix.h/ is disjoint from both Fix.f / and Fix.g/. By Lemma 3.3, there exists
an equivariant triangulation of eS with respect to .f;g/ with � a near-immersion. By
Proposition 3.4, hf;gi contains an element with no fixed point in X .

4. Existence of nearly immersed triangulations
The area of a finite 2-dimensional �-complex is the number of its triangles. We say
that an equivariant triangulation of eS with respect to .f;g/ has minimal area if the
corresponding �-complex structure on S has minimal area among all equivariant
triangulations of eS with respect to .f;g/.

We will need the following relative simplicial approximation theorem of Zeeman.

THEOREM 4.1 ([25])
Let D0 and X be finite simplicial complexes, and let L be a subcomplex of D0. Let
� W D0! X be a continuous map such that the restriction of � to L is simplicial.
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Figure 2. Proof of Lemma 3.3, Step 1.

Then there are a simplicial subdivision D of D0 such that L remains a subcomplex
of D, and a simplicial map  W D! X such that the restrictions of  and � to L
coincide.

Proof of Lemma 3.3

Step 1. There exists an equivariant triangulation.
Since f , g act without inversions, Fix.f /, Fix.g/, Fix.h/ are subcomplexes. Con-
sider any vertices a 2 Fix.f /, b 2 Fix.g/, c 2 Fix.h/, and any nontrivial edge paths
˛ (resp., ˇ) from c to a (resp., from c to b) in X . Let � W L!X be the closed edge
path ˛�1ˇg.ˇ�1/f .˛/, which passes through a; c; b; g.c/D f .c/ (see the top right
of Figure 2). Let D0 be the disk with the structure of a simplicial complex obtained
by conning off the cycle L. Since X is simply connected, � extends to a continuous
map � W D0!X . By Theorem 4.1, applied with X replaced by the finite subcomplex
of X containing the image of �, there are a disk D with a structure of a simplicial
complex, and a simplicial map  W D!X whose restriction to @D DL is � .

We label the points of @D mapping under ˛�1ˇ to a, b, c, by p, q, r , respectively.
We choose a basepoint z 2D� @D. Gluing inD the parts of @D that are the domains
of ˛ and f .˛/, and the parts of @D that are the domains of ˇ and g.ˇ/, we obtain a 2-
sphere. We identify this 2-sphere with our template sphere S from Definition 3.2, as in
the bottom of Figure 2. This equips S (and hence eS ) with a structure of a�-complex.
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We lift D � eS so that D contains the basepoint ez of eS . Then D is a fundamental
domain for the action of hfS ; gS i on eS such that
(1) D and fSD (resp., D and f �1S D) share the domain of f .˛/ (resp., ˛), and
(2) D and gSD (resp., D and g�1S D) share the domain of g.ˇ/ (resp., ˇ).

Let �� W �1.S � ¹p;q; rº; z/! hf;gi be the homomorphism mapping fS to f
and gS to g as in Definition 3.2. We extend  W D! X to � W eS ! X by defining,
for each w 2 hfS ; gS i, the restriction of � to wD � eS to be ��.w/ ı ıw�1. By (1)
and (2), the map � is well defined on the intersections of D with fSD and gSD, and
consequently � is well defined on the intersections of wD with wfSD and wgSD
for each w 2 hfS ; gS i. Note that � is equivariant; that is, it satisfies for each Qx 2 eS
and w 2 hfS ; gS i the formula �.w Qx/D ��.w/�. Qx/. Indeed, for Qx Dw0x with x 2D
and w0 2 hfS ; gS i, by definition we have �.w Qx/D �.ww0x/D ��.ww0/ .x/, while
��.w/�. Qx/D ��.w/�.w

0x/D ��.w/��.w
0/ .x/. This completes the definition of

an equivariant triangulation of eS .

Step 2. A minimal area equivariant triangulation has nondegenerate �.
Consider an equivariant triangulation of eS of minimal area. Suppose that there is an
edgeee � eS with �.ee/ a vertex. We will find an equivariant triangulation with strictly
smaller area, which contradicts minimality. Let e be the projection ofee to S . Let u, v
be the endpoints of e.

Case uD v. In that case, assume for the moment that u is distinct from p, q, r .
Since uD v, we have that e is an embedded closed path. Let B � S be the open disk
bounded by e containing at most one of p, q, r . Let T be the triangle of S adjacent
to e outside B , and let t , t 0 be the edges of T distinct from e (see Figure 3, left).
Note that t ¤ t 0, since otherwise T would form the entire outside of B , which would
contradict the assumption that there are at least two of p, q, r outside B .

Figure 3. Proof of Lemma 3.3, Step 2.
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If B does not contain a marked point p, q, or r , then we can remove T [ B
from S and glue along t and t 0 (independent of whether all the vertices of T coincide
or not). This does not change the homeomorphism type of S and decreases its area.
Possibly, we need to homotope the basepoint z and the paths representing fS , gS , hS
out of T [B to keep track of the marking after this operation. If B contains one of the
marked points, say p, then we perform the same operation and additionally relabel u
by p. We can identify the modified eS with a quotient of a subcomplex of the originaleS , and so we modify � to be just the quotient of the restriction of the original �.

Going back to the possibility that u is one of p, q, r , say, q, we still perform
the same operation, except that now B will not contain p (or r ), since otherwise
Fix.f / would intersect Fix.g/. Consequently we still have t ¤ t 0 and we can proceed
as before.

Case u¤ v. Let T , T 0 be the triangles of S adjacent to e, and let y, y0 be the
vertices opposite to e in T , T 0. If T D T 0, then any lift eT of T to eS is collapsed
to a single vertex of X . Letee0 be the edge of eT that does not project to e. Then the
projection e0 ofee0 has coinciding endpoints, which brings us back to the case uD v.

Thus we can assume that T ¤ T 0. We want to remove T [T 0 from the triangula-
tion and glue the resulting square in the boundary so that u is identified with v. This
amounts to collapsing segments of a foliation in T [T 0, with leaves parallel to e (see
Figure 3, right). This does not change the homeomorphism type of S as long as the
leaves do not combine to circles.

Indeed, a single leaf (or a pair of leaves in a common triangle) cannot close up to
a circle since the edges yu and yv are distinct, because S does not contain a Möbius
band, and analogously the edges uy0, vy0 are distinct. Furthermore, a pair of leaves
in distinct triangles does not form a circle since otherwise S would have only two
triangles and consequently both u, v would be in ¹p;q; rº, forcing some Fix.f /,
Fix.g/, Fix.h/ to intersect.

Removing T [ T 0 decreases the area of S . Note that as a result of this operation,
vertices p, q, r cannot become identified, since this again would mean that some
Fix.f /, Fix.g/, Fix.h/ intersect.

Step 3. A minimal area equivariant triangulation has � a near-immersion.
By Step 2, � is nondegenerate. Suppose that there is an edgeee � eS with midpoint em
where � is not a local embedding. Again, we will reach a contradiction by showing
that the area can be decreased. Let e and m be the projections ofee and em to S . Let
T;T 0 � S be the triangles containing e and let y, y0 be the vertices opposite to e in
T , T 0.

To start with, note that T ¤ T 0. Indeed, if T D T 0, then let � be the line segment
in T starting and ending at the distinct copies ofm in @T . Lete� , we� for w 2 hfS ; gS i
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Figure 4. Proof of Lemma 3.3, Step 3.

be the two lifts of � to eS at em, and let eT be the lift of T containinge� . Then �.eT / is
stabilized by ��.w/, but not fixed pointwise, which is a contradiction.

Case y ¤ y0. In that case, removing T [ T 0 from the triangulation and gluing
the resulting square in the boundary so that y is identified with y0 is equivalent to
the following. We collapse intervals of a foliation in T [ T 0 with leaves parallel to
the union ı of line segments ym� T , my0 � T 0 (see Figure 4, left). Similarly as in
Step 2, these leaves do not form circles, and thus collapsing them does not change
the homeomorphism type of S , while it decreases its area. Again as a result of this
operation, vertices p, q, r cannot become identified, since this would mean that some
Fix.f /, Fix.g/, Fix.h/ intersect.

Case y D y0. In that case, assume for the moment that y is distinct from p, q, r .
Then ı, defined as in the case y ¤ y0, is an embedded closed path. Let B � S be the
open disk bounded by ı containing at most one of p, q, r . Let t , t 0 be the edges of T ,
T 0 outside B (see Figure 4, right). Note that t ¤ t 0 since otherwise halves of T and
T 0 would form the entire outside of B , which would contradict the assumption that
there are at least two of p, q, r outside B . We can thus remove T [ T 0 [B and glue
along t , t 0 to decrease the area of S . If B contained one of p, q, r , say, p, then we
relabel y by p. If y D y0 is one of p, q, r , say, q, then we define B in the same way
and we note that B does not contain p (or r ) since otherwise Fix.f / would intersect
Fix.g/. Consequently we still have t ¤ t 0 and we can proceed as before.

5. Constructing axes
To prove Proposition 3.4 we will need the following famous theorem of Masur estab-
lishing the existence of periodic trajectories in rational billiards.

Definition 5.1
A translation surface S is a surface obtained from identifying sides of finitely many
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polygons in R2 by translations. This equips S with a Riemannian metric of Gauss
curvature 0 outside a finite set †.

LEMMA 5.2
Assume that a sphere S has a piecewise smooth Riemannian metric that is smooth of
Gauss curvature 0 outside a finite set†. Suppose that for each v 2† the length of lkv
is commensurable with � . Then any finite branched cover of S over † has a further
finite branched cover that is a translation surface.

Proof
Since �1.S �†/ is generated by the peripheral curves, the image of the holonomy
map �1.S �†/!O.2/ is finite. Consequently, its kernel K corresponds to a finite
branched cover of S over† that has trivial holonomy and is thus a translation surface.
Thus any finite branched cover of S over† corresponding to a subgroup F of �1.S �
†/ has a further finite branched cover corresponding to K \ F that is a translation
surface.

THEOREM 5.3 ([18, Theorem 2])
Let S be a translation surface. Then there is a closed local geodesic in S �†.

We will also need the following.

LEMMA 5.4 (cf. [2, Lemma 7.3])
Let S be a compact �-complex with piecewise smooth Riemannian metric that is
locally CAT.0/ and in which each edge belongs to at least two triangles. Assume that
there is a vertex v and points 	 , 
 in lkv with dv.	; 
/D � . Then for any " > 0 there
is a closed path ˇ1ˇ2ˇ3 in S such that
� the paths ˇi are local geodesics;
� the angles at the breakpoints between ˇ2 and ˇ1, ˇ3 are > � � ";
� ˇi are transverse to edges and do not pass through vertices except that ˇ1

starts at v and ˇ3 ends at v; and
� the starting direction 	 0 of ˇ1 and ending direction 
0 of ˇ3 satisfy dv.	; 	 0/ <

"
2

, dv.
; 
0/ <
"
2

.

Proof
We refer to the proof of [2, Lemma 7.3], where the authors work in the universal
cover of S (which they call X ). Once they construct their geodesic � , define !2
as the subpath of � between P and '.P /, and !1, !3 as the geodesics joining the
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endpoints of !2 to v, 'v in P , '.P /. The projection of !1!2!3 to S is the required
path ˇ1ˇ2ˇ3.

LEMMA 5.5
Let X be a CAT.0/ triangle complex, and let G be a group acting on X . Suppose that
there is a point x
(1) in the interior of a triangle T with negative Gauss curvature, or
(2) in the interior of an edge e with negative sum of geodesic curvatures in a pair

of incident triangles T , T 0.
Then there is a CAT.0/ triangle complex X with an action of G, and a G-equivariant
bi-Lipschitz map X ! X that is a composition of a subdivision and a replacement
of the piecewise smooth Riemannian metric, with a vertex u 2X in the image of the
interior of T , T 0, or e, whose link lku in X is either
� a circle of length > 2� , or
� a graph obtained from a family of disjoint circles of length 2� by gluing them

along an arc b of length < � . Furthermore, b corresponds to a triangle of X
distinct from T , T 0.

Proof
After possibly passing to the barycentric subdivision of X , we can assume that G
acts without inversions and no g 2 G sends an edge to a distinct edge in a common
triangle.

In case (1), choose a geodesic triangle t in the interior of T containing x. Let
t � R2 be its comparison triangle, that is, a geodesic triangle with the same edge
lengths as t . Let X be obtained from X by a G-equivariant subdivision in which t
becomes a cell, and the G-equivariant replacement of the metric on gt by that of gt ,
for each g 2G. By [6, II.2.9], the angles of t are larger than the corresponding angles
of t . Consequently, X is CAT.0/ and for each vertex u of t , we have that lku is a
circle of length > 2� .

In case (2), assume without loss of generality that the geodesic curvature �� at
x in T is negative. Assume first that there is no triangle containing e with positive
geodesic curvature at x. Let �� < � < 0. Let a be an arc in e containing x and with
each point of a of geodesic curvature
(i) � � in T , and
(ii) ��� in any other incident triangle.
Let u be a point in the interior of T such that the geodesic ux in T intersects @T only
at x and at angle �

2
. After possibly shrinking a, denoting by y, z its endpoints, we

have that the geodesics uy, uz in T intersect @T only at y, z, and at positive angles.
Let t � T be the region bounded by a, uy, and uz. Let t � R2 be its “comparison
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Figure 5. “Comparison region” t in case (2) of Lemma 5.5.

region,” that is, a region bounded by a circle arc a of curvature � and length jaj (the arc
length of a) and geodesics of lengths d.u;y/, d.u; z/. See Figure 5. (Note that t exists
for jaj sufficiently small with respect to d.u;x/ and 1

j�j
.) Let X be obtained from X

by a G-equivariant subdivision in which t becomes a cell, and the G-equivariant
replacement of the metric on gt by that of gt , for each g 2G.

We claim that the angles of t are larger than the corresponding angles of t . Indeed,
let s � R2 be the region bounded by a and the geodesic joining the endpoints of a.
Note that t [ s is a Euclidean triangle and t [ s (obtained by identifying a with
a) is CAT.0/ by condition (i). By [6, II.2.9], the angles of t [ s are larger than the
corresponding angles of t [ s, justifying the claim. By the claim and condition (ii),
we have that X satisfies conditions (a)–(c) of Section 2 and lku is a circle of length
> 2� .

However, sinceX might be locally infinite at e, we still need to justify that condi-
tions (a)–(c) of Section 2 imply that X is locally CAT.0/ at e. Let St.e/ be the union
of all the closed triangles of X containing e. Let Y � St.e/ be the union of the trian-
gles TC for which there exists a point on e with positive geodesic curvature in TC.
By condition (c) in X , there is at most one such triangle of given isometry type T0
and given embedding e � T0, so Y has finitely many triangles. For each triangle T�
of St.e/ outside Y , denote YT� D Y [ T�. By conditions (a)–(c) in X , we have that
the image Y T� of each YT� in X is CAT.0/. Furthermore, for Y the image of Y in X ,
the inclusion Y � Y T� is an isometric embedding, by the claim and since points of e
have nonpositive geodesic curvature in all the triangles of X contained in the image
of T�. By [6, II.11.3], the union St.e/ of Y T� is CAT.0/, as desired.

Finally, assume in case (2) that there is a triangle TC containing e with positive
geodesic curvature �C at x. If T 0 D TC, then we have �� < ��C. Consequently, we
can repeat the argument above assuming �� < � <��C instead of �� < � < 0.

If T 0 ¤ TC, then we choose an arc a in e containing x, with endpoints y, z, such
that the geodesic yz in TC intersects @TC only at y, z, and at positive angles. Let
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s � TC be the region bounded by a and yz. To formX , we replace the metric in TC by
that of TC n s, and the metric in each triangle T� ¤ TC containing e by that of T� [ s
(which is smooth with respect to a subdivision including T� \ s). We perform the
same replacement on the G-orbit of TC and each T�. Note that X satisfies conditions
(a)–(c) of Section 2, and hence is CAT.0/ as before. Moreover, both lky and lkz have
the form described in the second bullet, with b corresponding to TC ¤ T;T 0. Note
that in both lky and lkz , the arc b has length < � since the geodesic yz in TC met
@TC at positive angles.

In the proof of Proposition 3.4 we will use the following notions. IfX is a CAT.0/
space, an element g 2 G is loxodromic if there is a geodesic e! � X (called an axis)
such that g preserves e! and acts on it as a nontrivial translation. A loxodromic ele-
ment does not have a fixed point in X .

Proof of Proposition 3.4
We equip eS and S with the piecewise smooth Riemannian metric pulled back from
X via �. Since � is a near-immersion, by conditions (a)–(c) of Section 2, we have
that S � ¹p;q; rº is locally CAT(0). After replacing S with a surface that is a finite
branched cover of S over ¹p;q; rº, we can assume that S (which is no longer a sphere)
is locally CAT(0) at every point. Let † be the vertex set of S .

Consider first the case where there is no point in the interior of a triangle of
S with negative Gauss curvature and no point in the interior of an edge of S with
negative sum of its two geodesic curvatures. Then S �† is smooth with Gauss curva-
ture 0. Suppose first that for each v 2†, the length of lkv is commensurable with � .
By Lemma 5.2, there is a finite branched cover S 0 of S over † that is a translation
surface. By Theorem 5.3, S 0 has a closed local geodesic !0 outside the vertex set. Let
! be the projection of !0 to S . Let e! be a lift of ! to eS , which is an axis for some
w 2 hfS ; gS i. For e an edge of eS intersected by e!, let T , T 0 be the triangles of eS con-
taining e. Since � is a near-immersion, we have �.T /¤ �.T 0/. Furthermore, since
the sum of the geodesic curvatures at any point x of e in �.T / and �.T 0/ equals 0, the
geodesic curvature at x in any triangle of X distinct from �.T /, �.T 0/ is nonpositive.
Consequently, �.T [ T 0/ is locally convex at �.e/ in X . Thus �.e!/ is a local, and
hence global, geodesic in X . This implies that ��.w/ 2 hf;gi is loxodromic.

Suppose now that for some v 2† the length of lkv is not commensurable with � .
Let ev be a lift of v to eS . If lkev is a circle, then consider the closed immersed edge
path � W lkev! lk�.ev/ induced by �. This path does not satisfy the conclusion of Corol-
lary 1.7. Thus there are pointse	;e
 2 lkev such that their images in lk�.ev/ are at distance
> � C ı for some ı > 0.
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If lkev is a line, then we construct e	 , e
 in the following way. Assume without
loss of generality thatev is fixed by fS . First, we claim that X does not have rational
angles with respect to the action of hf;gi. Otherwise, let ƒ � lk�.ev/ be the discrete
set from Definition 2.3. Then the complementary components in lkev of ��1.ƒ/ are
finite and of length commensurable with � . Moreover, since f preserves ƒ, we have
that fS preserves ��1.ƒ/. This contradicts the assumption that the length of lkv is
not commensurable with � , justifying the claim.

According to our hypotheses, this means that either X is locally finite or each
element of G fixing a point of X has finite order. In both cases there is a directed
edge e in lkev and k � 1 such that �.e/ D �.f kS e/. Thus the path in lkev from the
endpoint of e to the endpoint of f kS e maps under � to a closed edge path that does
not satisfy the conclusion of Corollary 1.7, and we obtaine	 ,e
 as before.

Let 	 , 
 be the projections ofe	 ,e
 to lkv . Orbits of the rotation by � on the circle
lkv of length not commensurable with � are dense. Thus in lkv we can find 	1 D
	; 	2; : : : ; 	2n with dv.	i ; 	iC1/D � and dv.	2n; 
/ < ı

2
. Inspired by [2, Lemma 7.4],

we construct the following path e! D !1 � � �!6n in eS . To start with, we put "D ı
12n

and apply Lemma 5.4 to 	1, 	2. We define !1!2!3 to be the lift of ˇ1ˇ2ˇ3 starting in
the direction at distance < "

2
frome	 . Letev2 be the endpoint of !3, and lete	2 in lkev2

be the lift of 	2 at distance< "
2

from the ending direction of !3. Since dv.	2; 	3/D � ,
there is a lifte	3 of 	3 in lkev2 with dev2.e	2;e	3/D � . Apply now Lemma 5.4 to 	3, 	4
and define !4!5!6 to be the lift of the resulting ˇ1ˇ2ˇ3 starting in the direction at
distance < "

2
frome	3, and so on. See Figure 6. The endpoint of !6n has the form wev

for some w 2 hfS ; gS i, and since dv.	2n; 
/� ı
2

, we can choose w so that the ending
direction of !6n is at distance < "

2
C ı

2
from we
.

Note that since � is a near-immersion and !i are transverse to the edges of eS ,
we have that �.!i / are geodesics in X . Let x;y D ��.w/x 2 X be the endpoints
of �.e!/, and denote by 	 0 and 
0 the starting and ending directions of �.e!/. Then
dx.�.e	/; 	 0/ < "

2
and dy.�.we
/; 
0/ < "

2
C ı

2
. Let ˛ be the geodesic from x to y

in X , and denote by 	 00 and 
00 the starting and ending directions of ˛. Note that
the angles at all the breakpoints of �.e!/ are > � � ". By [2, Lemma 2.5] we have
dx.	

0; 	 00/C dy.

0; 
00/ < .6n� 1/". We thus have

Figure 6. Path !1 � � �!6. Angles indicated with a single arc are < "
2 . Angles indicated with a

double arc are > � � ".



22 NORIN, OSAJDA, and PRZYTYCKI

dy
�
��.w/	

00; 
00
�

� dy
�
��.w/	

0; 
0
�
� dy

�
��.w/	

00; ��.w/	
0
�
� dy.


0; 
00/

> dy
�
��.w/	

0; 
0
�
� .6n� 1/"

� dy
�
�.we	/; �.we
/�� dy���.w/	 0; �.we	/�� dy��.we
/; 
0�� .6n� 1/"

> .� C ı/�
"

2
�
� "
2
C
ı

2

�
� .6n� 1/"D �:

Consequently the concatenation of ��.w/k˛, for k 2 Z, is a local (hence global)
geodesic, and thus ��.w/ is loxodromic.

It remains to consider the case where there is a point in the interior of a triangle
T of eS with negative Gauss curvature, or a point in the interior of an edge of eS
with negative sum of its geodesic curvatures in incident triangles T , T 0. Let X be
the complex obtained from X through Lemma 5.5 applied to �.T / and �.T 0/, for
G D hf;gi, with a vertex u satisfying one of the two bullet points of Lemma 5.5. Let
ev 2 T [T 0 be the preimage of u under the composition � W eS!X!X , and let v be
the projection ofev to S . Replace the �-complex structure and the piecewise smooth
Riemannian metric on eS by the one pulled back from X via �.

Suppose first that lku is a circle of length � 2.� C ı/, which is then isometric to
lkev and lkv . Let 	1, 	4 be antipodal points in lkv , and let 	2; 	3 2 lkv be also antipo-
dal points with dv.	1; 	2/ D dv.	3; 	4/ D � . We take " D ı

5
and use Lemma 5.4 as

before to obtain appropriate paths !1!2!3 and !4!5!6 in eS . Let ˛1 and ˛2 be the
geodesics in X with the same endpoints as �.!1!2!3/ and �.!4!5!6/. Then by [2,
Lemma 2.5], the starting direction of ˛2 is at angle < 2" from the starting direction
of �.!4/, which is at angle > � C ı � 2 "

2
from the ending direction of �.!3/, which

is in turn at angle < 2" from the ending direction of ˛1. Thus ˛1˛2 is a geodesic.
Similarly, for appropriate w 2 hfS ; gS i, we have that ˛2��.w/˛1 is a geodesic. Then
the concatenation of ��.w/k.˛1˛2/, for k 2 Z, is a geodesic, and ��.w/ acts on it as
a nontrivial translation. Consequently, ��.w/ is loxodromic with respect to the action
on X and in particular has no fixed point in X . Thus ��.w/ has no fixed point in X .

Finally, suppose that lku is a graph obtained from a family of disjoint circles
C1;C2; : : : of length 2� by gluing them along an arc b of length < � . We can assume
that triangles �.T / and �.T 0/ correspond to C1 n b and C2 n b. Then � induces
an embedding of lkev into lku allowing us to identify lkev , and hence lkv , with the
circle .C1 [ C2/ n b. Under this identification, let 	1; 	3 2 C1 n b and 	2; 	4 2 C2 n b
be points at distance �

2
from the endpoints of b, with dv.	1; 	2/ D dv.	3; 	4/ D � .

Choosing ı D min¹jbj; � � jbjº, we can then use Lemma 5.4 as before to obtain an
element ��.w/ that is loxodromic with respect to the action on X .
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6. Triples of generators
In this section we complete the proof of Theorem 1.1.

PROPOSITION 6.1
Let f , g, h be automorphisms of a CAT.0/ triangle complex X satisfying condition
(i), (ii), or (iii) of Theorem 1.1, with respect to hf;g;hi. Suppose that all Fix.f / \
Fix.g/, Fix.f /\Fix.h/, and Fix.g/\Fix.h/ are nonempty. Then Fix.f /\Fix.g/\
Fix.h/ is nonempty or hf;g;hi contains an element with no fixed point in X .

In the proof we will need the following notion. Let � be a disk with decomposi-
tion of its boundary into three paths @�D P [Q [R. An admissible triangulation
of� with respect to .f;g; h/ is a structure on� of a�-complex, with P \Q,Q\R,
P \R among the vertices, together with a simplicial map  from � to X that sends
P , Q, R into Fix.f /, Fix.g/, Fix.h/, respectively.

LEMMA 6.2
Let f , g, h be automorphisms of a CAT.0/ triangle complex X acting without inver-
sions. Suppose that Fix.f /, Fix.g/, Fix.h/ pairwise intersect but their triple inter-
section is empty. Then there exists an admissible triangulation of � with respect to
.f;g; h/ with  a near-immersion.

Proof
Since f , g, h act without inversions, their fixed point sets are subcomplexes. Thus
an admissible triangulation of � exists by Theorem 4.1. Suppose now that � has
minimal area among admissible triangulations with respect to .f;g; h/.

We first prove that  is nondegenerate. Indeed, suppose that there is an edge
e �� with  .e/ a vertex, and let u, v be the endpoints of e. If e lies in @�, then let
T be the triangle containing e. We then remove e and T from � and we identify the
two remaining sides of T . This decreases the area of�, which contradicts minimality.

Suppose then that e is contained in two triangles T and T 0. If u D v, then let
B � � be the open disk bounded by e. Let T be the triangle of � adjacent to e
outside B , and let t , t 0 be the edges of T distinct from e. We remove T [ B from
� and glue along t and t 0. This does not change the homeomorphism type of �, and
decreases its area, which is a contradiction.

If u¤ v and T D T 0, then we land back in the case uD v. Otherwise, we wish
to remove T [ T 0, or more precisely to collapse intervals of the foliation in T [ T 0

parallel to e. Unless e has both endpoints on @�, this does not change the homeomor-
phism type of � (see Figure 7, left). If both u and v are on the path P (resp., Q, R),
then together with T and T 0 we remove the entire disk bounded by e and a subpath of
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Figure 7. Proof of Lemma 6.2.

P (resp., Q, R), and we identify the two remaining edges of T or T 0 (see Figure 7,
right). If the endpoints of e lie on two distinct paths, say P and Q, then we do the
same using a subpath of P [Q. The vertex P \Q is replaced here by u identified
with v.

Finally, we prove that  is a near-immersion. Suppose that there is an edge e ��
with midpoint m where  is not a local embedding. Let T;T 0 � � be the triangles
containing e, and let y, y0 be the vertices opposite to e in T , T 0. We have T ¤ T 0,
since, otherwise,  collapses the edge of T distinct from e to a vertex. Let ı be the
path that is the union of line segments ym� T and my0 � T 0.

If y D y0, then let B �� be the open disk bounded by ı, and let t , t 0 be the edges
of T , T 0 outside B . We can remove T [ T 0 [B and glue along t , t 0 to decrease the
area of �, which is a contradiction.

If y ¤ y0, then we collapse intervals of the appropriate foliation in T [T 0. Unless
ı has both endpoints on @�, this does not change the homeomorphism type of �. If
both endpoints of ı are on the path P (resp., Q, R), then together with T and T 0, we
remove the entire disk bounded by ı and a subpath of P (resp.,Q,R), and we identify
the two remaining edges of T , T 0. If the endpoints of ı lie on two distinct paths, say
P and Q, then we do the same using a subpath of P [Q (P \Q is replaced here by
y identified with y0).

LEMMA 6.3
Let f , g, h be automorphisms of a CAT.0/ triangle complex X . Suppose that we
have an admissible triangulation of � w.r.t. .f;g; h/ with  a near-immersion and
satisfying the following property.
(?) For any edge e of P (resp., Q, R), the triangle containing e is not mapped by

 to Fix.f / (resp., Fix.g/, Fix.h/).
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Then for f 0 D h ı f , g0 D h ı g we have an equivariant triangulation of eS with
respect to .f 0; g0/ with � a near-immersion.

Proof
We label the vertices of� by pD P \R, q DQ\R, r D P \Q. LetD be obtained
from � by attaching a second copy of � along the side R. Extend  to a map from
D to X defined as h ı on the attached copy of �.

Denote ˛D jP , ˇD jQ to be directed paths starting at  .r/. Then the restric-
tion of  to @D is ˛�1ˇg0.ˇ�1/f 0.˛/. Gluing in D the parts of @D that are the
domains of ˛ and f 0.˛/, and the parts of @D that are the domains of ˇ and g0.ˇ/, we
obtain a template 2-sphere S from Definition 3.2 (as in the bottom of Figure 2).

Let �� W �1.S �¹p;q; rº; z/!hf 0; g0i be the homomorphism mapping fS to f 0

and gS to g0. We extend W D!X to � W eS!X by defining, for eachw 2 hfS ; gS i,
the restriction of � to wD � eS to be ��.w/ ı  ı w�1. This forms an equivariant
triangulation of eS with respect to .f 0; g0/, with the equivariant map � W eS!X .

Since � is equivariant, to prove that it is a near-immersion, it suffices to justify
that it is a local embedding at the midpoint of any edge e in the interior of D, or in P
or Q. If e lies in the interior of D but not in R, then this follows from the assumption
that  is a near-immersion. If e lies in R and is contained in a triangle T of �, then
the two triangles of D containing e are sent by � to  .T / and h .T /. By property
(?), we have h .T /¤  .T / and so � is a local embedding at the midpoint of e as
well. Finally, if e lies in, say, P , and is contained in a triangle T of �, then the two
triangles of eS containing e are T and the image under f �1S of the second copy of
T in D. These two triangles are sent by � to  .T / and .f 0/�1h .T /D f �1 .T /.
By property (?), we have f �1 .T / ¤  .T / and so � is a local embedding at the
midpoint of e as before.

Proof of Proposition 6.1
After possibly passing to the barycentric subdivision of X (which obviously pre-
serves the conditions (i) and (ii) of Theorem 1.1, and preserves condition (iii) by
Lemma 2.4), we can assume that f , g, h act without inversions. Suppose that
Fix.f /\ Fix.g/\ Fix.h/D;. Then by Lemma 6.2, there is an admissible triangula-
tion of � with  a near-immersion. Moreover, by possibly passing to a subcomplex
of �, we can assume that � satisfies property (?).

By Lemma 6.3, for f 0 D hıf , g0 D hıg we have an equivariant triangulation ofeS with respect to .f 0; g0/ with � a near-immersion. Thus by Proposition 3.4, hf 0; g0i
contains an element with no fixed point in X .
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Proof of Theorem 1.1
Suppose by contradiction that for each f 2 G the set Fix.f / is nonempty. We will
prove that for any finite set of elements f1; : : : ; fn 2G the intersection Fix.f1/\� � �\
Fix.fn/ is nonempty. The case nD 2 follows from Proposition 3.1. Consequently, the
case n D 3 follows from Proposition 6.1. Since the fixed point sets are convex, the
cases n� 4 follow from Helly’s theorem (see [14, Theorem 1.1]). Setting f1; : : : ; fn
to be the generators ofG, we obtain thatG fixes a point ofX , which is a contradiction.

7. Irrational loops have diameter > �
In this section we prove Theorem 1.6.

The key ingredient in the proof is a reformulation of a theorem of Dehn [9], which
states that a rectangle can be tiled by finitely many squares if and only if its sides are
commensurable.

Let .X;�X /, .Y;�Y / be measure spaces of finite measure. We will write �
instead of �X and �Y for brevity. We say that a pair .A;B/, such that A � X ,
B � Y are measurable, is a rectangle in X � Y with side lengths �.A/ and
�.B/. A rectangle is a square if its side lengths are equal. We say that a collec-
tion .A1;B1/; .A2;B2/; : : : ; .Ak;Bk/ of rectangles is a rectangle tiling of X � Y
if
�

Sk
iD1Ai �Bi DX � Y , and

� �.Ai \Aj /�.Bi \Bj /D 0 for 1� i < j � k.
We say that a rectangle tiling is a square tiling if it consists of squares.

THEOREM 7.1
Let .A1;B1/, .A2;B2/; : : : ; .Ak;Bk/ be a square tiling of X � Y . Then �.X/, �.Y /,
�.A1/; : : : ;�.Ak/ are all commensurable.

While it is not hard to see that Theorem 7.1 is equivalent to the theorem of Dehn
stated above, we include a proof both for completeness, and because we will need a
technical modification of the result. The proof we give is essentially the one used by
Hadwiger [11] to prove a multidimensional generalization of Dehn’s theorem, except
that we follow the presentation from Aigner and Ziegler [1, Chapter 29], which avoids
the reliance on the existence of Hamel basis of R over Q and thus the dependence on
the Axiom of Choice.

Proof of Theorem 7.1
We start by showing that it suffices to consider the case when X and Y are finite. The
reduction is fairly straightforward. Define an equivalence relation 	 on X by setting
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x1 	 x2 if for every 1� i � k either ¹x1; x2º 2Ai or ¹x1; x2º\Ai D;. Clearly there
are finitely many equivalence classes of elements of X with respect to this relation,
and we can identify the elements of X lying in the same equivalence class. Thus we
can assume that X and, symmetrically, Y are finite. Further, we may assume without
loss of generality that every element of X and Y has a positive measure. It follows
that for every x 2 X and y 2 Y there exists a unique index i such that x 2 Ai and
y 2Bi .

Let V be a vector space over Q spanned by ¹�.x/ºx2X [ ¹�.y/ºy2Y . Suppose
first that �.X/ and �.Y / are not commensurable. Then there exists a linear function
f W V !Q such that f .�.X//D 1 and f .�.Y //D�1. By linearity we have

�1D f
�
�.X/

�
f
�
�.Y /

�
D
X
x2X

f
�
�.x/

�X
y2Y

f
�
�.y/

�

D

kX
iD1

f
�
�.Ai /

�
f
�
�.Bi /

�
D

kX
iD1

f 2
�
�.Ai /

�
� 0; (1)

yielding the desired contradiction.
Suppose finally that �.Aj / is not commensurable with �.X/ for some 0 �

j � k. Define a linear function g W V !Q such that g.�.X//D 0 and g.�.Aj //D 1.
Substituting g instead of f in (1) yields

0D g
�
�.X/

�
g
�
�.Y /

�
D

kX
iD1

g2
�
�.Ai /

�
� g2

�
�.Aj /

�
D 1;

a contradiction.

We will also need a technical variant of Theorem 7.1.

LEMMA 7.2
Let .A1;B1/, .A2;B2/; : : : ; .Ak;Bk/ be a rectangle tiling of X � Y , such that for
some q; r 2RC and a 2Q we have
� �.X/D 2qC ar , �.Y /D qC .a=2� 1/r ,
� .A1;B1/ and .A2;B2/ are rectangles with sides r and qC r ,
� .A3;B3/; : : : ; .Ak;Bk/ are squares,
� �.A3/; : : : ;�.Aj / are commensurable with r for some 3 � j � k, andPj

iD3�
2.Aj / > .a� 4/r

2.
Then q and r are commensurable.
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Proof
The proof parallels the proof of Theorem 7.1 above with minor modification to the cal-
culation (1). We define the vector space V as in the proof of Theorem 7.1, and assume
for a contradiction that q and r are not commensurable. Then there exists a linear
function f W V !Q such that f .q/D a=2�1 and f .r/D�1. Thus f .�.X//D�2,
f .�.Y //D 0, and f .�.Ai //f .�.Bi //D 2� a=2 for i D 1; 2, while

jX
iD3

f
�
�.Aj /

�
f
�
�.Bj /

�
D

jX
iD3

��.Aj /
r

�2
f 2.r/ > a� 4:

Combining these estimates as in (1) we obtain

0D f
�
�.X/

�
f
�
�.Y /

�

D

kX
iD1

f
�
�.Ai /

�
f
�
�.Bi /

�

D

2X
iD1

f
�
�.Ai /

�
f
�
�.Bi /

�
C

jX
iD3

f
�
�.Ai /

�
f
�
�.Bi /

�
C

kX
iDjC1

f 2
�
�.Ai /

�

> .4� a/C .a� 4/D 0;

the desired contradiction.

Let us now outline the proof of Theorem 1.6. As a first step (Claim 1 below),
we prove that every cycle C of � 0 has length commensurable with � . We do so by
examining the structure of shortest paths in � between the pairs of points in C . The
paths joining the pairs of points which lie at distance greater than � in C must take
“shortcuts,” which we refer to as chords. We construct a square tiling of a cylinder,
where the squares correspond to the chords and apply Theorem 7.1.

Next we prove in Claim 3 that certain paths of � 0, called bars, also have length
commensurable with � . We say that a path B in � 0 with endpoints u and v is a bar
in � 0 joining cycles C1 and C2, if C1 and C2 are disjoint cycles of � 0, and, moreover,
u 2 C1, v 2 C2 and C1 and C2 are otherwise disjoint from B . See Figure 8(b). Note
that for every bar B there exists a closed edge path immersed in � 0 that traverses B
twice and each of Ci once. The existence of such an immersion allows us to adapt
the argument we used for cycles to bars, but there are multiple technical hurdles to
overcome, making this the most technical part of the proof. It is here, in particular, that
we use Lemma 7.2, and we additionally need extra information about the structure of
chords of a cycle and between pairs of cycles, which we obtain in Claims 1 and 2.

To unify the argument for cycles and bars we start the proof of Theorem 1.6 in
the setting of Corollary 1.7 by considering closed edge paths immersed in � .
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Figure 8. (a) The pair .x;y/ uses the chord .s; t/. (b) A bar joining cycles C1 and C2 is shaded.
The pair .x;y/ is spliced in C .

Finally, in Claim 4, we show that every segment of � 0 has length commensurable
with � by proving that it can be expressed as a rational linear combination of bars
and cycles.

Proof of Theorem 1.6
We follow the steps outlined above, starting by considering immersed circles in � 0.

Let � W C ! � 0 be a local isometry mapping a circle C of length l into � 0. We
identify C with R=lZ. This identification defines a natural R-action on C .

For x;y 2 C , let d.x;y/ denote the distance between points �.x/ and �.y/ in � .
As the girth of � is at least 2� , if 0 < d.x;y/ < � , then there exists a unique path
from �.x/ to �.y/ in � of length d.x;y/. We denote such a path by Pxy .

Let S be the set of points s in C such that �.s/ has degree at least 3 in � . For
s; t 2 S we say that .s; t/ is a chord of � of length d0 if 0 < d0 D d.s; t/ < � , and
Pst is disjoint from �.Œs � "; s/ [ .s; s C " [ Œt � "; t/ [ .t; t C "/ for some " > 0.
Note that our chords are directed; that is, we distinguish between the chords .s; t/ and
.t; s/.

For x;y 2 C we say that .x; y/ uses a chord .s; t/ if there exists a path P from
�.x/ to �.y/ in � of length d.x;y/ such that P is obtained by concatenating paths
�.Œx; s/, Pst and �.Œt; y/, where we denote by Œa; b for a; b 2 C the shortest of
the two intervals in C with endpoints a and b. See Figure 8(a). Clearly, .x; y/ uses
a chord .s; t/ of length d0 if and only if there exist �; � 2 R such that x D s C � ,
y D t C � , and j� j C j� j � � � d0. Moreover, if the last inequality is strict, then .s; t/
is the unique chord used by .x; y/.

Note further that for every .x; y/ 2 C 2 if .x; y/ uses no chord, then there exist
z; z0 2 C such that �.z/D �.z0/, and there exists a path from �.x/ to �.y/ in � of
length d.x;y/ obtained by concatenating paths �.Œx; z/ and �.Œz0; y/. Moreover, if
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d.x;y/ < � , then the converse also holds. If .x; y/ uses no chord and the distance
between x and y in C is larger than � , then we say that .x; y/ is a spliced pair (see
Figure 8(b)). We denote the set of spliced pairs by Spl.�/.

We now describe the square tiling to which we apply Theorem 7.1 and
Lemma 7.2. Let R D R.�/ � C 2 be the annulus consisting of points .x; y/ with
x and y at distance at least � in C . Note that R is isometric to the product of a circle

of length l
p
2 and an interval of length l

p
2
2
��
p
2. Let K DK.�/ denote the set of

all chords, and let S.K/ for K 2K denote the set of pairs .x; y/ 2 C 2 which use K .
For a chord K D .s; t/ of length d0, let z D � � d0. As noted above,

S.K/D
®
.sC �; t C �/ j �z � � C � � z;�z � � � � � z

¯
;

which is a square in R with side length z
p
2 and one side pair parallel to @R.

Moreover, for distinct K the squares S.K/ have disjoint interiors. Finally, note that
Spl.�/D int.R/�

S
K2K S.K/ by definition.

We will also use some of the terminology introduced above when considering a
subgraphƒ of � , rather than an immersion. For vertices s, t ofƒ, we say that .s; t/ is
a chord of ƒ of length d0 and area 2.� � d0/2 if 0 < d0 D d�.s; t/ < � and the first
and last edge of the unique path P from s to t in � of length d0 do not lie in ƒ. Note
that if � W C ! � is an immersion as above, and s; t 2 C are such that .�.s/; �.t// is
a chord of �.C / of length d0, then .s; t/ is a chord of � of length d0. If � is injective,
then the converse also holds.

We are now ready for the first major claim, which in particular establishes the
theorem in the case when � 0 is a cycle.

CLAIM 1
Let C be a cycle in � 0 of length l . Then
(a) l is commensurable with �;
(b) the length of every chord of C is commensurable with �;
(c) for every point p 2 C , the total area of chords of C with both endpoints in

C � ¹pº is at least 2�.l � 2�/.

Proof
Let � be an isometry from a circle of length l onto C . For simplicity of notation we
identify the domain of � with C .

Note that Spl.�/ D ;. Thus int.R.�// �
S
K2K.�/ S.K/ � R.�/. As K.�/ is

finite, it follows that R.�/D
S
K2K.�/ S.K/, and Theorem 7.1 implies that l

p
2 and

l
p
2
2
� �
p
2 are commensurable. Thus (a) holds, and Theorem 7.1 similarly implies

that (b) holds.
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It remains to establish (c). First note that the total area of all chords of C is equal
to the area of R.�/, which is l.l � 2�/. It remains to upper-bound the area of chords
of C with at least one end in p, i.e. chords of � with at least one end in s D ��1.p/.
LetK1 D .s; t1/;K2 D .s; t2/; : : : ;Kn D .s; tn/ be all the chords starting at s. Suppose
thatKi has length ��zi . Then the area of S.Ki / is equal to 2z2i , and S.Ki / intersects
the line .¹sº�C/\R in an interval of length 2zi . As .¹sº�C/\R has length l�2� ,
we have

Pn
iD1 zi � l=2 � � , and so the sum of the areas of the chords starting at s

is at most 2.
Pn
iD1 zi /

2 � 2.l=2� �/2. It follows that the area of chords of C with at
least one end in p, is at most .l � 2�/2. As l.l � 2�/� .l � 2�/2 D 2�.l � 2�/, (c)
follows.

Next we need to extend Claim 1(b) to a pair of disjoint cycles.

CLAIM 2
Let C1, C2 be disjoint cycles of � 0. Then every chord of C1 [C2 has length commen-
surable with � .

Proof
Let li be the length of Ci for i D 1; 2. By (a) and (b) of Claim 1, the lengths l1 and
l2 are commensurable with � and so is the length of every chord of C1 and C2. It
remains to establish the claim for chords with one endpoint in C1 and another in C2.

To do so, we parallel the proof of Claim 1 and the preceding construction of the
square tiling. Let K be the set of chords .s; t/ of C1 [ C2 with s 2 C1, t 2 C2. We
say that a pair .x; y/ 2 C1�C2 uses a chord .s; t/ 2K if there exists a path of length
d�.x; y/ from x to y in � obtained by concatenating a path in C1, the minimal length
path from s to t , and a path in C2. Let S.K/� C1 � C2 be the set of pairs of points
using the chord K of length � � z. Then analogously to the earlier observations, we
have that S.K/ is a square with side length

p
2z, and the squares ¹S.K/ºK2K cover

C1 �C2 and have disjoint interiors.
To apply Theorem 7.1 we need to transform the tiling of C1 �C2 into a tiling of

a product set, where the squares inherit the product structure. We do it as follows. Let
n1, n2 be positive integers such that n1l1 D n2l2. By lifting our tiling of C1 � C2 to
the product of the n1-fold cover of C1 and the n2-fold cover of C2, we may assume
without loss of generality that C1 and C2 have the same length l .

Let �1 W R=lZ ! C1 and �2 W R=lZ ! C2 be isometries. Let  W R=lZ �
R=lZ! C1 �C2 be defined by  .x;y/D .�1.xCy/; �2.x�y//. Consider a chord
K D .s; t/ 2K of length ��z. Then  �1.S.K// consists of two squares of the form
Œx � z=2;xC z=2� Œy � z=2;yC z=2, where .x; y/ 2 .R=lZ/2 is either one of the
two pairs satisfying �1.xC y/D s, �2.x�y/D t . Thus the preimage of our tiling of
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C1 � C2 is a square tiling of .R=lZ/2 satisfying the conditions of Theorem 7.1, and
by this theorem if K 2K is a chord of length � � z, then z is commensurable with
l . As l is commensurable with � , the claim follows.

We are now ready to establish that the conclusion of the theorem holds for bars.

CLAIM 3
The length of every bar of � 0 is commensurable with � .

Proof
Let B be a bar in � 0 with endpoints u and v, of length b, joining cycles C1 and C2
of length l1 and l2, respectively, such that u 2 C1, v 2 C2. Let � W C ! � 0 be a local
isometry from a circle C of length l D l1C l2C 2b, traversing B twice, and each of
C1 and C2 once. Our goal is to apply Lemma 7.2 to a tiling of R.�/ defined in the
beginning of the proof.

Unlike in Claim 1, the set Spl.�/ of spliced pairs is not empty, but it is not hard
to analyze. Let ��1.B/D Œs1; s1C b[ Œs2 � b; s2 for some s1; s2 2 C . Then Spl.�/
consists of two rectangles: one with corners .s1��; s2/, .s1; s2C�/, .s1CbC�; s2�
b/, .s1C b; s2 � b ��/, and the other obtained from it by permuting the coordinates.

Let r D �
p
2, and let q D b

p
2. Let a D .l1 C l2/=� . Then l

p
2 D 2q C ar ,

and thus R.�/ can be considered as a product of a circle @R of length 2q C ar and
an interval of length q C .a=2 � 1/r . Each of the rectangles in Spl.�/ has a side of
length r parallel to @R.�/, and a side of length q C r orthogonal to it. The cylinder
R.�/ is tiled by the rectangles in Spl.�/ and squares in ¹S.K/ºK2K.�/, and the first
three conditions of Lemma 7.2 are satisfied for this tiling. Note that Lemma 7.2 would
immediately imply the claim.

Thus to prove the claim it remains to verify the last condition of Lemma 7.2, that
is, to show that the total area of the squares corresponding to the chords of � with
length commensurable with � is strictly greater than .a� 4/r2 D 2�.l1C l2/� 8�2.

By Claim 2, every chord of C1 [ C2 has length commensurable with � , and if
such a chord has no endpoint in ¹u;vº, then it corresponds to a chord of � of the same
length. By Claim 1(c), the total area of the chords of Ci with no endpoint in ¹u;vº is
at least 2�li �4�2. It remains to find at least one chord of C1[C2 with one endpoint
in C1 � ¹uº and another in C2 � ¹vº. Indeed, consider a point x 2 C1 at distance at
least � from u in C1, and a point y 2 C2 at distance at least � from u in C2. Then the
chord used by .x; y/ cannot have an endpoint in ¹u;vº and so is as required.

Let V.� 0/, E.� 0/ denote the vertex and edge set of the graph � 0. We finish the
proof of the theorem by reducing it to Claims 1(a) and 3. For the reduction it will
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be convenient for us to think of subgraphs of � 0 as elements of QE.�
0/, the vector

space of formal linear combinations of edges of � 0 with rational coefficients. Thus we
identify every subgraph ƒ of � 0 with

P
e2E.ƒ/ e. The theorem immediately follows

from Claims 1(a) and 3 and the next claim, which uses the above convention.

CLAIM 4
Every segment of � 0 is a rational linear combination of cycles and bars of � 0.

Proof
Let P be a segment of � 0. We assume without loss of generality that � 0 is chosen
minimal subject to the conditions that the minimum degree of � 0 is at least 2, and
P is a segment of � 0. We further assume by suppressing vertices of degree 2 in � 0

that every vertex of � 0 has degree at least 3. In particular, every segment of � 0 is an
edge. Subject to these assumptions there are only a few isomorphism types of graphs
to consider, and the proof proceeds by exhaustive case analysis.

Note first that every non-loop edge e 2E.� 0/ shares at least one endpoint with P ,
as otherwise � 0 � e contradicts the minimality of � 0. Similarly, if w 2 V.� 0/� V.P /
is incident to a loop, then deg.w/ D 3. (We use deg.x/ to denote the degree of a
vertex x in � 0.) By the previous observation, the non-loop edge incident to w shares
an endpoint with P . We call such a vertex w a pseudoleaf of � 0.

Let u and v be the endpoints of P . Suppose first that deg.u/� 4. Let e 2E.� 0/�
E.P / be any edge incident to u. By the minimality of � 0, either u or v has degree
at most 2 in � 0 � e. Thus either e is a loop and deg.u/D 4, or e joins u and v and
deg.v/D 3. As one of these outcomes holds for every edge in E.� 0/�E.P / incident
to u, we conclude that � 0 consists of P , a loop incident to u, an edge parallel to P ,
a pseudoleaf adjacent to v, which we denote by w, and a loop incident to w (see
Figure 9(a)).

It is not hard to verify that the claim holds in this case, and we do so using the
following notation, which will also be used in all the remaining cases. We denote the
edge with endpoints x and y by xy, and in the case when there are several such edges
in � 0 we denote them by xy1, xy2; : : : . In particular, let P D uv1.

Returning to our case, note that wv is a bar joining a loop at w and a cycle
P Cuv2, while wvCP is a bar joining loops at w and u. Thus P D .wvCP /�wv
is a difference of two bars, and the claim holds in this case. The case deg.v/ � 4 is
symmetric.

It remains to consider the case deg.u/ D deg.v/ D 3. Suppose next that there
exists w 2 V.� 0/ � ¹u;vº such that w is not a pseudoleaf. As every non-pseudoleaf
vertex in V.� 0/� ¹u;vº is incident to at least three edges which have u or v as their
second endpoint, every vertex in V.� 0/ except u, v and w is a pseudoleaf.
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Figure 9. Cases in the proof of Claim 4.

If deg.w/ � 4, then w is joined to each of u and v by a pair of parallel edges
(see Figure 9(b)). In this case each of wv1 C wv2, wu1 C wu2, wv1 C wu1 C P ,
wv2 C wu2 C P is a cycle, and P is a rational linear combination of these cycles.
Thus the claim holds.

If deg.w/D 3, then we suppose without loss of generality that w is joined to u
by a pair of parallel edges, and to v by an edge. Then the remaining edge incident
to v must have a pseudoleaf, which we denote by x, as its second endpoint (see
Figure 9(c)). In this case, xv is a bar joining the loop at x to the cycle P Cuw1Cwv,
and xvCP is a bar joining the loop at x and the cycle uw1 C uw2. Therefore, P is
the difference of two bars, and the claim holds.

We reduced our analysis to the case when deg.u/D deg.v/D 3 and every vertex
in V.� 0/�¹u;vº is a pseudoleaf. We now consider subcases depending on the number
of edges joining u to v.

If there are three such edges, then P C uv2, P C uv3, and uv2 C uv3 are each
cycles, and P is a rational linear combination of these cycles (see Figure 9(d)). If
exactly two edges join u to v, then there is a pseudoleaf adjacent to each of u and
v. Denote these pseudoleaves by u0 and v0, respectively (see Figure 9(e)). Then uu0

is a bar joining the loop at u0 and P C uv2, and similarly vv0 is a bar. The path
uu0 C P C vv0 is also a bar, joining the loops at u0 and v0, and P is a rational linear
combination of the above three bars.

It remains to consider the case when P is the unique edge between u and v. In
this case each of u and v is either incident to a loop or adjacent to two pseudoleaves.
Up to symmetry there are three final cases to consider.

If both u and v are incident to a loop, then P is a bar (see Figure 9(f)). If u is
incident to a loop and v is adjacent to pseudoleaves v0 and v00, then each of the paths
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v0v C P , v00v C P , and v0v C v00v is a bar joining the loops at its endpoints, and P
is a rational linear combination of these bars (see Figure 9(g)). Finally, suppose that
v is adjacent to pseudoleaves v0 and v00, and u is adjacent to pseudoleaves u0 and u00

(see Figure 9(h)). Then P is a rational combination of bars v0v C v00v, u0uC u00u,
v0vCP C u0u, v00vCP C u00u. Thus the claim holds in this last case.
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