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VIRTUAL CACTUS GROUP

ABSTRACT. The space t, = C"/C of n points on the line modulo translation has a natural
compactification t, as a matroid Schubert variety. In this space, pairwise distances between
points can be infinite; we call such a configuration of points a “flower curve”, since we imagine
multiple components joined into a flower. Within t,, we have the space F,, = C" \ A/C of
n distinct points. We introduce a natural compatification F,, along with a map F, — &,
whose fibres are products of genus 0 Deligne-Mumford spaces. We show that both €, and F,
are special fibers of 1-parameter families whose generic fibers are, respectively, Losev-Manin
and Deligne-Mumford moduli spaces of stable genus 0 curves with n 4+ 2 marked points.

We find combinatorial models for the real loci t,(R) and F,(R). Using these models,
we prove that these spaces are aspherical and that their equivariant fundamental groups are
the virtual symmetric group and the virtual cactus groups, respectively. The deformation of
F,(R) to a real locus of the Deligne-Mumford space gives rise to a natural homomorphism
from the affine cactus group to the virtual cactus group.
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1. INTRODUCTION

1.1. Moduli space of stable genus 0 curves. The Deligne-Mumford space M, of sta-
ble genus 0 curves with n marked points (here we will call these “cactus curves”) has been
intesively studied in algebraic geometry, representation theory, and algebraic combinatorics.

Going back to the work of Kapranov [Kap93a, Theorem 4.3.3], M,, can be constructed as
an iterated blowup of projective space along a certain family of subspaces. This construction
was generalized by de Concini-Procesi [DCP95], who defined a wonderful compactification of
the complement of any hyperplane arrangement, so that M, is the wonderful compactification
of the type A root arrangement.

Losev-Manin [LMO00] introduced an alternate construction of M,. They began with the
permutahedral toric variety T, (also called the Losev-Manin space), where T;, = (C*)"/C*,
and then performed a series of blowups to get M, ;.

In representation theory, Aguirre-Felder-Veselov [AFV16] proved that M, parametrizes
maximal commutative subalgebras of the Drinfeld-Kohno Lie algebra. Their result was used
by the fifth author [Ryb18] to prove that M, parametrizes Gaudin subalgebras in (Ug)®",
where g is any semisimple Lie algebra.

The real locus M, +1(R) is a beautiful combinatorial space of independent interest. Kapra-
nov [Kap93b, Proposition 4.8] and Devadoss [Dev99, Theorem 3.1.3] proved that it is tiled
by (n — 1)/2! copies of the associahedron. Dual to this tiling is a cube complex studied by
Davis-Januszkiewicz-Scott [DJS03], who proved that M, 1(R) is the classifying space for the
cactus group C,, a finitely generated group analogous to the braid group.

The second and fifth authors, along with Halacheva and Weekes, studied the monodromy
of eigenvectors for Gaudin algebras [HKRW20] over this real locus. They proved that this
monodromy is given by the action of the cactus group on tensor product of crystals, as defined
in [HKO06].

1.2. The moduli space of cactus flower curves. In this paper, we will study the moduli
space F'y, of cactus flower curves, an additive analog of the Deligne-Mumford space. Much as
M 42 is a compactification of

My 4o = (PH" 2\ A/PGLy = (C*)"\ A/C*

the space of n distinct points in the multiplicative group, our space F,, will be a compactifi-
cation of

F,:=C"\A/C
the space of n distinct points in the additive group.
Given a point (z1,...,2,) € F,, we can consider all possible distances between points

dij = z; — #zj. These distances are non-zero and non-infinite and obey the “triangle equalities”
0ij+0;1 = i1 In Section 3.2, we define t,, to be the scheme defined by these triangle equations,
but where we allow §;; to take any value in PL.

When distances between points are infinite, it is natural to view the points as living on
different projective lines. As we explain in Remark 3.10, we will view these lines as glued
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FIGURE 1. A point of Mg;1 (a cactus curve), a point of tg (a flower curve),
and a point of Fg (a cactus flower curve).

together at a single point, thus forming a “flower” with many petals. More precisely, a flower
curve is a curve C = C1 U --- U (), with n marked points z1,...,z, € C, such that each
component Cj is isomorphic to P!, all meet at a common distinguished point zg, and each
carry a non-zero tangent vector at zo (the marked points are not required to be distinct). We
will regard t,, as the moduli space of flower curves. In a followup paper with Zahariuc, we will
precisely formulate a moduli functor for these flower curves and prove that it is represented
by t,. .

The space t,, is a special case of a matroid Schubert variety. Ardila-Boocher [AB16] defined
this compactification of a vector space, depending on a hyperplane arrangement; in our case,
the hyperplane arrangement is the type A root arrangement.

The space t, is an analog of the Losev-Manin space, so it is natural to construct F,, from
t, by iterated blowups. Due to the singularities of the space, this is technically difficult, so
we follow a different approach. We cover t, by a collection of open affine subschemes Ug
(these are indexed by set partitions & of {1,...,n}). In Section 6.1, over each open set U,
we give an explicit construction of its desired preimage Usg. Then we glue these Us together
to form our scheme F,. For example if & = {{1,...,n}} (the set partition with one part),
then Ug = t,, and U}; is Mn+1, the total space of the natural line bundle over M, 1.

From our construction of F,,, there is a natural morphism ~ : F,, — f, whose fibres are
products of Deligne-Mumford spaces. For this reason, we regard F,, as a moduli space of
cactus flower curves; in a cactus flower curve, all the marked points are distinct and each C}
is a usual cactus curve (a stable genus 0 curve with distinct marked points).

A different compactification of F,, was previously defined by Mau-Woodward [MW10]. Their
space (), has the advantage that it can be defined directly as a subscheme of a product of
projective lines, see Section 5.1. However, their space is too big for our purposes, as the fibres
of Q, — t, are larger than we desire. From our construction of F,,, we are able to construct
a morphism Q,, — F,,.
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1.3. Deformation. There is a degeneration of the multiplicative group C* to the additive
group C. This leads to a degeneration of the Losev-Manin space T, to t,. We write Z,, — Al
for the total space of the degeneration which we will regard as a deformation of t,,. (We were
inspired by closely related degenerations studied by Zahariuc [Zah22]).

In a similar way, we will define a deformation &, of F,, whose general fibre is M, ;.
Similarly, the Mau-Woodward space @Q,, also admits a deformation @, whose general fibre is
M, 2. This leads to the following diagram

n+2 ” @n Qn

M
Mn+2 ﬁn Fn

~
3
~
N
S
A
-~
S

{e # 0} Al 4 {0}

Geometrically, the degeneration of M, 2 to F',, parametrizes a family of marked curves where
two marked points come together to form a distinguished point with a tangent vector.

1.4. Trigonometric and inhomogeneous Gaudin algebras. Our main motivation for this
paper was the theory of Gaudin subalgebras. Let g be a semisimple Lie algebra. As mentioned
above, the compactification of the moduli space of Gaudin subalgebras of (Ug)®" is given by
M ,+1. In a companion paper [IKR], we will study trigonometric and inhomogenous Gaudin
subalgebras of (Ug)®" (with fixed element of the Cartan). The non-compactified moduli space
of these algebras is M2 (for trigonometric) and F,, (for inhomogeneous). In [IKR], we will
prove that these families of commutative subalgebras extend to M, 2 and F,, respectively.
Moreover, these families of subalgebras join into the one parametrized by our scheme %,,.

1.5. Real locus. As with M, 1, the real locus of the cactus flower space, F,,(R), is a beautiful
combinatorial space. In Section 9, we prove that F,,(R) is homeomorphic to a cube complex
ﬁn, whose cubes are labeled by planar forests. Similarly, t,(R) has a combinatorial description
as the quotient of the permutahedron by the equivalence relation which identifies all parallel
faces. This quotient of the permutahedron was previous considered in [BEER06].

These combinatorial descriptions allow us to identify the fundamental groups of the real
loci. The cactus group C), is defined to be the group with generators s;; for 1 <i < j <n
and relations

(1) s3;, =1
(2) Sij Skl = SkiSij if [l,j] N [ki, l] =0
(3) $ijSk = Swy;(Wywi; (k) Sis if [k, 1] C [i, J]
Here w;; € Sy is the element of S, which reverses [i, j] and leaves invariant the elements

outside this interval. From [DJS03], we have an isomorphism 72" (M, 1(R)) = C,,.



6 ALEKSEI ILIN, JOEL KAMNITZER, YU LI, PIOTR PRZYTYCKI, AND LEONID RYBNIKOV

Taking inspiration from the virtual braid group [KLO04], we introduce the virtual cactus
group and the virtual symmetric group (this latter group, or its pure variant, has pre-
viously appeared in the literature under the names “flat braid group”, “upper virtual braid
group”, “triangular group”). The virtual cactus group vC), is generated by a copy of the
cactus group C), and the symmetric group S, subject to the relations

WSij = Sy(iyw()W, if w € Sy and w(i+k) =w(i) +kfork=1,...,5—1
The virtual symmetric group has a similar presentation involving two copies of the symmetric
group.

Using the combinatorial descriptions of these spaces, we prove the following result (Theorem
11.11).

Theorem 1.1. We have isomorphisms w>" (Fp,(R)) = vC,, and 70" (4,(R)) = vS,,. Moreover
the higher homotopy groups of these spaces vanish.

We also study a twisted real form M, +9(R) of M2 which is compatible with the compact
form U(1)"/U(1) of T,. Geometrically, M, ,,(R) parametrizes (C,z) where Zp = 2,41 and
zi = z; for 1 = 1,...,n. This real form (among others) was studied by Ceyhan [Cey07]. Using

his results, we prove the following (Theorem 11.12).
Theorem 1.2. We have an isomorphism 7115" (MZH(R)) ~ AC,.

Here AC,, is the extended affine cactus group. It is defined by starting with the affine
cactus group AC),, which has generators s;; for 1 < i # j < n (corresponding to intervals in
the cyclic order on Z/n), and then forming the semidirect product with Z/n (see Section 10.3
for the precise definition).

There is a twisted real form %, (R) of &, whose generic fibre is M, o(R) and whose

special fibre is F',(R). We prove the following result (Thoerems 9.24 and 11.13) concerning
its fundamental group.

Theorem 1.3. F,,(R) is a deformation retract of F, (R). The resulting morphism

ACy, = 7" (M 5(R)) = 77" (F(R)) = 7(" (Fu(R)) = vCy,

n

can be described explicitly on generators.

As mentioned above, %, is a moduli space of trigonometric and inhomogeneous Gaudin
algebras in (Ug)®™ where g is a semisimple Lie algebra. As in [HKRW20], we can study a
cover of ?Z(R) whose fibres are eigenvectors for these algebras acting on a tensor product
Vi® -+ ®V, of representations of g. Generalizing our work [HKRW20], in a future paper
we will prove that the monodromy of this cover gives an action of the virtual cactus group
which is isomorphic to its action on the tensor products of crystals By ® - -+ ® B, for these
representations (see [IKR] for a precise statement).

1.6. Generalizations. Many of the construction presented here have natural generalizations
to other root systems and to arbitrary hyperplane arrangements. To begin, we can study
the compactification b of the Cartan subalgebra of any semisimple Lie algebra (the matroid
Schubert variety of the root hyperplane arrangement). Such a study was initiated by Evens-Li
[EL]. In the appendix, we study and give a combinatorial description of the real locus h(R),
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proving that it is the quotient of the corresponding permutahedron by the equivalence relation
of parallel faces.

In future work, we will define an analog of F,, for any hyperplane arrangement. As in
this paper, the definition of this space will combine aspects of the Ardila-Boocher and the de
Concini-Procesi constructions. We will also give a combinatorial description of its real locus.

1.7. Acknowledgements. We would like to thank Ana Balibanu, Dror Bar-Natan, Laurent
Bartholdi, Paolo Bellingeri, Matthew Dyer, Pavel Etingof, Evgeny Feigin, Davide Gaiotto,
Victor Ginzburg, Iva Halacheva, Yibo Ji, Leo Jiang, Michael McBreen, Sam Payne, Nick
Proudfoot, and Adrian Zahariuc for helpful conversations. We thank Bella Kamnitzer for
Figure 1. The work of A.l. is an output of a research project implemented as part of the
Basic Research Program at the National Research University Higher School of Economics
(HSE University). The work was accomplished during L.R.’s stay at the Institut des Hautes
Etudes Scientifiques (IHES) and at Harvard University. L.R. would like to thank IHES,
especially Maxim Kontsevich, and Harvard University, especially Dennis Gaitsgory, for their
hospitality. Part of this work was done during the stay of Y.L. at the Max Planck Institute
for Mathematics (MPIM). The hospitality of MPIM is gratefully acknowledged.

2. SOME COMBINATORICS

Throughout this paper, n will be a natural number and we write [n] := {1,...,n}.

For each finite set S, let p(S) denote the set of pairs (i,7) of distinct elements of S. We
will abuse notation by abbreviating (i, j) to ij. Similarly, we write ¢(S) for the set of triples
(1,7, k) (abbreviated to ijk) of distinct elements of S.

Here are some combinatorics which will be useful for labelling strata in the flower space. A
set partition of [n] is a set & = {S1,...,S,,} of subsets of [n] such that S; U ---U .S, = [n]
(the order of the subsets is not important). Such a set partition defines an equivalence relation
~s on [n] where these are the equivalence classes. Conversely, an equivalence relation on [n]
determines a set partition of [n]. The two extreme set partitions are {[n]}, the unique set
partition with 1 part, and [[n]] := {{1},...,{n}}, the unique set partition with n parts.

For labelling strata in the cactus flower space, we will need some finer combinatorics. A
tree is a connected graph without cycles. A forest is a graph without cycles, or equivalently
a disjoint union of trees. Given two vertices v, w of a tree, there is a unique embedded edge
path connecting them: we call this the path between v and w.

A rooted tree is a tree with a distinguished vertex, called the root, contained in exactly
one edge, called the trunk, and with no vertices contained in exactly two edges. Given a non-
root vertex v of a rooted tree 7, the unique edge containing v that lies on the path between v
and the root is descending at v. The remaining edges containing v are ascending at v. A
vertex with no ascending edges is a leaf. A vertex v is above an edge e (resp. a vertex w), if
the path between v and the root contains e (resp. w). This defines a partial order on the set
of vertices.

A rooted forest is a disjoint union of rooted trees. The above notions extend to rooted
forests. If v, w are two vertices of a rooted forest, for v to be above w, we must have v, w on
the same component of the forest.
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Let S be a finite set, often we take S = [n]. We say a rooted forest is S-labelled (or
labelled by S) if we are given a bijection between S and the set of leaves of 7. Any S-
labelled forest 7 = {71,...,7n} (where 11,..., 7, are rooted trees) determines a set partition
of S =S51U---US,, where S; is the set of labels of 7;.

Let 7 be an S-labelled tree. Given 4,j € S, their meet is the unique vertex that lies on all
three paths between: the root, and the two leaves corresponding to 7 and j. Equivalently, it
is maximal vertex (with respect to the above partial order) which lies below ¢ and j.

A vertex of a rooted forest is internal if it is neither a leaf, nor a root. A binary tree is a
rooted tree in which every internal vertex is contained in exactly three edges (one descending
and two ascending).

3. THE LOSEV-MANIN AND FLOWER SPACES

3.1. Losev-Manin space. Let T,, = (C*)"/C* be the space of n points on C* modulo
scaling. Let T, be the Losev-Manin space, also known as the permutahedral toric variety. It
is a toric variety for T, so is equipped with an action of T,, having an open dense orbit.

For each ij € p([n]), we consider the character o;; : T, — C* defined by [z1,...,2,]
z;'z;. This extends to a map T, — (P1)P(")).,

The following result is [BB11, Cor. 1.16], but was perhaps known earlier.

Lemma 3.1. The above maps identify T\, with the subscheme of o € (Pl)p([”}) defined by the
equations

QijQje = Qi Qe = 1
for distinct 1, j, k.

In this paper, we will not use the toric variety description of T, so the reader can take
these equations as the definition of T,.

Remark 3.2. Here and below, we will consider equations inside a product of P's. The
meaning of these equations has be interpreted carefully. For example, when we write ab = ¢
for a,b,c € P!, we really mean ajbica = cragbe, where a = [a; : ag], etc are homogeneous
coordinates. In particular, this equation ab = c is solved by a = 0,b = oo and c arbitrary.

Remark 3.3. It will be convenient to consider these spaces and later ones as depending on
a finite set S (other than [n]). More precisely, we write T for (C*)%/C*, and T for the
subscheme of (P1)P(5) defined by the above equations.

A caterpillar curve is a curve C = Cy U - -- U C),, where each C}, is a projective line, and
where each pair Cf, Ci41 meet transversely at a single point (with no other intersections); we
also assume we are given distinguished smooth points zp € C and z,41 € Cp,. A caterpillar
curve with n marked points is a pair (C, z) where C is a caterpillar curve and each z; € C'is a
smooth point not equal to 2y, 2,41 (but we allow other points z;, z; to be equal). Losev-Manin
[LMOO, (2.6.3)] proved that T',, is the moduli space of caterpillar curves with n marked points
(see also [BB11]).

There is an open subset consisting of those (C, z) where C' has one component. Identifying
C = P!, we use the PGLy action to fix zg = 00, zn+1 = 0, and then we see that this open
subset is our torus (C*)"/C* = T,,. In terms of the coordinates above, T, = {«a : j; # 0, 00}.
In turn, we can consider the locus (C, z) where C has one component and all z; are distinct.
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It is easy to see that this locus is given by {a : aj; # 0,1,00} and can be identified with
Mgz i= ((CX)"\ A)/C.

3.2. The flower space. We will now study the flower space t,, an additive version of T,.
By definition this is the subscheme of v € (P1)P(")) defined by

(2) VijVjk = VikVjk + VigVik  Vij + 50 =0
for all distinct ¢, 7, k.
Equivalently, we can set 6;; = 1/131. In these coordinates, the defining equations of t,, become

5z’j + 5jk =X (51']‘ + 5]‘@‘ =0
Let t, = {v € &, : 145 # 0 for all i,j}, and €, = {v € §,, : v;; # oo for all i, j}. These are

two open affine subschemes of t,,. Their intersection will be denoted F}, := ffl Nt,.
On t,, the coordinates ¢;; are finite, and the following result is immediate.

Lemma 3.4. There is an isomorphism t, = C"/C defined by 6 — (x1,...,xy,) where d;; =
x; — xj. This restricts to an isomorphism Fy, = (C"\ A)/C.

Remark 3.5. Following Remark 3.3, for any finite set .S, we will write tg := C¥/C and tg for
the subscheme of (P')® defined by the above equations.

Remark 3.6. We may identify C"/C with C" x C*/B where B = C* x C is the Borel
subgroup of PG L4y, and where B acts on C* by inverse scaling and on each copy of C by an
affine linear transformation. Because B is the stabilizer of co € P! and acts with weight -1 on
its tangent space ToP!, a point (z1,...,2,,a) € C* x C* can be considered as n + 1 points
20 = 00, 21, - - . , zn, € P along with a non-zero tangent vector a € Ty, PL.

Thus, we obtain identifications

3) t, = {(z0,...,2n,0a) : 2 € P! 20 # zi,a € TZO]P’l,a #0}/PGLy
Fp={(20,---,2n,0) 1 2 € P z; # 25,0 € T,,P' a # 0} /PG Ly

We call z1,..., 2, marked points and zy the distinguished point. In t,,, the marked points are
allowed to coincide with each other, but not with the distinguished point. In F;,, the marked
points are all distinct. In either case, the distinguished point always carries a non-zero tangent
vector.

Consider the family of hyperplanes {x; = z;}, for ij € p([n]), inside t* = C"/C. This is the
type A, _1 root hyperplane arrangement, also known as the braid arrangement. Associated
to this hyperplane arrangement, we consider the inclusion t, — CP(") given by z — (@i —x5)
(as in Lemma 3.4). The closure of the image of t, inside of (P')P(") is called the matroid
Schubert variety of braid arrangement (this is a special case of the construction of Ardila-
Boocher [AB16]). The matroid Schubert variety has an open subset containing oo € (P')P(("))
called the reciprocal plane. (Here oo is the point of t, defined by §;; = oo for all i,j.)
The reciprocal plane is defined (by Proudfoot-Speyer [PS06]) as Spec OT,,, where OT,, is the
subalgebra of C(x1,...,x,) generated by —— (the Orlik-Terao algebra [Ter02]).

Theorem 3.7. (1) The affine scheme %, is the reciprocal plane.
(2) The scheme t,, is the matroid Schubert variety of the braid arrangement; in particular,
it 1s reduced.
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We thank Sam Payne and Nick Proudfoot for help with the following proof.

Proof. By Proudfoot-Speyer [PS06], the ideal defining OT,, is generated by relations coming
from all the circuits of the matroid of this hyperplane arrangement. By Schenck-Tohaneanu
[ST09, Prop. 2.7], it suffices to use circuits of size 2 and 3, which correspond to the relations
(2). Thus, T, which is the affine scheme defined by (2), is the reciprocal plane.

Now, let .# be the ideal sheaf of §, as a subscheme of (P1)P("}). More precisely, .7 is the
ideal sheaf associated to the multihomogeneous ideal I C C[v;;,d;5 : ij € p([n])] generated by

VijVikOik — VikVjk0ij — VijVikOjk  Vij0ji — Vjidi

On the other hand, let # be the ideal sheaf of the matroid Schubert variety. By Ardila-
Boocher [AB16, Theorem 1.3(a)], .7 is the ideal sheaf associated to the ideal J generated by
the homogenization of relations coming from all circuits. So I C J; we do not expect that
I = J. On the other hand, we will show that . = #. To this end, consider the quotient ¥/ 7,
a coherent sheaf on (P')P("). There is an action of the group t, on (P')P(") by translation.
Both # and 7 are equivariant for this action; hence so is the quotient ¥/ #. Thus, the
support of F/ 7 is a closed t,-invariant subset of (Pl)p([”]). Hence if it is non-empty, it must
contain the point co € (Pl)p([n]). Thus, it is enough to prove that # = _# on an open affine
subset of co. By (1), on the natural open affine neighbourhood of co (given by d;; # 0), J
and £ are both the ideal sheaves of the reciprocal plane and thus are equal. So the result
follows. O

Remark 3.8. Independently, Evens-Li [EL] have studied g*, a compactification of the dual
of a semisimple Lie algebra, analogous to the wonderful compactification G of a semisimple
group G defined by de Concini-Procesi. Within g*, Evens-Li considered B, the closure of the
Cartan subalgebra. They proved that b coincides with matroid Schubert variety associated to
the root hyperplane arrangement in h. This explains our notation t,, where t, = C"/C is the
Cartan subalgebra of pgl,,.

Let & be a set partition of [n]. Let
Vs ={6 €t,:0;; # oo if and only if i ~¢ j}
Note that Vi3 = tn, and Vi, = {o0}.

Proposition 3.9. (1) This defines a decomposition of t,, into locally closed subsets V.
(2) There is an isomorphism Vg = tg, X --- X tg, given by

o (6‘]0(51)7 cee 75|p(Sm))

Proof. 1t is clear that Vg are locally closed subsets and that they are disjoint. We must show
that their union is t,. Let § € t,,. Define an equivalence relation on {1,...,n} by setting i ~ j
if 9;; # 0o. The relation d;; + ;5 = J;, implies that if i ~ j and j ~ k, then i ~ k. Thus, this
defines an equivalence relation. Hence § € Vg where & is the set of equivalence classes.

The second part is clear because all other d;; equal oo by definition. O

Remark 3.10. Because of Proposition 3.9, Lemma 3.4 and Remark 3.6, we can think of a
point of t, as parametrizing a set of projective lines, each carrying a non-empty collection
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of (possibly non-distinct) marked points along with a non-zero tangent vector at one distin-
guished point. If z;, z; are marked points on distinct components, then they have infinite
distance from each other, i.e. d;; = 0o, and they live in different parts of the set partition .

We will think of these projective lines as being attached together at their distinguished
points, hence forming the petals of a flower. This explains the origin of the name flower space.
We write (C, z) for the resulting curve and marked points.

In future work with Zahariuc, we will prove that t,, is the fine moduli space for such flower
curves. In fact, we will show that the universal curve for this moduli space is t,+1 — t,. In
particular, to each point § € t,, the corresponding flower curve C' is the fibre of t,11 — t,
over 0. For example, the fibre over the point co € t, is the maximal flower curve, which
consists of n P!s, each carrying a marked point and all meeting at a single point. (It is the
compactification of the union of the coordinate axes in C".) For this reason, we call 0o € t,,
the maximal flower point.

Z4 25

Now, we consider a different stratification. Let % be another set partition of [n] and define
V% ={§€t,:0; =0if and only if i ~g j}
This is the locus where two marked points z;, z; are equal if and only if 4, j lie in the same

part of the set partition 9. The proof of the following result is very similar to Proposition
3.9.

Proposition 3.11. (1) This defines a decomposition of &, into locally closed subsets V.
(2) There is an isomorphism V% =T, where r is the number of parts in RB.

Note also that Vi = {0} where 0 is the point where &;; = 0 for all 4,j and VMl =¢ .
We set VC;? =VeNVA,

Proposition 3.12. (1) V& is non-empty if and only if B refines S.
(2) We have
VE2F, x-xF,,

where 1y is the number of parts of $B contained in Sk.
In particular, V[E?” =t,N {Z =F,.

Remark 3.13. There is a C* action on t, acting by weight 1 on each P! in the v coordinates
(and so with weight —1 in the ¢ coordinates). The fixed points of this action are labelled by
set partitions of [n]; to each set partition &, we associate the point 6(.5), where §(5);; = 0
if i ~g j and §(S5);; = oo if i =5 j. (These are precisely those points where all the marked
points on a given petal are equal.)
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The strata V% and Vg are the attracting and repelling sets for these fixed points with
respect to this C* action.

3.3. Degeneration of multiplicative group to additive group. Following Zahariuc [Zah22],
let A be the group scheme over A! defined as

A={(z,e) €C?:1+ex#0}
Multiplication in this group scheme is defined by
(x1,€)(x2,€) = (21 + 22 + ex129, €)

For convenience, we write x1 *. x9 := 1 + T2 + €x1232.

Note that if we specialize € # 0, then A(g) = C*, via the map x — 1 + ex. On the other
hand, A(0) = C. (Here and below, we write X (¢) := X x,1 {e} for the fibre of a scheme X
defined over Al.)

We can realize A as a family of abelian subgroups of PG Ly as follows

A:{FB” ﬂ ::1:,56((3,1—1—8377&0}CPGL2

For € # 0, A, is the stablizer of points —e~!,00 in P'. Alternatively, for any € we can see
that A, is the centralizer of [g (1)
PGLs (after base change).

The group scheme A acts on A™ by

] and thus A is the group scheme of regular centralizers in

(x,8) (T1y. .oy Xn,€) = (T ke T1, ..., T *ke Ty, €)

(Since A is scheme over A!', when we define A", we form fibre products over Al, so A" =
{(z1,...,2n,e) : 1 +ex; #0 for all 7 }.)
The quotient A™/A is a scheme over A! whose generic fibre is (C*)"/C* and whose special

fibre is C"/C.
We also consider

Fn = (A" \A)JA = (21,...,0p,6) s 0 # xj, 0, # —€ '}

This is a scheme over Al whose generic fibre is M, 42 = ((C*)"\ A)/C* and whose special
fibre is F;, = (C™"\ A)/C.
3.4. Degeneration of Losev-Manin to the flower space. We define the family Z,, as the
subscheme of (v,e) € (PHP(") x C defined by

EVik + VijVjk = VikVjk + VijVik Vij + Vji =€

As before, let §;; = Vi ! In these coordinates, the equations become
(4) 6(51‘]'(5@‘]@ + 0k = 51']‘ + 5jk 5z'j + 5]‘2' = 551’]‘5]’1‘

It is clear that the fibre Z,,(0) over 0 € A! is isomorphic to t,,.

Remark 3.14. Let g be any semisimple Lie algebra with Cartan subalgebra h and subgroup
H. In this context, Balibanu-Crowley-Li [BCL] have studied a degeneration of H (the toric
variety associated to the root hyperplane fan) to h (the matroid Schubert variety associated
to the root hyperplane arrangement). This generalizes our space Z,. More generally, [BCL]
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show that for any rational central hyperplane arrangement there is a degeneration of a toric
variety to a matroid Schubert variety.

Proposition 3.15. For any ¢ # 0, we have an isomorphism Z () = T,, via the identification
Vij—¢€

ozij =1 —651']' = v

Proof. First, we observe that (1 —ed;;)(1 —€d;;) = 1 is equivalent to d;; + 6j; = €8;56;.
Next note that (1 —ed;;)(1 —€d;i) = 1 — ey, is equivalent to —ed;;0;5 + 655 + 61 = di. O
Let
tn:={(v,e) €4y vy #0,e forall 4,5} 7y :={(v,e) 1 vi; # 0,e,00 for all 4,5}

Recall the group scheme A defined in Section 3.3. From the isomorphism given in Proposi-
tion 3.15, the following result is immediate.

Proposition 3.16. There are isomorphisms ¢, = A" /A and Z; = (A" \ A)/A = F,, defined

on coordinates by v;j — Lot
T;—T;

The following results show that this family has good properties.

Lemma 3.17. (1) ¢, is flat over C.
(2) £, is reduced.

Proof. (1) From Proposition 3.15, it is clear that Z,(C*) is isomorphic to Tj,, x C* and
that 7, is the scheme theoretic closure of T, x C* inside (P")?(I") x C. This implies

that it is flat over C.
(2) Since Z,, — C is a flat family with reduced fibres (see Lemma 3.1 and Theorem 3.7),

we conclude that Z,, is reduced.
O

3.5. Strata and an open cover. As for t,, for any set partitions &, %, we can define strata
Vs ={vet,: vije{0,¢e}if and only if i g j}
7%® ={v €, vy =ocif and only if i ~g j}
VE=7ENY
These strata can be described as follows

(1) Zs parameterizes caterpillar curves (for € # 0), resp. flower curves (for ¢ = 0), with
m components C1,...,C,,, with marked points labelled S1,...,Sy,.

(2) "% parameterizes caterpillar curves (for € # 0), resp. flower curves (for € = 0), with
equal marked points z; = z; if and only if i ~g j.

Remark 3.18. The C* action on t, described in Remark 3.13 extends to a C* action on
7, where C* acts by weight 1 on the ¢ coordinate (note that the defining equations are
homogeneous in v and €). The fixed points of this action all lie in the ¢ = 0 fibre and were
described in Remark 3.13. The strata 7% are the attracting sets for this action.

Let & be a set partition of [n]. We define an open affine subscheme %, of Z,, by
(5) %09 = {(1/76) S En L Vi 75 oo if 4 s j, Vij 75 0,8 if ¢ ~g ])}
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This contains the stratum Zs. Moreover, %s parameterizes caterpillar curves (for £ # 0),
resp. flower curves (for € = 0), such that z; # z; if i »¢ j, and z; and z; are on the same
component if ¢ ~g j.

Example 3.19. Suppose that m = 1 and thus S; = [n]. This open subset corresponds to the
locus where there is a unique component of the caterpillar curve (when £ # 0) or a unique
petal of the flower (when € = 0). We have %,y = Z, = A" /A.

Suppose that m = n, and thus S, = {k}. In this case 7, := |y is the locus of marked
curves (C,z) where all the z; are distinct. This is a singular affine scheme. The special fibre
of ?: — Al is the reciprocal plane {;; it seems an interesting problem to study the general
fibre of this family.

Since every stratum is contained in an open set, the following is immediate.
Proposition 3.20. These open sets Us cover £,,.

We can partially describe these open sets in the following way. Fix a set partition & =
{S1,...,Sn}. For each part Sy of &, fix some iy € Sk.

Proposition 3.21. The map
Us — H{Sk X ?;’L
k
v ((Vpes)s 5 Vlp(Sim))s Ylpinsensim))

is an open embedding.
We begin with the following elementary lemma.
Lemma 3.22. Let z,y,e € C with ye # 1. Then the equation
YezZ +x = TY2 + 2
has at most one solution for z € C.

Proof. We find x = (xy + 1 — ey)z. The only way this can fail to have at most one solution
for z is if x = 0 and zy + 1 — ey = 0. But this is impossible, since ye # 1. (]

Proof. Let v € [[, Zs, X Z, . We must prove that there is at most one way to extend v to a
point of .

We already have the data of v;; for ij € p(Si) for some k, and the data of v4,;,. So we are
missing the data of vy, where a € S, b € S; with k # [, but at least one of a,b is not the
chosen elements i, i;.

Suppose for the moment that a = iy, but b # 4;. Then the defining equation of Z,, gives

EVib + Vigi,Vigb = VipbVigi, + VipbVigb

We already have the values of v;,;, and v;;, (which lies in P!\ {0,e}) and wish to determine
Vi b Setting y = V;bl and x = v;,;, brings us to the situation of Lemma 3.22, with z = v;,,.
For the general case of a # i, b # 4;, we can proceed similarly, using the fact that we have

already determined the value of v;,3. O
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4. LINE BUNDLE ON THE DELIGNE-MUMFORD SPACES

4.1. Deligne-Mumford space. We now consider the usual Deligne-Mumford moduli space
of points on IE’;1
We write M,,+1 for the moduli space of genus 0, stable, nodal curves with n 4+ 1 marked
points, denoted (C, z). We have the open locus
Mpyy = (P \ A)/PGLy = ((C*)"1\ A)/C*
For z € (P1)"*1\ A and four distinct indices i, j, k,1 € {0,...,n}, the cross ratio
(zi — z1) (21 — %))
(2 — 2j) (21 — z1)
is a well-defined function on M, 1 = (P')"*1\ A/PGL,. Even if one of the points is co, the
cross ratio still makes sense. For example if z; = oo, we get

R — 2k

Mijk = % — 2
The cross ratio extends to a map M, ; — P!. We will use these cross ratios to embed
M1 inside a product of projective lines. Rather than working with all the cross ratios, we
will always take [ = 0. Usually, we will choose zp = oo, so that the cross ratio will reduce to
the above simple ratio.
The following result is due to Aguirre-Felder-Veselov [AFV16, Theorem A.2], building on
earlier work of Gerritzen-Herrlich-van der Put [GHvdP88|.

Theorem 4.1. The maps p;j, embed M1 as the subscheme of (P defined by
Migkhik; = 1 fije + fjik = 1 Wijribity = Ptk
for distinct i, 7, k, [.

Remark 4.2. More generally, for any finite set S, we can consider the moduli space Mg
where the points are labelled by S'LI{0}. Theorem 4.1 then gives an embedding of Mg, into
(Pl)t(S)‘

Every point of M, defines a [n]-labelled rooted tree. More precisely, given a genus 0,
stable, nodal curve C' with n + 1 marked points, we consider the tree whose internal vertices
are the irreducible components of C' and whose leaves are the marked points of C' other than
zg. We use the marked point zg as the root.

Thus we have a stratification of M, indexed by [n]-labelled trees. For example, M, is
the stratum indexed by the unique tree with one internal vertex.

Remark 4.3. Given any hyperplane arrangement and a building set, de Concini-Procesi
[DCP95] constructed a wonderful compactification of the projectivization of the complement
of the hyperplane arrangement. For the braid arrangement and the minimal building set, the
de Concini-Procesi wonderful compactification is M,,1. From their construction, we obtain
an embedding M, 11 — [[P(C"/Eg) where the product ranges over subsets B C [n] of size
at least 3, where
Ep={2€C":z =z foralli,je B}

From this perspective, the map ;i : M, 1 — P! can be regarded as the projection onto the
factor P(C"/Ey; j ky)-
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4.2. Morphism to Losev-Manin space. We now consider M,, 9, with the marked points
20, zn+1 distinguished. Given a point (C,z) € M, 12, we can collapse the curve C' in a unique
way to a caterpillar curve with n marked points (C’,2'). More precisely, we let C’ be the
union of those components of C along the unique path between the component containing
zo and the one containing z,+1. We then define 22; to be the point on C’ closest to zj, for
k=1,...,n.

The map (C, z) — (C’,2') defines a morphism M, 1o — T,. In coordinates, this morphism
is given by Qi = Hn4145-

Example 4.4. Here is an example of the morphism Mg, o — T.

22
<3
1 R122%3
Z4 z5 26 Z4 z5 Z6

Example 4.5. Suppose that n = 3, so we are considering the map M5 — T3. This map is
1-1 except over the point {ay; = 1} € T3 (the curve with marked points z; = 2z = 23). The
fibre over this point is M4 = P!. Over this point, the morphism M5 — T's maps a curve with
2 or 3 components to one with a single component. (Collapsing also occurs at other points
where two of the z; coincide, but this does not give non-trivial fibres to the morphism since
M3 is a point.)

The following result is immediate from the definition of this morphism.

Proposition 4.6. Let (C,z) € T, N7 %®. (So z; = z; iff i ~g j.) The fibre of M+ — T,
over (C,z) is Mp, 11 X -+ X Mp,11.

4.3. A line bundle. There is a natural line bundle ]\7n+1 over M, 1, defined as follows. We
consider the morphism M, 1 — P(t,) given by collapsing a curve (C,z) to the component
containing zp, identifying zp = oo, and remembering the positions of all the other marked
points (recall that t, = C"/C). We define M, 1 by pulling back 6(—1) along this morphism.

As 0(—1) is the tautological line bundle over P(t,), it comes equipped with a morphism to

t, and thus by pullback, we have a morphism ~ : M, 11 — t,,. In particular, this means that
z; — zj are well-defined functions on M, for any ij € p([n]).

Mn—H — @(_1) — th

| l

Mn+1 —_— P(tn)

We now study the fibres of the map Mn+1 — t,. Let z € t,. This point determines a
partition [n| = By U--- U B,, where 4, j € B; for some [ if and only if z; = z;; equivalently we
have a point v € V¥ N t,.
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Proposition 4.7. There is an isomorphism v~ 1(z) 2 Mp, 11 X -+ X Mp,_ 1.
We obtain a stratification of My+1 with strata

fy_l(V‘% N fn) = MB1+1 X oo X MB'r-"l‘l X FT

Remark 4.8. Combining the above proposition with Remark 3.6, we see that M,, 1 parametrizes
genus 0 stable nodal curves C, carrying n distinct marked points z1, ..., z,, one distinguished
point zp, and a non-zero tangent vector at the distinguished point a € T,,C. From this point
of view, the zero section of the line bundle M, | — Mn+1 corresponds to the locus where the
component of C' containing zy contains no other marked points (this corresponds to r = 1 in
the above proposition).

Proof. We are studying the fibres of Mn+1 = M1 Xp(t,) O(=1) = t,. There are two cases,
since O(—1) — t,, has one exceptional fibre.

If z = 0 (which is equivalent to B = {[n]}), then the fibre of O(—1) — t, over z is P(t,).
Thus the fibre of Mn—l—l — C"/C over z is M1, as desired.

If z # 0, then the fibre of O(—1) — t, over z is a single point, and thus the fibre of
MHH — t, over 2z is the same as the fibre of MnH — P(t,) over [z]. As this morphism is
collapsing components, we deduce the desired result. O

Remark 4.9. In Remark 4.3, we explained that M, is the closure of M, in a product
of projective spaces, a special case of the construction of de Concini-Procesi. Following their
work [DCP95, §1.1 and 4.1], we can see that M, is the closure of M, ; in the product
t, X [[PP(C"/Ep) where the second factor is the same as in Remark 4.3.

The stratification of M, by rooted trees can be extended to Mn+1 as follows. We define
a bushy rooted tree to be the same as a rooted tree, except that we allow the root to be
contained in more than one edge (have degree greater than 1). To each point C' € M, 41
we associate a bushy rooted tree as follows. First, under the map MnH — t,, we obtain
a point in V¥ for some set partition %. Then using Proposition 4.7, we obtain a point in
MBlH X "‘MBrHy which gives us rooted trees 71,...,7.. We glue these trees together at
their roots to obtain a bushy rooted tree.

Alternatively, following Remark 4.8, we regard C' as (C, z,a) where C is a genus 0 nodal
curve, z is a collection of marked points, and a € T,,C' is a non-zero tangent vector. We then
consider the component graph of C' where the root labels the component containing z (rather
than zp itself).

4.4. A deformation of the line bundle. We will now define a deformation /%;H of MnH
which will map to Z,,. Intuitively, we will consider curves with n + 2 marked points and bring
two points together. Here is a more precise definition.

To begin, let B = C* x C be the Borel subgroup of PGLy and note that P(t,) = C" \
C(1,...,1)/B.

Define an action of B on C" x P! x A! by

(6) (s,u) - (w,y,€) = ((su; +u), sy + eu, €)
It is not hard to see that the action of B preserves the set

(C"\ C x P! x A" := {(u,y,¢) : y # eu; for all i}
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and we let
&ni1:= (C"\C x P x AY°/B
To be more precise, we consider the ring
-1 -1
R=Cluy,...,up,(y—eur) ..., (y —eup) ", €

regarded as a subalgebra of Clui,...,u,,€|(y). Then R carries an action of B, given by (6),
and we define a graded algebra S = ®enSm, by

Sm={r€R:br=x(b)"rforallbe B}

where x : B — C* is given by (s,u) — s. Then we define &, 11 = Proj S.
There is an obvious morphism &,,11 — P(t,,) defined by (u,y,¢) — u.

There is a less-obvious morphism &, 11 — A"/A = ¢, defined by (u,y,e) — (y_“;u ,€) or

EUui—Y
isomorphism. Its only exceptional fibres are over the identity section A! C A™/A, where the
fibre is P(t,,).

in terms of d-coordinates, by d;; = € Sp. This map is proper birational and nearly an

Lemma 4.10. This map realizes &1 as the blowup of ¢, along the identity section.

Proof. By definition C[Z,] is the quotient of C[d;;] by the ideal generated by equations (4).
Let I C C[Z,] be the ideal generated by all d;;; this is precisely the ideal of the zero section.
Hence Proj ®,,enI™ is the blowup of £, along the zero section.

We claim that ®,,enI™ = S as graded algebras. To begin with there is an isomorphism
C[¢y) = Sp given by sending §;; to g;_f; as above. Next, there is an isomorphism I & 5] as
So-modules; this isomorphism takes d;; to u; — uj. From here the result follows. O

Note that the ¢ = 0 fibre, &,41(0), is isomorphic to O(—1) over P(t,), where the map is
given by (u,y) = (y"w;) (here (u,y) € C" x P'\ {0}).

Then we define 1 := M1 Xp(t,) En+1. By construction, we have M1 — M, 1 and
v Mpy1r = Ly

Remark 4.11. The formula above for the map &,,1 — ¢, looks a bit strange. In order to
understand it, take £ # 0, and consider the composition

Ent1(e) = Ln(e) = (C)"/C* — (P2 /PGL,
The resulting map is

& OO) = (Oovﬂa E_ly)

e) = (0,

(u,y,¢) = (

y —eu;’ y — eu;’

where we use the isomorphism A(e) =2 C*, and where the last equality in an equality in
(P1)"+2/ PG L.

Proposition 4.12. For e # 0, we have My1(g) = M, .5, the open subset of Mo such that

the marked points 2o, znt1 lie on the same component, and the morphism /ZLH(E) — M,
is identified with the restriction of the universal curve morphism.
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Proof. We define the map My1(s) — M, 4o as follows. A point of My (2) is a pair
(C,z), (u,y,e) mapping to the same point in (z1,...,2,) = u € P(t,). Assume that y # oco.
Then by Remark 4.11, the additional data of y gives us a new point 2,17 = £ 'y on the
component of C' containing zyp = co. By the open condition in the definition of &, 1, this new
point is distinct from z,4+1 and all the z;. If y = 0o, we need to do something a bit different.
We take the curve (C,z) and we attach a new P! component at the marked point zg. Then
we place zg and z,4+1 on this new component. In both cases, we get a point of MZ Y
Conversely, given a point (C, z) € MZH, we can forget z,4+1 to get a point (C, 20, ...,2,) €
M,+1. Or we can collapse C' to the component containing zy and z,41 to get a point of
(C*)™/C*, by identifying zp = 00, 2,41 = 0 and recording the images of z1,...,2,. In this

way, we can produce a point in the fibre product 4, 11(e) = Mp11 Xp(,,) Ent1(€)- O

5. MAU-WOODWARD SPACE

In [MW10], Mau-Woodward introduced a space @, by explicit equations in the product of
projective lines, following earlier ~work by Ziltener [Zil06]. This space is a compactification of
F),, but is not our desired space F',,, as we will see below.

5.1. Mau-Woodward space. Following [MW10], we define the Mau-Woodward space @y,
to be the subscheme of (v, u) € (PP x (P1)H[") defined by the equations

Migkhvik; = 1 pigie + pgjae = 1 pajeptint = Hiji
WijkVik = Vij Vi + Vi =0 Vv = viklik + VijVik
for distinct 4, j, k, I.
Example 5.1. Take n = 3. Set a = 193,b = 113, ¢ = V12, 4 = p123. We have
wb=c alp—1)=c alp—1)=pb ab+bc=ac
There is a map Q3 — t3 := {(a,b,c) € (P*)? : ab+ bc = ac}. This map has P! fibres over
(00, 00,00) and (0,0,0) and point fibres elsewhere. Compare with Example 4.5, where there

was only one special fibre for M5 — T.

5.2. Deformation of Mau-Woodward. Now, we define the total space of the deformation
@, to be the subscheme of (v, u,e) € (PP x (PHU) x Al defined by

7) Migktvik; = 1 figre + e = 1 pajeptint = Miji

WijkVik = Vij  Vij T Vji = € Vi + VijVjk = VikVik + VijVik
It is easy to see that (v, u) — v defines a map @,, — Z,, so this deformation sits over the
previous one.
Clearly, we have @,,(0) = @y, while the general fibre is the Deligne-Mumford space.

Proposition 5.2. For ¢ # 0, we have an isomorphism @Qp(c) = M,i2 given by setting
Hijn+1 = 5_1Vij-
Proof. Under this change of coordinates, the defining equations (7) of @, (¢) become the equa-

tions from Theorem 4.1.
The only non-trivial calculation is that the final equation of (7) becomes

—Hjint1 + Hikn+1Bkint1 = Hjlnt1Mkint1 + Hjknt1H5in+1
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which is equivalent to
-1 -1 -1
(1- “jknﬂ)(l - 'uk:ln-i-l) =1 =0
which is then equivalent to fin41 jkftnt1k = tn+1;1 as desired. U
We now study the open subset of this deformation
@, = {(v,p,€) 1 vij # 0,¢ for all i, j}
It is nothing but the degeneration of the universal curve to the line bundle from Section 4.4.

Theorem 5.3. There is an isomorphism @Q; = .%\;H_l compatible with their maps to .

Proof. Recall that M1 = &pi1 Xp(,) Mps+1 and €,q1 = (C"\ C x P! x A1)°/B (as defined
in Section 4.4).
We define M, 11 — @5, by ((u,y,€), 1) — (v, 1, €) where as before v;; =

Eui—y
uifuj .

The inverse map @ — Mny1 = Ent1 Xp(,) M1 is given by (v, u) — ((u,y,€), u) where
up =0,y=1,u; = yl_il.

It is easy to see that these maps are inverses. U

In particular, over the open locus %, = A" \ A/A, we have

T; — T 14 EX;
Mijke = —— Vij =
Ty — Ty T — Xy
where (z1,...,2,,6) € A"\ A/A and pu, v are the coordinates on @,.

5.3. Strata in the Mau-Woodward space. Let & be a set partition of [n]. Recall the
subset Vg C t,. Its preimage in Q,, will be denoted ‘7;5’, SO

{75 ={(v,p) : i ~g j if and only if v;; # 0}
Let Q; = 17[”] be the locus where none of the v;; vanish.

Proposition 5.4. There is an isomorphism ‘75 = le X Qg X M, i1 given by

(V7 ,U,) — ((V7 :u’)|517 ceey (V7 :U’)|Sm7 :u"{il,...,im})

This isomorphism is compatible with the isomorphism Vg = tg, X - - Xtg, given in Proposition
3.9.

(Here as in Lemma 3.21, iy € Sy is a fixed choice. We also slighly abuse notation by writing
| for the restriction of u to triples lying in S.) This will not be used in what follows, so we
omit the proof.

Example 5.5. The fibre of @Q,, — t, over the maximal flower point is M,;1. In this case
S8 = [[n]] and each S, is of size 1.

Remark 5.6. From this proposition, a point ), gives the data of (C’l,gl,...,C’m,gm,C')
where (C),z") € Q%T and C € M,,+1. In other words, we have a collection C1,...C,, stable
nodal curves, each carrying collection distinct marked points 2z, ..., 2™, and a tangent vector
at one distinguished point, along with another curve C' with m + 1 marked points which is
used to bind together these curves. This differs from the description of Remark 3.10 in two
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ways: the curves C) carry distinct marked points and can have multiple components, and
there is the extra data of C. We will define the space F';, so that we keep the all the data of
the C,, but forget C.

We can use the above results to completely describe the fibres of the map @, — t,.
Consider a point v € t,. Assume that it lies in the stratum Vé‘% where &, % are two set
partitions of [n] and & refines §. Let m be the number of parts of §.

Corollary 5.7. The fibre of Q, — t, over v € Vé‘? is isomorphic to
MBH—I X X MBT-H X Mm+1

Proof. This follows by combining Propositions 4.7 and 5.4. O

6. THE CACTUS FLOWER SPACE

6.1. The open cover. If we compare Proposition 4.6 and Corollary 5.7 which describe the
fibres of @, — 7., we see that in the latter result there is an extra factor of M,,4+1. We will
now define a new space %, intermediate between @, and Z,, in order to correct this defect.

Recall the open cover Zs of Z,, indexed by set partitions & of [n]. We define fZZy C @, to
be its preimage under the map @,, — 7,,.
We define a morphism

m
%Cg’ — H fsk
k=1

V I/|p(51) X - X l/|p($'m)
Let GZJ; = Uy XTT, 25, I %ﬁl. These schemes will be the building blocks for our new
space F . .
More explicitly, s is the subscheme of (v,pu!,..., u™ ) € (PhHpdn)) x Hk(IP’l)t(Sk) x Al
such that
e v;; satisfy the “non-vanishing” conditions given in (5) and
e all the equations (7) in the definition of @,, hold, whenever they make sense.

Lemma 6.1. % is an open subscheme of I %k+1 x Z... In particular it is reduced.

Proof. By Lemma 3.21, we have an embedding
Us — H Z S X 2;
J2
Applying the fibre product in the definition of Zg gives the desired result. O

There is an obvious morphism - : ?25 — %s and we can also define a morphism ‘27; — ?25,
as follows. There is a restriction map @, — @g, given by (v, ) — (v, it)|s, and this leads to

a map 6275 — Zg,, for each k. Combining these together yields the morphism Us — Us.

Example 6.2. Suppose that & = {[n]} (the unique set partition with m = 1). Then @{[n]} =
Ufngy Xt Mny1, and 50 Uy = Mnys = Uy
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Suppose that & = [[n]] (the unique set partition with m = n). Then each Zg, and ./quﬂ is
a point and %] = ). In this case, %, = Z; is the deformation of the reciprocal plane
as discussed in Example 3.19.

Now let v € Us N V2.
Lemma 6.3. The fibre of v : %s — Us over v is given by Mp,1 XX Mp_41.

Proof. For k = 1,...,m, let v* = v|s, be the image of v under the map %s — Zg,. Since
Us = Us X1y 7, I %k_i_l, the fibre v~ (v) is the product of the fibres y~!(v*) of %ﬁl —
Zs, -

Now, v* lies in a stratum A of ¢ s, given by a set partition B* of S),. Examining the
definitions, we see that the set partition % of [n] must refine & and that in fact % is made
by collecting all the parts of %',..., B™.

The fibre v~ (V%) is MT{CH X e X MTﬁk—i-l by Propositions 4.6 and 4.7. Thus taking the

product over k = 1,...,r gives us the desired result. O
Lemma 6.4. Fore # 0, Us(c) = ?Zg(e)

Proof. Let (v,e) € Us. Choose & so that (v,e) € Z#. The point (v,e) corresponds to a
point (C,z) € T}, under the isomorphism Z,(¢) = T,. Moreover, we see that z; = z; if and
only if ¢ ~g 7.
Then by Proposition 4.6, the fibre of M, 1o — T}, over (C,2)is Mp, 11 X - X Mp, 1.
By the previous lemma, this is the same as the fibre of Us — Us. Tt is easy to see that the

natural map ?jlcg’ — % induces this isomorphism between fibres and thus this map gives an
isomorphism %s(e) = %s(e). O

Let &, 8’ be two set partitions and let %ss = Us NUgr. Let Uss be the preimage of g
under the map %y — Ug:.

Lemma 6.5. There is a natural isomorphism Uss = U s, compatible with the projections
to %55/.

Proof. Let v € Ugg. Lemma 6.3 shows that the fibres of Us — Us and Ug — Ugr over
this point are equal, since the fibre doesn’t depend on & or &’. Thus, we deduce the desired
isomorphism. O

Corollary 6.6. There is a reduced scheme F,, — Al which has an open cover by Us. It is
equipped with proper morphisms @, — F L7, — Al fitting into the diagram (1).

Proof. We have established everything except the properness of the morphisms. To see this,
note that for each set partition &, the morphisms Us — Us and Us — Us are proper,
since they both involve forgetting some of the y coordinates (which take values in P'). Since
properness is local on the base, this proves that @, — %, and %,, — Z,, are proper. Finally,
F ., — Al is proper since all the v coordinates take values in P!. O

We define F,, = %,(0), which we call the cactus lower moduli space. As with %,,, it
is covered by open subschemes %s. There are obvious versions of Lemmas 3.21 and 6.1 and
so we can also conclude that F',, is reduced.
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Remark 6.7. The C* action on ¢, defined in Remark 3.18 lifts to a C* action on %,,. To
see this, we just note that the defining equations (7) of @, (and hence the equations for each
%) are homogeneous, where we give p;;, weight 0 (recall that v;; and € are each given weight

).

6.2. Strata of F,,. Let & be a set partition. We define Vg = 71 (Vs) € F, to be the
preimage of Vg C t,,, and similar for V% and VS%.

Note that Vg C Ug and so we have a morphism Vg - Msk+1 for each k.
From Propositions 3.9 and 5.4, and the definition of F',,, we deduce the following.

Proposition 6.8. (1) For a set partition & with m parts, there is an isomorphism =
Mg, 41 % -+ X Mg, 11. In particular dim Vg =n — m.
(2) The following diagram

Vg —— Mg 11 X -+ X Mg, 11 %X My

! |

8 ~ o ~ ~
() Vg —>M51+1><---><M5m+1
Vg%tslx--~xt5m

commutes. In particular, the fibre of Qn — F,, over any point of Vi is isomorphic to
Myt
(3) For a set partition B with r parts, there is an isomorphism

7B ~1° O T Vi
1% :tTXMBl_H_X"'XMBT_;'_]_

In particular dim V® =n—1—r+p, where p is the number of parts of B of size 1.
(4) The locus Vé‘?g s non-empty only when B refines & and we have

VE=F. x--xF. XMpg.41X--xMpg 41
where 1y is the number of parts of B lying in Sy.

Example 6.9. Take & = [[n]], the set partition with n parts. Then Vi, consists of the
unique point v = 0, which we call the maximal flower point. The fibre over this point (and
hence the stratum V[[nﬂ) is isomorphic to a point.

Remark 6.10. From this proposition, we can picture a point of F,, as a collection (Cy, z*, a1),

oo (Crmy 2™, Gy ) where (Cy, 2%, ay) € Ms, +1. In other words, we have a collection C1,...Cy,
stable nodal curves with distinct marked points z',..., 2™, and non-zero tangent vectors
ai,...,an, at one distinguished point. We attach these curves together at their distinguished
points to form a cactus flower curve C =Cj U ---UCy,.

If we compare this description with Remarks 3.10 and 5.6, we see the following which is

illustrated in figure 6.2.
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156

0

FIGURE 2. A point of Qg and its images in Fg and f9. In the notation from
Proposition 6.8 we have m = 3 and & = {{1,4,7},{3,8},{2,5,6,9}}; we also
have r =5 and B = {{1,4,7},{3},{8},{2,5,6},{9}}.

(1) The space t, parametrizes projective lines C1, ..., Cy,, carrying a total of n (possibly
non-distinct) marked points, and each of which carries a tangent vector at their distin-
guished point. We imagine these lines attached together to form a flower with purple
petals.

(2) The space F,, parametrizes genus 0 stable nodal curves C1, . . ., Cp,, carrying a total of n
distinct marked points, and each of which carries a tangent vector at their distinguished
point. We imagine these curves attached together to form a flower of green cacti which
have a purple base.

(3) The space @, parametrizes genus 0 stable nodal curves C1, ..., C,, carrying a total of
n distinct marked points, each of which carries a tangent vector at their distinguished
point, as well as a m + 1-marked genus 0 stable nodal curve C'. We imagine a maroon
cactus with green/purple cacti attached to it.

Examining this list, we see that there is a fourth possibility: projective lines Cy,...,Cpn,
carrying a total of n (possibly non-distinct) marked points, and each of which carries a tangent
vector at their distinguished point, as well as a m + 1-marked genus 0 stable nodal curve C.
We imagine a red cactus with purple petals attached to it. In [Zah22], Zahariuc studied a
space P, of marked nodal curves with vector fields and proved that it was a degeneration of
T,. We believe that his space parametrizes these red cacti with purple petals.

6.3. Strata of %,. Let & be a set partition. We define 7y := v N %s) € F, to be the
preimage of Zs C Z,, and similar for 7% and 7.

Proposition 6.11. (1) For a set partition & with m parts, there is an isomorphism
%05’ = %1 XAL =+ XAl %m.

In particular dim%Zs =n+1—m.
(2) For a set partition B with r parts, there is an isomorphism

{’?% = 2; X MBH»l X oo X MBT+1
In particular dim 7% = n — r + p, where p is the number of parts of B of size 1.

Remark 6.12. Among Zs, 7%, the codimension 1 strata are given as follows
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U

5

FIGURE 3. A generic point of V{{17375},{27476}} and one of V{1H{31{6}.{2.4,5}}

(1) We choose & = {A, B} where AU B = [n] is a set partition with two parts. In this
case, we have - -
Viapy S Ma Xy Mp
and we have v;; € {0,e} for i € A,j € B.

If we fix € # 0, a generic point of %{A,B} NFn(e) C M2 consists of two component
curves C' = Cy U Cy such that the marked points on C; are labelled by A LI {0} and
the marked points on Cy are labelled by B L {n + 1}. A generic point of V{AJ3} =
%{A,B} N Fn(0) is shown in figure 6.3.

(2) We choose B = {{a1},...,{ap}, B}, a set partition with one part of size not equal to
1. In this case, we have } o
Y %?;H X Mpiy1
and we have v;; = oo for ¢,5 € B.

If we fix £ # 0, a generic point of 7% N F,,(¢) C M2 consists of two component
curves C' = C1UC% such that the marked points on C; are labelled by {0, ay, ..., ap, n+
1} and the marked points on Cy are labelled by B. A generic point of V¥ = 7n%,,(0)
is shown in figure 6.3.

Their closures are precisely the irreducible components of &, \ %,. To see this we note that
every other stratum is contained in the closure of one of these strata.

6.4. A finer stratification of F,,. In Section 4.3, we defined a stratification of MnH by
bushy rooted trees. We now extend this to F,,. A bushy rooted forest is a collection of
bushy rooted trees.

Given a point C € F,,, we will associate a bushy rooted forest as follows.

(1) First, C lies in some V. Using the isomorphism Vg & Mng X o Mgm+1, we associate
(C1,...,Cp,) where C, € Mg, ;.

(2) The point C, € Mg, 1 determines a S,-labelled bushy rooted tree 7, (as in Section
43).

(3) We collect the trees to form a forest 7 = {11,..., 7}

Alternatively, if we regard C' as a cactus flower curve C = C1U---UC,, as above, then T is the
forest of components of Cy U --- LI Cy,, where the roots represent the components containing
the distinguished points.
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Thus we obtain a stratification of Fj by [n]-labelled bushy rooted forests. To each bushy
rooted forest 7, we have a stratum of F',, which is isomorphic to

[T Foomyx II Mewe
)

reV(r) veV(r
root non root

where F(v) denotes the set of ascending edges containing v. The 0-dimensional strata corre-
spond to binary forests, that is bushy forests where each root has degree 1 and every internal
vertex has degree 3.

Example 6.13. Consider the middle curve in Figure 6.2. This is a point of Fig. The corre-
sponding bushy rooted forest is

1 4 7 3 8 9 2 5 6

6.5. Open affine subsets of %,. Recall the open cover Zs of F,. These open sets are not
generally affine, so now we will define an actual open affine cover consisting of smaller open
sets. These new open sets will be labelled by binary forests and centered on the corresponding
0-dimensional strata of F,,.

Let 7 be a binary forest. Let & be the partition of [n] corresponding to the decomposition
of the labels of 7 into trees (so 7, j lie in the same part of & iff they lie on the same tree in 7).

By construction 62209 C Us x 1], Ms,+1. The space s is affine with coordinates v;; or Vij

for ij € p([n]), while by Theorem 5.3, each space /g, 11 has P! valued coordinates piji for
ijk € t(Sy). We define

Wy ={(v,p) € Us piji # oo if the meet of i, k is above the meet of 4,5 in 7}
Proposition 6.14. %, is an affine scheme.

Proof. Let (v, ) € #-~. Because of the relations Wijkitik; = 1 and pijx + pjie = 1, we see that
Miji # 1, if the meet of 7, k equals the meet of i, j
pijk 7 0, if the meet of 7, k is below the meet of 4, j

Since these cover all the possibilities, every coordinate ji;;;, is affine. As the v;; coordinates
are already affine, by the definition of %, we conclude that %, is an affine scheme. O

Note that the open subset %, contains the open locus %, for any 7.
Lemma 6.15. The open sets Wy cover F,,.

Proof. Consider a point (v, ) € Us for some §. By definition, this gives us points (v", u") €

Mg, 11 for r = 1,...,m. Each such point determines a rooted tree 7,. Because Hijk = z’:z’?

i T2
we see that if the meet of 7, k is not below the meet of ¢, j in 7/, then p;;; # oo. We can choose
a binary forest 7 whose trees are labelled by 71, ..., 7, and such that 7/ is made from 7, by

deleting edges. Examining the definitions, we see that (v, u) € 5. O
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7. REAL STRUCTURES

7.1. Generalities. Let X be a scheme over R. Then X (C) carries a complex conjugation map
~: X(C) - X(C) and we have X(R) = {z € X(C) : z = x}. More generally if A is any R-
algebra, then X (A®grC) carries a complex conjugation and X (A) = {z € X(A®rC) : 7 = z}.

Now, suppose that we are given an involution ¢ : X — X, a morphism of schemes such
that 02 = 1. Then we can define a twisted real form X7 such that for any R-algebra A,

X(A) ={z € X(A®r C) : T = o(z)}

For each of our schemes we have an obvious real structure, which we will twist in this
manner to obtain a twisted real form. Recall that our schemes 7,, %, are families over Al.
The involution will act as € — —e on this A! and will be the identity on the ¢ = 0 fibre.

7.2. The involutions and the real forms.

7.2.1. The multiplicative group. The most basic twisted real form we will consider concerns
C*. Consider the automorphism o of R* given by z — z~!. Then the twisted real form is
the unit 1 complex numbers, U(1) = {z € C* : z = 271}, called the compact real form of this

torus.

7.2.2. Group scheme A. The twisted real form on C* naturally extends to the group scheme
A. We define 0 : A — A by o(z,¢) = (z(1 4+ xe)"1, —¢).

Lemma 7.1. Suppose that (z,e) € A°(R). Then:
(1) e €dR
(2) Ife =0, then z € R.
(3) If e = ir=' #0, then x lies on a circle of radius r centered at —ir.
(4) If € # 0, then under the isomorphism A(e) = C* given by x — 1+ ex, o becomes
z > 271 and A()?(R) is carried to the unit circle U(1).

Proof. This follows from some simple calculations. For (4), we use that (1 +¢ez)™! =1 —
ex(l+ex)~ L. O

7.2.3. Flower space. We define o : £, — Z, by o(v,e) = (v — &, —¢). Note that o is the
identity on t,, so t, (R) = t,(R).

Lemma 7.2. The isomorphism ¢, = A" /A is compatible with the involutions o. Suppose that
(v,e) € Z,(R). Then:

(1) e €dR.

(2) vij € RP! + /2 for alli,j; equivalently U;; = vj; = v;j — €.

(3) For e # 0, the isomorphism Z,(c) = T, restricts to an isomorphism #J(g)(R) =

U)"/U(1), and is given by o;j = l%

Proof. Again this follows by some simple computations. For the first statement, we use that
the isomorphism 7, & A" /A is given by v;; = 1T5% O

Ti—Tj

Remark 7.3. Recall that ¢,(¢) is a compactification of T,, = (C*)"/C*, for ¢ # 0, and a
compactification t, = C"/C, for e = 0. The above result shows that this real locus does not
see the compactification when ¢ # 0, but it does when € = 0.
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7.2.4. Deligne-Mumford space. We define M, 1o — M2 by 0(C, 2) = (C, 2ni1, 215 - - - 5 Zn, 20)-

Lemma 7.4. The inclusion M, 1o = (C*)*\ A/C* C M, 2 is compatible with the involution

o, where o(z1,. .., 2,) = (271, ..., 271).

Proof. We have (z1,...,2,) = (P20 = 0,21,...,2n, 2001 = 00). Applying o to the right
hand side gives

(P!, 00, 21,...,2,,0) = (]P)I,O,zfl,... 21 00)

y AN

where the equality uses the inverse map as an automorphism of P!. O

Thus M, ,(R) is the moduli space of (C,z) where C is defined over R, Z5 = 2,41, and
zi € C(R) for i = 1,...,n; we have one pair of complex conjugate marked points and the rest
of the marked points are real. The different real forms of M, 12 have been studied by Ceyhan
[Cey07].

For the open locus of M,  ,(R), we will regard C(R) = U(1), so that z; € U(1) for i =
1,...,n and zg, 241 € CP!', with Zal = zp+1. Using the action of SU(2), we can arrange
20 = 00,2p4+1 = 0. In this way, we see that the morphism M, s — T, restricts to a map
M,_»(R) — U(1)"/U(1). For this reason, in [IKR], we call 7.o(R) the “compact” real
form and M, 2(R) the “split” real form. (Note however that both spaces are real projective
varieties and hence compact.)

Recall the P! valued coordinates y;j; (for ijk € t([n + 1])) from Theorem 4.1.

Proposition 7.5. The involution o : M, 19 — M, o is given in these coordinates by
o (pijk) = Hijkbnt1kj for ijk € t([n]) and o (pijni1) = pjintr for ij € p([n])

Proof. As the function j;;, are determined by their restrictions to M, o C M, 2, it suffices
to check these equations on this locus where they are obvious. O

7.2.5. Cactus flower space. We define o : %, — F,, by defining it on each open set Zs by
o(vij) =vij —&  o(pijr) = piju(l — 5’//;]-1)

Proposition 7.6. The involution o is well-defined and glues together to an involution of F ..
It is compatible with the above defined involutions of ¢, and My s.

Proof. To check that o is well-defined, we must check that it is compatible with all the equa-
tions of each %g. This is a straightforward computation which we omit.

The fact that the involutions glue is clear by the definition of %,,. Finally, their compati-
bility with the involutions of Z,, and M, is clear. O

This leads to a twisted real form %, (R). By the above discussion, the € coordinate gives a
map %, (R) — iR. For & # 0, the fibre of this map is F,,(R)(c) = M, _,(R).

Remark 7.7. The C*X action on %, described in Remark 3.18 restricts to a R* action on
Z . (R).
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8. COMBINATORIAL SPACES

In the next two sections, our goal will be to define two combinatorial spaces D,, and P,, and
then to define a commutative diagram

D, — F,(R)

I

P, ELC t,(R)

—

~
~

such that the horizontal arrows give rise to isomorphisms D,, & F,(R) and P, =~ t,(R) for
some explicit quotients D,, — Dn, P, — P

We will also define other quotients, D,, and P, with homeomorphisms D,, = M, 42(R) (con-
jectural) and P, 2 U(1)"/U(1), which are the generic fibres of %, (R) and 7,,(R), respectively.

8.1. The star. We begin by considering a non-convex polytope, closely related to the per-
mutahedron.
Let

Xy ={(z1,...,2n) eR"/R:0< zj —mjpg < 1lfori=1,...,n—1}
which we call the fundamental parallelepiped. More generally, for any w € S, let
X;f :'UJX:’L = {(xl,...,xn) ER”/R:Owa(i) — Ty(i+1) <1 fori= 1,...,n—1}

and let X, = U,ecg, X5- We call X, the star.
More generally, for any set S along with a total order w (a bijection w : [n] — S where
n = |S|) we define

X¥:={xeRY/R:0<z—x; <1if4,j are consecutive in S}

and Xg :=J, X§.

The interior of X,,, denoted X, is the union of the subsets of X" where ;) — @y (i41) < 1.

Let x € X lie on an outer face (i.e. not in X;). Then x determines a set partition & of [n],
which is the finest partition such that if 7, j are consecutive in the order w and x; — z; < 1,
then 4, j lie in the same part of &. Moreover, we can use = to define a point in H;”:l Xs; by
restricting x to the parts of & = {S1,...,S,}.

We define the equivalence relation ~ on X,, by setting x ~ 2’ if x, 2’ determine the same set
partition & of [n] and define the same point in [[j2; X5;. Note that z, 2" must (unless z = 2”)
come from parallelepipeds for different orders on [n]; each part S; will be a consecutive block
in both orders. We let X’n be the quotient of X,, by this equivalence relation.

The point p € X defined by x; — z;4+1 = 1 for all ¢, is called the star point. Under the
above equivalence relation, it is identified with all of its translates under the action of S,,.
(Note that it corresponds to the set partition [[n]] = {{1},...,{n}}.)

Example 8.1. Here is the star X3 with the fundamental parallelepiped shaded in green, and
the star point p labelled. In the quotient X3 all the points labelled by black dots are identified
as well certain pairs of edges; one such pair is coloured red, thicker, and marked with an arrow.
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1%

In the appendix, we define the star for any root system and we prove that it is closely
related to the permutahedron.

Let p=(n,n—1,...,1) € R"/R and let P, (the permutahedron) be the convex hull of
the set {wp : w € S,}. Let P, be the quotient of P, by the equivalence relation given by
identifying all parallel faces. Theorem A.7 specializes to the following result.

Theorem 8.2. There is a homeomorphism X, = P, which induces a homeomorphisms X’n =
P,.

Remark 8.3. The quotient P, was previously defined in [BEERO06] and was shown to be
nonpositively curved [BEER06, Thm 8.1].

We will also be interested in an intermediate quotient. Let P, be the equivalence relation
given by identifying just closures of parallel facets. There is also a similar quotient X, but
we will not define this space, since it will not be used.

The polyhedron P, and its two quotients P, and ]3” have natural cell structures. The 0-cells
of P, correspond to permutations w € S,,. The 1-cells of P, connect 0O-cells w and ww; ;41, for
w € Sy, and w; ;41 the standard generators of S,,. The 2-cells of P,, are hexagons and squares
corresponding to the cosets w(wjy1,w;jj41) for j =i+ 1 and j > i+ 1, respectively. More
generally, the k-cells of P, are labelled by cosets w# C S, where #  is a rank k standard
parabolic subgroup and w € S,,. Equivalently, the k-cells of P, are indexed by ordered set
partitions & of [n] with n — k parts. The correspondence between these set partitions and
cosets is given by

8+ {v €S, :v(a) < v(b) whenever a lies in an earlier part than b in &}

The complex ﬁn has a single 0-cell. Analyzing the relation ~ in X,,, we obtain that in 13n the
(directed) 1-cells (w, wwy g11) and (W', w'wyr g4 1) of P, are identified, whenever w(k) = w' (k')
and w(k + 1) = w'(k' +1). Thus directed 1-cells of P, are in correspondence with pairs
1 <i# j <n, where w(k) =i, w(k + 1) = j. More generally, two cells of P, are identified in
]3n if and only if they are indexed by two ordered set partitions whose underlying unordered
partitions are equal. Thus k-cells of P, are indexed by unordered set partitions of [n] with
n — k parts.

To describe the cells of f’n, consider parallel facets of P, corresponding to w# , ww1, %",
where %', %" have rank n — 2, and wy, is the longest element of S,,. Suppose that # =
Sp X Sp—p and let wyr be the longest element of 7°. Then the translation identifying these
facets sends w to wwywi,. Note that weywi, is a power P of the long cycle r in S,,. Thus
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in P, we identified the 0-cells w,wr? of P, for all p and we identified the (directed) 1-cells
(w, wwg g41) and (wrP, wrPwy_pk41-p) (modulo n). More generally, the cells of P, are indexed

by cyclic set partitions (i.e. equivalence classes of ordered set partitions under the equivalence
relation (S1,...,Sm) ~ (S2,...,Sm,51)).

8.2. Planar trees and forests. A planar tree is a rooted tree along with an order on the
set of ascending edges at each vertex. A planar forest is a sequence 7 = (71,...,7) of
planar trees.

A planar forest 7 labelled by S determines the following total order on .S, a bijection
wy @ [n] = S where n = #S. We visit the planar trees 7y,...,7, in the obvious order.
Given 7;, we read the labels on its leaves in the order in which they are visited by a depth-first
search starting at the root and respecting the order at each vertex. If S = [n], then this total
order of [n] will be treated as a permutation of [n].

For a planar forest 7, let V(7) denote the set of internal vertices. Let E(7) denote the
set of edges of 7 that are internal, i.e. not containing a leaf. There is a natural bijection
E(1) — V(7) taking an edge e € E(7) to the vertex v at which e is descending. We then
define 7.(7) to be the result of flipping the order at v. This means that we reverse the order
of the ascending edges at v and at all the other vertices v such that the path from u to the root
passes through v. Note that the effect of this flipping on the order is given by w,, (r) = wrw;
(as bijections [n] — S), where the vertices above the edge e correspond to wr(7),. .., w-(j).
Here w;; € S, is the element of S,, which reverses [i,j] and leaves invariant the elements
outside this interval.

Example 8.4. We will use the following running example throughout this section. Here is a
planar tree 7 with an edge e, corresponding vertex v, and the flipped tree r (7).

1 2 3 4 3 2 1 4

8.3. The cube complex. A cube complex is a complex obtained by gluing cubes of side
length 2 along their faces by isometries. For a detailed survey, we refer to [Sagl4]. Here we
just recall some concepts. Given a vertex v of a cube complex, its link is the small metric
sphere around v: its simplices correspond to the corners of cubes at v. If such a link is a
simplicial complex, and all its cliques span simplices, then it is flag. Gromov proved that if all
links are flag, then the path metric on the cube complex is nonpositively curved (also called
locally CAT(0)), which is a metric generalization of nonpositive curvature for Riemannian
manifolds, see [BH99, II].

A map ¢ between cube complexes is combinatorial, if it maps the interior of each cube
isometrically onto the interior of another cube. Such a map is a local isometry at a vertex v,
if the induced map ¢, between the links at v and at ¢(v) is injective, and if for each simplex A
in the link of ¢(v) with vertices ag, ..., ay in the image of ¢, we have that the simplex A also
lies in the image of ¢,. If the link at ¢(v) is a simplicial complex, and the link at v is flag,
then it just suffices to verify this condition for k£ = 1.
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By [Leal3, Thm B.2], if the target cube complex is nonpositively curved, a local isometry
in this combinatorial sense is a local isometric embedding with respect to the path metrics on
the cube complexes. By [BH99, 11.4.14] such a map is injective on the fundamental groups.

We define the cube complex of planar forests D, as follows. Let PF, (k) be the set of
all planar forests labelled by [n] with k internal edges. This will be set of k-cubes, except that
we will identify two such cubes if they are related by a sequence of flippings. In this way, we
will end up with #PF,(k)/2* k-cubes.

For each planar forest 7 € PF, (k) and e € E(7), we define d.(7) € PF,(k — 1) to be the
result of collapsing the edge e. However, if e is the trunk of a planar tree 7;, then we consider

the planar forest (71, ...,7,) such that identifying the roots of 71, ..., 7,, in that order, gives the
tree obtained by collapsing e in 7;. We then define de(7) = (71,.. ., Tiz1, 7], - - -5 Thy Tidk 1y > Tin)-

Note that we have a bijection E(d.(7)) = E(7) \ {e}. For distinct e, f € E(7), we have

r(de(7)) = de(ry(7)).
We write D,, for the geometric realization of this cube complex. More precisely

Dy= {J FL1P0) ~

T€EPF,

where ~ is the equivalence relation generated by

(7, (t,8)) ~ (re(7), (8, =s)) (7, (£, 1)) ~ (de(7), 1)

Here t € [-1,1]P(M\Me} s € [~1,1], and (t,s) denotes the result of inserting s into the
coordinate labelled by e.

Each individual cube [—1,1]¥(") can be decomposed into 2¥ (where k = #E(7)) subcubes
(also called sub-k-cubes, wherever k plays a role). We call [0, 1] (1) the positive subcube.
Note that each subcube of [—1, 1]¥(7) is the positive subcube for some unique 7’ obtained from
T by a sequence of flippings.

Thinking about these sub-cubes, we can describe D,, as

Dy= J 0,177/~
TePF,

where ~ is the equivalence relation generated by

(9) <T7 (t7 O)) ~ (re<7)7 (tv 0)) (T, (t7 1)) ~ (de<7—)7 t)

Here ¢ € [0,1)F(M\Me} | and (,0) denotes the result of inserting 0 into the coordinate labelled
by e.

The 0-cubes of D,, correspond to planar forests 7 = (11,...,7,), where each 7; is a single
edge with leaf v;. Thus a 0-cube corresponds to the permutation w = w, € S,, where w(i)
labels v;. Furthermore, sub-1-cubes correspond to planar forests 7, where exactly one 7; is not
a single edge, and has a single internal edge e, which is the trunk. Sub-1-cubes corresponding
to 7 and r.(7) form a 1-cube containing the 0-cubes corresponding to w, and Wy, (r)- We thus
have a correspondence between the directed 1-cubes and 7 as above such that the directed
1-cube corresponding to 7 starts at the O-cube corresponding to w, and ends at the 0-cube
corresponding t0 wy., (7).

On the other hand, the sub-(n —1)-cubes (which are top-dimensional) correspond to planar
binary trees.
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Example 8.5. Here is a picture of the cube complex D3 along with a zoom-in on one of the
2-cubes divided into 4 sub-2-cubes. The left and right edges of the cube complex are identified
in the manner shown by the arrows. In the zoom-in, some of the forests labelling cubes are
drawn.
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8.4. Map from the cube complex to the star. We will now define a map I' : D,, —
X,,. We will map the positive subcube [0, 1]E(T) associated to a planar forest 7, into the
parallelepiped XY associated to w;.

Let t € [0,1]%(). Let v € V(7). We define a, = [[,te where the product is taken over all
edges on the path between v and the root of the tree containing v. Note that to define a point
x =TI(t) € X}¥7, we need to specify z; — x; € [0,1] for every i,j € [n] that are the images of
consecutive numbers under w,.

If such 4, j correspond to leaves in distinct trees, then we set z; — x; = 1. If 4, j correspond
to leaves in the same tree, then we set x; — x; = a,, where v is the meet of 4, j.

Example 8.6. We continue with the tree 7 from Example 8.4.
1 2 3 4 1 2 3 4

t1tats
t1to

(51

On the left is a planar tree with internal edges carrying t1,t2, t3 € [0, 1]. On the right, the tree
is decorated with the values of the vertices. This results in a point z = I'(t) € R*/R defined
by

r1 — T = tltg Tro — T3 = t1t2t3 T3 — T4 = tl
Proposition 8.7. This gives a well-defined map I' : D,, — X,,.

Proof. We must check that I' is well-defined. There are two things to check, corresponding
to the identifications in (9). First we need to check that I' is well-defined on the overlap of
subcubes. Next we need to check that I' is well-defined on gluing faces of cubes.



34 ALEKSEI ILIN, JOEL KAMNITZER, YU LI, PIOTR PRZYTYCKI, AND LEONID RYBNIKOV

For overlap of subcubes, consider a planar forest 7 and an edge e. The two planar forests 7
and r.(7) define two total orders on [n]. Let (7, (t,0)) be a point in D,,, where ¢ € [0, 1]Z(7)\{e},
In D,, it is the same as the point (r.(7), (¢,0)).

Then we have two potentially different elements z,2’ € X,, as the images of (7, (¢,0)) and
(re(7), (t,0)). Assume, without loss of generality, that the order defined by 7 is the standard
order.

Let ¢ be the smallest label on a leaf in 7 above e and let j be the largest label on a leaf
above e.

For k =1,...,5—1, the leaves labelled by k, k£ + 1 both lie above e and so their meet v does
as well. So a, = 0, since it is the product of different edge values including ¢, = 0. Hence
g — Tpy1 = 0. Thus @y = x4 = - = 5.

Now in 7¢(7), the order is 1,...,4 — 1,4,...,4,5 + 1,...,n. So by a similar argument
A——

Now if k+1 < ¢ or k& > j, then k,k 4+ 1 have the same meet in both forests, and so
Thp — Tpy1 = Tp — Th -

Finally, ¢ — 1,7 in 7 and ¢ — 1, j in r.(7) have the same meet, and so x;_1 —2; =z, | — x

o
J

/
but since z; = 7, we see that z;_1 — x; = 2;_; — 2. Similarly z; — 241 =2} — 27, ;. So alJI
differences are equal and we conclude that x = /.

To check gluing on faces, we consider a planar forest 7 and an edge e. Let x = I'(7, (¢,1))
and 2’ = I'(de(7),t). The orders defined by 7 and d.(7) are the same. Once again, assume
that this is the standard order on [n].

If e contains two internal vertices v, v’, then at t. = 1, we see that the values a, and a, are
equal. Since these two vertices are identified in d.(7), for any 7, we see that ;—x;1 = 2 -7 ;.
On the other hand, if e is a trunk, i.e. it contains a vertex v and a root, then if the leaves
labelled by ¢, 441 are split into different trees by the collapse of e, then z; —x;+1 = a, = te = 1,

while 2} — xj, | = 1 by definition. O

Example 8.8. Consider a 1-cube of D,, consisting of sub-1-cubes corresponding to planar
forests 7 and 7 = r.(7), where e is the unique internal edge of 7. Assume for simplicity
that the total order corresponding to 7 is the standard order on [n]. Let 4,j be the minimal,
maximal labels of leaves above e.

Then I' sends its 0-cubes to the star points of X,, corresponding to w, = id, w,» = w;; for
some 1, j. Furthermore, I' sends the midpoint of that 1-cube to the point z € X,, where

T —x2=r=xm — =1
1‘i—xi+1=---=1‘j_1—l'j=0,
Tj—Tjy1 =+ =Tp_1— Ty, =1

This is the point wf—? defined in Section A.2.2 (where II is the standard set of simple roots and
D={1,...,i—1,4,...,n—1}).

In P,, this point is mapped to the centre of the face corresponding to (wjiy1,...,w;—1;)
(this point is denoted pr — pg in A.2.1). Consequently, the entire 1-cube is sent to the main
diagonal of that face.

8.5. The quotients ﬁn and lv)n We first define the quotient ﬁn of D,,.
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Given a planar forest 7 = (71, ...,7y), we identify the cubes [0,1]%(7) and [0, 1]%("") where
7’ is obtained from 7 by permuting the planar trees by any element of S,,. We let lA)n be the
quotient. Note that a cube in D,, might be equivalent to itself only in the obvious way, i.e. the
result of a sequence of flippings can never be the same as the result of permuting the planar
trees. Consequently, lA)n is still a cube complex.

In ﬁn, after quotienting by this equivalence relation (and the earlier one given by flipping
orders), the cubes will be indexed by unordered planar forests 7 = {7y, ..., 7, } modulo flipping
at each edge. We write ﬁl\?n for the set of [n]-labelled unordered planar forests (modulo the
equivalence relation of flipping).

Example 8.9. The cube complex 133 has three 2-cubes, six 1-cubes, and one O-cube (see
Example 8.5).

The cube complex lA)n has only one 0-cube. Furthermore, its sub-1-cubes correspond to 7
with only one 7; not a single edge, and having one internal edge e, the trunk. Such 7 are in
bijection with sequences A = (ay,...,ap), over 2 < p < n, where distinct aq,...,a, € [n] label
the leaves of 7; in that order. We have a correspondence between the directed 1-cubes and 7
(or A) as above such that the directed 1-cube corresponding to 7 starts with the sub-1-cube
corresponding to 7 (and ends with the sub-1-cube corresponding to r.(7)).

We now define the quotient D,, of D,,. Given a planar forest 7 = (11,...,7n), we identify
the cubes [0,1]7(") and [0,1]%(") where 7/ is obtained from 7 by cyclically permuting the
planar trees by a power of the long cycle r = (12---m) of S,,. After quotienting by this
equivalence relation, the cubes will be indexed by cyclically ordered lists 7 of planar trees (we
call this a cyclic forest). We denote by D,, the quotlent cube complex

We have obvious combinatorial maps ¢, : D,, — Dn7 and qﬁn D — D

Lemma 8.10. The cube complexes Dn, ﬁn, and D,, are nonpositively curved.

Proof. We concentrate on the cube complex D,,. By a result of Gromov [Gro87], see [BH99,
I1.5.20], we need to verify that the vertex link of D,, is a flag simplicial complex. In other
words, we need to verify that

e the two sub-1-cubes of each sub-2-cube are distinct and determine the sub-2-cube
uniquely, and
e cach set of k sub-1-cubes pairwise contained in sub-2-cubes is contained in a unique

sub-k-cube.

For the first bullet point, note that each sub-2-cube corresponds to a set of planar trees 7
with two internal edges. If these two edges lie in distinct planar trees of 7 (and hence they
are trunks), then its sub-1-cubes correspond to sequences A, A’ with disjoint sets of entries.
If these two edges lie in a single tree of 7 (and hence form an edge-path of length two starting
at the root), then one of A, A’ is a proper interval inside the other. In particular A # A’.



36 ALEKSEI ILIN, JOEL KAMNITZER, YU LI, PIOTR PRZYTYCKI, AND LEONID RYBNIKOV

Conversely, if sequences A, A’ have disjoint sets of entries, then 7 must have exactly two
trees 7;, 7; that are not single edges, and each of them has a single interior vertex with the order
of the ascending edges determined by A, A’. If A’ C A, then 7 must have exactly one tree 7;
that is not single edge, with two interior vertices v,v’, where the ascending edges at v’ are
all ending with leaves and ordered according to A’, and the ascending edges at v ending with
leaves are ordered according to A\ A’, with an edge vv’ inserted in the position corresponding
to the interval A’. In particular, A and A’ determine 7 uniquely.

For the second bullet point, suppose that the sequences Aj,..., A correspond to sub-1-
cubes pairwise contained in sub-2-cubes. We construct a set of planar trees 7 corresponding
to a sub-k-cube containing all our sub-1-cubes as follows. The edges of T are in bijection with
the union & of the set {A1,..., Ar} and the set [n], whose elements are treated as length 1
sequences. We direct all these edges, and identify the starting vertex of an edge A” € o
with the ending vertex of an edge A € o whenever A C A” and there is no A’ € o with
AC A C A" Given A”, we order such edges A according to their order in A”. This produces
a required set of planar trees 7 with roots the ending vertices of the maximal elements of & .

As in the first bullet point, it is easy to see that such 7 is unique.

The proofs for D,, and D,, are analogous. Alternatively, we could appeal to Remark 8.13
and [DJS03, Lem 3.4.1]. O

Lemma 8.11. The maps ¢y, &n are local isometric embeddings.

In particular, by [BH99, I1.4.14], the homomorphisms induced between their fundamental
groups are injective.

Proof. We first focus on the map én. Let %) be a cyclic forest corresponding to a 0-cube of D,
and let 7,7/ correspond to sub-k-cubes containing that 0-cube. This means that the cyclic
order of the leaves of ¥ and 7' is the same as that of 7.

For local injectivity, suppose that the sub-k-cubes corresponding to 7,7 map under gZ;n to
the same sub-k-cube of ZA) Then 7 consists of the same set of planar trees as 7, possibly
ordered differently. However, the cychc order of the leaves of 7, 7 is the same, implying ¥ = 7'.

For the condition on A, since Dn,D are nonpositively curved, we can assume k =
Suppose that 7, 7 correspond to sub-1-cubes mapped uncler qﬁn to sub-1-cubes Correspondlng
to sequences A, A’, contained in the same sub-2-cube of D,,, corresponding to a set of planar
trees p. Since A, A" are intervals in the cyclic order of the leaves of 7y, we can cyclically order
the planar trees of p into a cyclic forest p corresponding to a sub-2-cube containing the original
sub-1-cubes. Thus ¢, is a local isometry (in the combinatorial sense). By [Leal3, Thm B.2],
this proves that qzn is a local isometric embedding.

Analogously, replacing the discussion of the cyclic orders by the total orders, we obtain that
the composition qzn o ¢, is a local isometry, and so ¢, is a local isometry. U

Recall the map I' : D,, — X, constructed in Section 8.4. Via the homeomorphism X,, = P,
from Theorem 8.2, we can consider I' as a map D,, — P,.

Lemma 8.12. The map I' descends to maps ﬁn — ]3n and Dn — ]5n

Proof. We will verify that I" descends to a map ﬁn — )/(\'n This transfers to the above
statements, because of the compability of the equivalence relations between P, and X, see
Lemma A 4.
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Consider a planar forest 7 and let 7/ be the result of permuting the trees. Let t € [0, 1]#(7)
be edge values and let ¢’ € [0,1]P(") the corresponding edge values. We must show that
D(r,t) =T, t).

To see this, we let & be the set partition of [n] with each part corresponding to the set of
leaves of a tree of 7. We note that this is the same partition as for 7/. It is also the same
partition as the one defined by = = I'(7,t) and 2’ = I'(7/,t'), since x; — z; = 1 if ¢, j belong
to different trees. On the other hand, if 7, j belong to the same tree of 7, then they belong to
the same tree of 7" and z; — x; = 2} — ;. Thus examining the definition, we see that I'(7,)
and T'(7/,t’) are identified by the equivalence relation.

The same argument works for the descending to D, — 15”, using the fact that cubes of D,
are indexed by cyclic forests and cells of P, are indexed by cyclic set partitions (see the last
paragraph of section 8.1). O

Remark 8.13. In [DJS03], Davis-Januszkiewicz-Scott defined the blowup X4 of a Coxeter
cell complex ¥, depending on a choice of an “admissible set” %.

The complex D,, is exactly the Z#-blow-up X4 of ¥ (see [DJS03, §3.2]), where ¥ is the
permutahedron (with the action of the symmetric group S, ), and & is the minimal blow-up
set. Furthermore, the universal covering space of D,,, which is a CAT(0) cube complex, was
discussed as ., in [Gen22, §7].

Similarly, if we consider the Coxeter cell complex ¥ of the affine symmetric group AS,,, built
of permutahedra, then the quotient of ¥4 by the action of the group Z"/Z from Section 10.1

coincides with the complex D,.

9. ISOMORPHISMS BETWEEN THE COMBINATORIAL SPACES AND THE REAL LOCI

9.1. Map from the star to the flower space. For the remainder of the paper, fix an
increasing diffeomorphism f : [-1,1] — [—00,00] such that f(0) = 0. For example we can
choose f(t) = tantr/2.

We define © : X,, — t,(R) as follows. We define © initially on X£, by O(z) = § where

7j—1
Sij = flopn — i), ifi<j b =8, ifi>]
k=1

In the appendix (Theorem A.7), we proved the following result.

Theorem 9.1. © extends uniquely to an Sy-equivariant map X, — t,(R) and this gives an
isomorphism X, = t,(R).

9.2. Map from the cube complex to the cactus flower space. We begin by recalling
charts on M,, 11 associated to planar binary trees, originally due to de Concini-Procesi [DCP95]
and described in Section 2.3 of [Ryb18].

Let 7 be a planar binary tree. Recall in Section 6.5, we described an open subset %, C F,
(which depends only on the underlying tree, and not the planar structure). Since 7 is a tree,
we have %, C ./%Nnﬂ C F,,. We write W, = %, N F,,, and we have F,, C W, C Mn+1.

Lemma 9.2. Let i, j, k,l € [n] be distinct. Suppose that the meet of k,l lies above the meet of
i,j in 7. Then the function Z2=2t on F, extends to a regular map W — C.
1%
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Proof. Let v be the meet of k,l and let v be the meet of 7,j. Consider the path p from v’
to the root; by hypothesis, this path must pass through v. Likewise, the paths from ¢ and j
to the root must pass through v. Since v has only two ascending edges, one of these edges is
common to p. Without loss of generality, let us assume it is j. Then p;;; and pj; are both
well-defined by the definition of W, and

Zk — %] Zk — Zj 2l — %5

= - = Mgil — Mgl
Zi—Zj ZZ'—Zj Zl'—Zj

O

Though W, does not depend on the planar structure on 7, we will now define coordinates
on W, which do depend on this planar structure.

Let e € E(7) be an internal edge, descending at v and ascending at v'. Choose i,j to be
the unique consecutive pair of leaves labels whose meet is v. If e is not the trunk, choose k,
to be the unique consecutive pair of leaves whose meet is v’. Define b, : W, — CE() by

2 — %
b = = L if e is not the trunk b, = z; — zj if e is the trunk
Rk — 2l

From [DCP95, Theorem 3.1(1)], we see that this defines an isomorphism between W, and

an open subset W/ C C”(7). The inverse of this isomorphism will be denoted H,.

Lemma 9.3. Let ij € p([n]) and kl € p([n]). Suppose that the meet of i,j is above the meet

of k,lin 7. Then Z—_Z evaluated on H.(b) is a rational function in {b.} whose denominator
is a positive polynomial with constant term equal to 1. Therefore, W' is defined by the non-

vanishing of such polynomials.

Proof. Assume without loss of generality that the order defined by 7 is the standard order
and that ¢ < j and k < [. Then we have
2y — Zj Zi_2i+1+"'+zj—1_zj

(10) =
Zk— A Rk T Rkl T+ 21— 2

For each r, we have 2z, — 2,41 = He be =: a,, where v is the meet of r and r 4+ 1 and the
product is taken over the edges on the path from the root to v.

Now fix v to be the meet of k and [. Then v is the meet of p and p + 1 for some k£ < p < [.
Also for every r # p such that k <r <[ or i <r < j, the meet of r,r + 1 lies above v. Thus,
if consider (10), we see that a, appears as a term in the denominator and divides every other
term in both the numerator and denominator. So after dividing by a,, we reach a rational
function of the desired form. O

Lemma 9.4. Fiz some edge e in 7 and let H;(b) = (C,z) as above. Suppose that b, = 0.
Z2i{—Zj

Then ——% = 0 whenever the meet of i,j is above e and the meet of k,l is below e.
k=l

Proof. It suffices to check this on the open subset of W, where all other coordinates by are
non-zero. On this locus, for a consecutive pairs 4, j of leaf labels, we have z; — z; = 0 if and
only if the meet of ¢, j is above e. This implies that the above ratio vanishes. O

Associated to 7, we have the subcube C(7) = [0,1]%(7). We consider an open subset of this
cube defined by requiring that the value of the trunk eq is not 1, C(7)° = [0, 1) x [0, 1]F(T)\{eo},
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We define a diffeomorphism
B:C(r)° =10,1) x [0,1]F\eo} =510, 00) x [0, 1)F(7)\eok
by B((te)) = (be) where b, = f(te,) and if e # eg, then
- {f(tn” if to £ 0 for all ¢ < e

(I er ter)
te ifte =0 for some ¢’ < e
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where the inequality ¢ < e means that €’ lies on the path between e and the root and the

products are taken over this set of edges.

Example 9.5. Consider our tree from Example 8.6 with the following edge values.
1 2 3 4

The resulting point (C, z) € M1 is given by

_ 22— 23 fltitats) 21—z fltita)
== fh) 21—z f(tite) z3—z4  f(t1)

assuming that t1,t2 are non-zero. .
Now suppose that t; = 0. Then (C, z) lies in the zero section M5 C Ms and we have
292 — Z3 Z1 — %9

21 — 22 23— 24

Lemma 9.6. The map B is a diffeomorphism.
Proof. This follows by "Hopital’s rule.

O

From Lemma 9.3, the polynomials whose non-vanishing defines W/ are all positive polyno-
mials with constant term 1, hence they cannot vanish on non-negative real numbers. Thus,
[0,00) x [0, 1]F(\eo} is contained in W/. Hence, we define 6 : C(7)° — M, to be the

composition

C2 = [0,1) x [0, 1]EN\eo} By 0 o0) x [0, 1)FOMeod oy w7« M, (R)

Let D; be the subcomplex of the cube complex given by cubes indexed by trees (not
forests) and where the value of the trunk is not 1. As before, let X, be the interior of the

star. Examining the definition of I' : D,, — X,,, we see that I'(Dy) C X,.

Lemma 9.7. The diagram

D2 > C(r)° —L M,.1(R)

Ir 5
X —2—— ta(R)

commutes.
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Proof. Let (t.) € C2. By continuity, we can assume that no ¢, vanishes. Let 4, j be a pair of
consecutive elements for [n] and let v be their meet. It suffices to check that the coordinates
d;; are equal for the two possible images of (t.) in t,.

Following 6 to the right, and then the morphism M, 1 — t,, we reach &;; = f(I[.te),
where the product is taken over all edges on the path from v to the root. On the other hand,
following I', we reach x; — x; = a, = [], te, where the product is over the same edges. Then
when we apply ©, we end up with 0;; = f(x; — x;) = f([[. te) as desired. O

Lemma 9.8. The above maps 6 : C(1)° — MnH(R) glue together to a map 0 : D; —
Mp+1(R).

Proof. First we check that the maps glue. We must check this glueing under flipping and
deletion of edges.

We begin with flipping. Let 7 be a planar binary tree and let e be an edge. Let t € C? with
te = 0. We wish to show that H.(B(t)) = H, ) (B(t)).

Let (C,z) denote the image of H,(B((t)) and (C’,2') the image of H, (-(B(t)). As usual,
assume that order defined by 7 is the standard order on [n]. By Lemma 9.7, we see that
zi — zj = z; — z; for all 4, j. Now, we need to check if all the ratios associated to the edges
agree. For the trunk, this equality is clear by Lemma 9.7.

Now, consider a non-trunk edge f of 7 descending at v and ascending at v’. Let 4,7 be the
consecutive pair of leaves meeting at v and k, [ be the consecutive pair of leaves meeting at v’.
We have some possible cases.

First, suppose that f is above e. In this case, because of the order reversal, j,7 will be
consecutive in r.(7) and will still meet at v and similarly for {, k. Thus we see that

as desired.

Suppose that f = e. As above, j,i will be consecutive in 7.(7) and will still meet at v.
On the other hand, k,! will no longer be consecutive, but will still meet at v" in r.(7). Thus,
applying Lemma 9.4, we conclude that

as desired.

Finally, suppose that f is below e. At most one of i,j lies above e and at most one of &,
lies above e. Assume that i lies above e and the rest of the leaves do not. Then in r.(7), ', j
are consecutive and meet at v, where ¢’ is another leaf above e. Then we have

r r ’
Zi — zj - Zir T %5 - 2y T % Zp =

- - /) / /
2L — %] Z, — 2 Z, — 2 Zp —Z

where in the last equality we apply Lemma 9.4.

Next, we check glueing with respect to deletion of an edge. For this purpose let 7, 7/ be two
binary planar trees carrying non-trunk edges e, e’ such that do(7) = do/ (7). We wish to show
that H,(B(t)) = H,, ;) (B(t)) where t. = 1. In this case, the orders defined by the these two
trees agree, w,; = wy.
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Let v,u be the vertices in 7 such that e is descending at v and ascending at w. In the tree
7/, the vertex w still exists while the v is replaced with a different vertex v’. Moreover, suppose
that 4, j are consecutive and meet at v and k,[ are consecutive and meet at w in 7. Then in
7/ we see that k,l meet at v' and ¢, j meet at u. Then we find

/
Zi_zjfl Zk—

2L — 2 zz’»—zé-

/
i

=1

and so we see that these ratios are equal. All the rest of the pairs of consecutive leaves meet
at the same vertices and hence all the other ratios are equal.

Lemma 9.9. The map 6 : Dy, — MnH(R) extends to a map 0 : Dy, — Fp(R).

Proof. Let 7 = (11,...,Tm) be a planar forest with leaves labelled Si,...,Sy,. Then as above
we have maps C(7;)° — Mg;11(R), which we combine together to give a maps

C(r1)° x -+ x C(Tm)° = Mg, +1(R) x -+ x Mg, 11(R) = Vg(R) C Fn(R)

Here we use the isomorphism M51+1 X -0 X Msm+1 = ffg from Proposition 6.8(1).

Let C(7)° be the subset of the cube for 7 where all the trunks are not given the value 1.
We have C(7)° = C(71)° X -+ x C(7,)°. As every point of D,, lies in some C(7)° for some
forest 7, we have defined 6 : D,, — F,(R).

Note that the stratum Vg of F,, depends only on & as an unordered set partition. Thus, the
image of the cube of 7 is the same as the image of the cube of any forest made by permuting
the trees in 7 and this descends to a map 6 : D,, — Fp(R). O

At this point, it will be useful to consider the cubical subdivision of lA?n The cubes of
this complex will be our original “sub cubes” together with all of their faces. We will call all
these little cubes and use big cubes for our original cubes. To index these little cubes, we
introduce the following combinatorics.

A planar tree with Os is a labelled planar rooted tree as before, along with a decoration of
some of the internal edges by 0, up to the following equivalence; two such trees are considered
equivalent if they are related by flipping at edges decorated with Os. A planar forest with
Os is a collection of planar trees with Os. Given such a planar forest 7 with Os, we write E(7)
for the set of internal edges not decorated by 0s. We write ZT,, (resp. ZF,) for the set of
planar trees (resp. forests) with Os labelled by [n]. (Note that we are considering “unordered”
planar forests here.)

There is an obvious map ZF,, — PF » given by forgetting which edges are decorated by Os.

The following observation is clear.
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Lemma 9.10. The little cubes of ﬁn are indexed by ZF,; the cube indexed by T € ZF, is
[0, l]E(T). The embedding of little cubes into big cubes is given by the map ZF, — PF,.

Example 9.11. Here is the cubical subdivision of the one of the maximal cubes in 133, with
some of the little cubes labelled by elements of Z F3.

By Lemma 9.9, we have a well defined map (0,1)%(") — F,(R) from the interior of each
little cube.

Lemma 9.12. Let 7 € ZF,. The map 0 : (0,1)¥(7) — F,(R) is injective. Its image is the
set of (C,z) defined by the following conditions:
e The set partition defined by distributing the marked points among the components of
C' is the same as the set partition defined by distributing [n] among the trees in T (i.e.
(C,z) lies in the appropriate Vs).
e For each i, j, k,l € [n] such that i,j and k,l are consecutive for the order defined by T,
let v be the meet of 1,5 and v’ be the meet of k,l. Assume that v is weakly above v'.

We have
1ifv="1
% = ¢ b€ (0,1) if the path between v and v' contains no edges decorated with 0
0 if the path between v and v’ contains an edge decorated with 0
Proof. Since each little cube is contained in a big cube, and the map on each big cube is the
restriction of a coordinate chart, we see that the map on each little cube is injective.

The conditions on the image come from examining the definitions. U

Lemma 9.13. For each point z € F,(R) = R" \ A/R, there exists a unique 7 € ZT,, such
that no edges of T are decorated with 0s, and z is in the image of (0,1)F(7).

Proof. The tree 7 is the unique tree such that z; — z; < 2, — z; whenever 4,5 and k,[ are
consecutive, and the meet of 7, j is weakly above k, [.

Beginning with z we will inductively define the tree 7. Assume without loss of generality,
that we have z1 < -+ < z,.

Let ¢ = min(z2 — 21, ..., 2n — Zn—1) be the minimal distance between neighbouring point, let
A={i:ziy1 —2z =/} and let m =n — #A. Then there exist unique 1 < k; < --- < k,, =n
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such that
29— 2 = =2y — A1 =1L
2k 42 T Rkl = 0 = Zky T Rko—1 = 14
In other words, we partition z1, ..., 2, into consecutive groups where the minimal distance is
attained.

Define a new sequence 2’ € F,,,(R), by
/ / /
2] =21, B9 = Zhy41 — Bky T 21y ooy By = Zhpyo 141 — Bhpyq Tt 2kl — 2k T 21

By induction (as A nonempty, m < n), we have a [m]-labelled tree 7" associated to z’. Define
the tree 7 by replacing the leaf labelled p in 7/ with an internal vertex and attaching leaves
labelled k,—1 +1,..., K, to this vertex.

By construction, it is easy to see that z is in the image of (0, 1)E(T). O

Recall now that we have a copy of M1 inside MnH as the zero section (the preimage of
§ =0 under v : F,, = Z,). So we have a copy of M, +1(R) =R"\ A/R* x R inside F',,(R).

Lemma 9.14. For each point z € My+1(R), there exists a unique 7 € ZT,, whose trunk is
decorated with a 0, such that z is in the image of (0,1)F().

Proof. The proof is almost identical to the previous one. We just note that having the trunk
decorated with a 0 means that the tree is only well-defined up to overall reversal. This
corresponds to the fact that the order on the points z1,...,z, is only well-defined up to
reversal, as R* x R contains multiplication by —1. U

Now, we extend to all of F,,(R). For this purpose, we will need to relate the combinatorics
of planar forests to the combinatorics of bushy rooted forests, which index the strata of F,,.

Recall from Section 6.4, that a bushy rooted forest is a rooted forest, except that we allow
the roots to be contained in more than one edge. To each point C =C; U---UC,, € F,,, we
assign a forest 7 which is the component graph of the C;. Conversely, to each bushy rooted
forest 7, we have a stratum of F,, which is isomorphic to

H FE(r)>< H ME(v)+1
)

reV(r) veV(r
root non root
where E(v) denotes the set of ascending edges containing v.

If we look at the real points of each stratum, we note that F,,(R) = R™\A/R has n! connected
components, corresponding to orderings of the points, while M,,;1(R) = R™\ A/B(R), where
R = R* x R, has n!/2 connected components, corresponding to orders of the points modulo
reversal. To take these components into account, we define a planar bushy rooted forest
to be a bushy rooted forest along with an order of the ascending edges at each vertex, except
that two such forests are considered equivalent if they are related by reversing the order at a
non-root vertex. We write BF,, for the set of [n]-labelled planar bushy rooted forests.

To summarize, we have three sets of labelled planar forests:

(1) Planar forests, PF,, which index the big cubes of the cube complex Di,.
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(2) Planar forests with with Os, ZF,,, which index the small cubes of the cubical subdivision
of ﬁn.
(3) Planar bushy forests, BF),, which index the connected components of the strata of
Fp(R).
(Throughout this section, all of our forests are unordered.)

We already have a map ZF,, — PF n, defined above, and now we define a map ZF,, — BF,,
by collapsing all the edges not labelled 0 (and then erasing all the 0s).

Example 9.15. Here is an element of Z7T, and its image in BFy.
1 2 3 4 1 2 3 4

Example 9.16. Recall the (n — 1)-cubes (the biggest possible ones) of D,, are labelled by
binary trees (the planar structure goes away because of the flipping). So, the centres of the
big (n — 1)-cubes of ﬁn are labelled by binary trees where every edge is labelled by 0. Under
the above map, they go to the binary trees in BF,,. These label the point strata of F,(RR).

Lemma 9.17. For each point z € F,(R), there exists a unique 7 € ZF},, such that z is in the
image of (0,1)F(7),

Proof. Fix (C,z) € F,(R). Then (C,z) lies in a stratum of F,, labelled by a bushy forest 7
and as explained above this stratum is isomorphic to

I Fomx II Mp(w)+1

reV (1) root vEV(71) non root

The order of the points on each component gives a planar structure to 7 and thus we can get
an element 5 € BF,.

Applying Lemmas 9.13 and 9.14 to each factor above, we deduce that there exists a unique
lift 7:= 73 € ZF, of 7 such that (C,z) is in the image of (0,1)#(). O

Theorem 9.18. 6 : D,, — F,(R) is a homeomorphism. It is compatible with the homeomor-
phism O : X,, = t,(R).

Proof. Because 0 is defined using charts of ]\7”+1, it is injective on each little cube. Lemma
9.17 implies that each point is in the image of precisely one cube. Thus, we conclude that
6 is a bijection. It is continuous because setting the value of the trunk to be 1, t.,, = 1, is
compatible with diffeomorphism B and the decomposition C'(7)° = C(11)° X - -+ X C(7m)°.
Finally, 6 is a continuous bijection from a Hausdorff space to a compact space, and hence
it is a homeomorphism.
The compatibility of § and © follows from Lemma 9.7. O

Remark 9.19. Let H, be the subcomplex of our cube complex indexed by trees in Z7T,
where the trunk is decorated by 0 (this is a hyperplane of our original cube complex D,,).

Our homeomorphism ﬁn = F,(R) restricts to a homeomorphism H,, & M, 1(R). Our proof
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above shows that under this homeomorphism, the cube complex and geometric stratification
are dual complexes. This fact has been remarked before in the literature, but we were not
able to find a precise proof.

9.3. Combinatorial models for deformations. Recall that we have the deformations
Fn(R) of F,(R) whose general fibre is M, ,(R) (see 7.2.5) and the deformation 7, (R) of
t,(R) whose general fibre is U(1)"/U(1). We now describe combinatorial models for these
spaces.

First, recall the quotient B, of the permutahedron by opposite facets.

Proposition 9.20. There is a homeomorphism P, = U(1)"/U(1).

Proof. Consider the action of A := Z"/Z on R"/R by a - x = x + na (so we are considering
translation by the subgroup generated by the vector (n,0,...,0) = (n —1,—1,...,—1) and
the vectors obtained from it by permuting the coordinates).

By [Mun22, Thm A], the orbit of the origin 0 € R"”/R under A coincides with the orbit O of
0 under the action of the affine Coxeter group of type A,_; acting on R"/R. Let P C R"/R
be the locus of points x such that the distance from x to @ is attained at 0. It is a well-known
fact in Coxeter groups that P = P,, the permutahedron with vertices wp, where w € S,, and
p=Mmmn—1,...,1).

By construction, P is a fundamental domain for the action of A on R"/R. Furthermore,
for x € 0P, the point x is at the same distance from 0 and a translate na for some nontrivial
a € A. Then z — na € JP. In particular, if x belongs to the interior of a facet F' of P, then
such a is unique and common to all x € F', and so F' — na is also a facet of P. It is also easy
to check that for z € 0P not in the interior of a facet of the permutahedron, and for a as
before, there are always facets I, F' — nb C OP with x € F,x — nb € F — nb, where b € A.
Thus, identifying the opposite facets of P, as in the definition of B,, we obtain the quotient
(R"/R)/A=U(1)"/U(1). O

Now, we consider M, ,,(R). Recall that the strata of M, s are indexed by [n]-labelled
rooted trees. In M, o(R), the marked points 20, z,4+1 always lie on the same component,
so for a stratum which intersects this real locus, in the corresponding tree, the leaf labelled
n + 1 is always connected to the vertex which is connected to the root. So we can delete this
vertex and the leaf labelled n 4+ 1 (producing a [n]-labelled rooted forest) without losing any
information.

Now, as in the previous section, we split the strata of M, 4+2(R) into connected components.
This leads to an order at each vertex, and a cyclic order on the set of trees, exactly the data
of an [n]-labelled cyclic forest. The codimension of such a stratum component is given by the
number of internal edges. (These strata and their components were also studied by Ceyhan
[Cey07].)

These same [n]-labelled cyclic forests indexed the cubes of D,,, where the number of internal
edges give the dimension of the cube. This motivates the following conjecture (compare with
Remark 9.19).

Conjecture 9.21. There is a homeomorphism D, = M?L+2(R) such that the cube complex
and the geometric stratification are dual complexes.
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We will now formulate a conjecture concerning a combinatorial descrlptlon of the total
space of the deformation %, (R). We have an obvious quotient map <bn D — D Define a
two-sided mapping cylinder for this map by

Dy := Dy, x RU D, /(x,0) ~ ¢n(2)
Similarly, we have a quotient map ¢ : b, — ]3n and we can define

P i= Py x RU P, /(x,0) ~ q(x)
Conjecture 9.22. There are isomorphisms By, = Fn(R) and P Z,(R) compatible with

the projections to R, extending the isomorphisms Dy, = Fp(R) and X, = t,(R) and making
the following diagram commute

Dy, —— Fn(R)
P — Tn(R)

9.4. Deformation retraction. It would follow from Conjecture 9.22 that F,(R) is a de-
formation retraction of ?Z(R) However, we will now prove this fact independent of the
conjecture. We begin with the following lemma. We thank Yibo Ji for suggesting this lemma
and its proof, which was inspired by a result of Slodowy [Slo80, Section 4.3].

Lemma 9.23. Let X be a CW complex, equipped with a proper map p: X — R. Assume that
Xo = p~Y0) is a subcomplex of X. Assume also that we have an action of R* on X such that
p is equivariant (with the usual action of R* on R).

Then Xq is a deformation retract of X.

Proof. Since X is a subcomplex of X, there exists a precompact open neighbourhood U C X
of X that deformation retracts onto Xy [Hat02, Prop A.5].

Since p is proper, we see that p(X \ U) is closed in R. As this closed set does not contain 0,
we see that there exists a > 0 such that [—a,a] is disjoint from p(X \ U) and hence that
UD X<y :=p Y[~a,a]).

We claim that X<, is homotopy equivalent to X. To prove this, we define H : X x[0,1] — X
by

z if [p(z)| < a
H(xz,t)=<t1- :L'lfl()| <t<1

oy THOSt< iy

where t -  denotes the R* action. This provides a deformation retraction of X onto X<,.

Consider the chain of inclusions Xg C X<, C U C X. We have induced maps on homotopy
groups

7T,L'(X0) — Wi(Xga) — 7T1(U) — 7T1(X)

Since the composite maps m;(Xo) — mi(X<q) = m(U) and mi(X<q) = m(U) — mi(X) are
isomorphisms, we conclude that every map in this sequence is an isomorphism.

Thus the inclusion of X into X is a weak homotopy equivalence and hence there is a
deformation retraction of X onto Xy [Hat02, Thm 4.5]. O
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Now we apply the lemma to our situation to deduce our desired result.
Theorem 9.24. F,(R) is a deformation retract of F., (R).

Proof. We must check all the hypotheses of the Lemma 9.23. We have a map f : . (R) — iR
provided by the ¢ coordinate. This map is proper by Corollary 6.6 (that statement refers to
properness in the sense of algebraic geometry, but the same argument implies properness on
the level of real points).

Next, since &, (R) is an algebraic variety and F,(R) is a subvariety, the pair is triangular-
izable (see for example [Sat63]).

Finally, we have an R* action on ?Z (R) provided by Remark 7.7, which is compatible with
the standard action on iR.

Thus all the hypotheses of Lemma 9.23 hold, so we deduce the desired deformation retrac-
tion. O

Rather than the twisted real form, we can also consider the standard real form %, (R). The
C* action on &, again restricts to a R* action on &%, (R) and the above proof goes through
in exactly the same manner to give the following.

Theorem 9.25. F,(R) is a deformation retract of F,(R).

10. AFFINE AND VIRTUAL CACTUS AND SYMMETRIC GROUPS
We begin by defining the relevant groups.
10.1. Affine symmetric group. The affine symmetric group AS, is the group of all
permutations f : Z — Z such that f(a+n) = f(a) +nand Y f(i) = (5).
Given f € AS,, we define a permutation f of Z/n = {1,...,n} by setting f(k) = f(k)

(here k denotes the image of k in Z/n). This defines a group homomorphism AS,, — S,,.
Define the sl,, root lattice

Zy =A{(k1,....,kn)€Z" ki + -+ k, =0}
We have an injective group homomorphism Z§ — AS,, defined by k — f;, where
fru(i +nm) =i+ nk; +nm wherei e {1,...,n}

It is easy to see that the image of Z{ is the kernel of AS,, — S,.
Moreover, we have a splitting of AS,, — S,, by defining S,, = AS,, given by ¢ — f, where

fo(i +nm) =0(i) + nm wherei e {1,...,n}

This shows that AS,, is a semi-direct product AS,, = S, x Zg.
By a slight abuse of notation, we will write o; := f,, where oy,...,0,-1 are the usual
generators of S,,. So we have

i+1+nmifi=k modn
op(i+nm)=<i—1+nmifi=k+1 modn

7 + nm otherwise
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So it is natural to extend the definition to og by

t+1+nmif¢=0 modn
ooi+nm)=qi—1+nmifi=1 modn

1 + nm otherwise
Comparing the structure of the semi-direct products, we obtain the following.

Lemma 10.1. AS, is a Coxeter group with generators oq,...,on—1 and relations given by
the affine type A,, Dynkin diagram.

There is an action of Z/n on AS,, by (r-f)(a) = f(a—1)+1, where r € Z/n is the generator,

f € AS,, and a € Z. We let AS,, := AS,, x Z/n be the semi-direct product, which we call the
extended affine symmetric group.

Lemma 10.2. We have A\Sn ~ S, xZ")7.

Proof. Define a homomorphism AS, = AS, x Z/n — S, by (f,g) — fg. Let K denote the
kernel. Note that ¢ — f, also splits this map, so we have AS,, = S,, x K.

We claim that there is an isomorphism Z"/Z = K. To define this, we extend the definition
of fj, for k € Z" by

fh(i—i-nm):i—i-nki—Zki—i—nm where i € {1,...,n}

and then we map k — (fy,72") € K. O
10.2. Intervals. Consider the set Z/n = {1,...,n} with its cyclic order 1 < --- < n < 1.
Given an ordered pair 1 < 4,7 < n with ¢ # j, we consider the interval [i,j] = {i <i+1 <
.-+ < j} in this cyclic order. Each interval carries a total order. We write [k,[] C [i,j] (and
say that it is a subinterval) if there is a containment which preserves the orders.

1] = {3 < 1} is not considered a

Example 10.3. Consider the case n = 3. Note that [3,
d [1,2] = {1 < 2} is a subinterval of

subinterval of [1,3] = {1 < 2 < 3}. On the other han
3,2 ={3<1<2}.

Given i, j, we define w;; € S, to be the permutation which reverses the elements of [i, j]
and leaves invariant the elements outside [4, j].

Under Z — Z/n, the preimage of [i, j] is a union of intervals in Z, each ordered according to
the usual order on Z. We define w;; € AS,, to be the permutation which reverses each of these
intervals and leaves invariant all elements outside these intervals. As the notation suggests,
Wy is a lift of w;; with respect to AS,, — S,,.

Example 10.4. In S; and S3, we have an equality w;; = wj; for all 4, j. But in general this
is not true. For example wy; € Sy is the transposition (14), while wi4 € Sy is the longest
element, which is the product of two transpositions (14)(23).

An interval [4, j] is called standard if i < j in the usual order on [1,n]. If [z, j] is a standard
interval, then w;; is the image of w;; under the embedding S,, — AS,,, but otherwise it is not.
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10.3. Affine cactus group. Recall the definition of the cactus group from Section 1.5. We
now define an affine version of the cactus group.

Definition 10.5. The affine cactus group AC,, is the group with generators s;; for 1 <7 #
7 < n and relations

(1) S?j =1
(2) 8ijSkl = SkiSij if [l J] [ ] 0
(3) SijSkl = Sw;;(wij(k)Sij if [k l] [ ]

Note that as compared with the usual cactus group, here we do not impose the condition
1 < j and so we allow non-standard intervals.

We have a group homomorphism AC,, — AS,, taking s;; to w;; and thus by composition,
there is a group homomorphism AC,, — S, taking s;; to wj;.

If we just consider those generators corresponding to standard intervals, then we have the
generators and relations of the usual cactus group C),, and thus we have a homomorphism
Uy 1 Cp — ACH,.

Example 10.6. The group ACy has two generators sij2 and sg1, with the only relations
that they square to the identity. Thus it is the infinite dihedral group. The homomorphism
ACy — S5 takes each generator to the non-trivial element of Ss. The kernel is just the free
group on S12891. In this case, the map ACy — AS5 is an isomorphism.

Example 10.7. The group ACj5 has six generators, coming from the intervals [1, 2], [2, 3], [3, 1]
of size 2 and the intervals [1, 3], [2, 1], [3, 2] of size 3. Each generator is an involution and they
satisfy

513812 = 823513 21823 = S$31521 S32831 = 512532

There is no relation between the generators s3; and s13 (see Example 10.3).

We may think of AC), as the cactus group associated to the affine type A Dynkin diagram.
As for AS,, we define an action of Z/n on AC, by 7 - s;; = Siy1j+1 (where addition

is considered modulo n). As before, we define the extended affine cactus group A\C/’n
to be the semi-direct product AC,, x Z/n. The homomorphism AC, — AS, extends to a

homomorphism ;l\én — AS,.

10.4. Virtual symmetric group. We define the virtual symmetric group vS,, to be the
free product of two copies of the symmetric group S, modulo the relation

(11) wow ™t = oy

forall 1 <4 <n-—1and w € S, such that w(i + 1) = w(i) + 1. Here o; = (ii + 1) are
generators of the first copy of S,, and w is from the second copy.

Remark 10.8. In the literature (see for example [Leel3]), the flat virtual braid group is
defined by imposing (11) only for w which are 3-cycles and 2-cycles of consecutive elements,
which leads to “Reidemeister II and III” type relations. We believe that the above definition
is equivalent.
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10.5. Virtual cactus group. Suppose that 1 < i < 7 < n. We say that w € S, is a
translation on [i,j], if w(i + k) = w(i) + k for k = 1,...,j —i. Note that given w(i), the
subset of such w is naturally in bijection with S, _;_;41)-

We define the virtual cactus group vC, to be the quotient of the free product C), x .5,
by the relations

wsigw " = Su(in)

for all 1 <i < j <nand w € Sy, such that w is a translation on [4, j].
Note that there is a group homorphism vC),, — vS, extending the usual map C,, — S,, and
the identity on .S,.

10.6. A diagram of groups. Let r = (12...n) denote the long cycle in S, defined by
r(k) =k+1for k <nand r(n)=1.

In vS,,, we have ro; = g;p1r for 1 <¢<n—1.

In vC;,, we have rs;; = s;41 j417 for 1 <7 < j <n—1. Consequently, for 1 <i < j <n—p,
where p > 1, we have rPs;; = s;ypjpr?.

We define a group homomorphism AS,, — vS,, by

o; — 0y, if ¢ 7'5 0, and og — 7"_1017‘
We define a group homomorphism AC,, — vC,, on generators as follows
Sij ife<y
Sij 7y i1 =i i 5
T Sijea-nT 1) <t
where we define the index ij @ k (resp. ij © k) as i + kj + k, (resp. i — kj — k), where the
addition is modulo n, and where we write n instead of 0. In particular, the index ij & (i — 1)

is1j— (¢ — 1) +n. In fact, for ¢ < j the formula s;; — ri_lsije(i,l)rl_i holds as well.

These extend to group homomorphisms AS, — vS, and &n : Zl\C/'n — vC), taking r (the
generator of Z/n) to r (the long cycle). Furthermore, the homomorphisms AS,, — S,, AC,, —

S, extend to homomorphisms AS,, — S,, AC,, — S, by mapping r to the long cycle.

Theorem 10.9. These are group homomorphisms and fit into the commutative diagram

C, Yy AC, —s wey,

|1

Sp — AS, —— vS,
Moreover, these homomorphisms are compatible with the projections to Sy,.

Proof. The only difficult part is to check that Zén — v(C), is well defined. For this, we must
check the relations of the affine cactus group. Relations (1) and (2) are easy to verify. We
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verify relation (3), which is s;jsg = spprsij for I = w;;(1), k' = wyj(k). The image of s;;sp; is

i—1 1—i k—1
T SijoG-1T T Sklo(k—1)T

i—1 1—i
=T Sijo(i—1)Skio@i-1)T

i—1 1—i
=T Srkro(i-1)Sije(i-1)T

I 1=, i—1 1—i
=r Srrew-nr T SijoG-1)T

which is exactly the image of s;jss;;.
O

10.7. Pure virtual groups. We define the pure virtual cactus and symmetric groups, PvC,,
PvS,, to be the kernels of the homomorphisms vC,, — S,,vS, — S,.

For each pair i, j, we define an element o;; € PvS,, by 0;; = wo,w, pr1w L, where w € S,,,
1 <k<nand w(k)=1iwk+1)=j.

Lemma 10.10. (1) o4 is independent of the choice of w,k above.
(2) These elements satisfy the relations

0ij0ji =1 0ijOum = OmiTij 04041041 = 041040i;
for all distinct i, 7,1, m.

(3) PvS,, is generated by o;; subject to the above relations.
(4) vS, = Sy, X PvS,, where S,, permutes the generators o;; in the obvious way.

Remark 10.11. This Lemma shows that Pv.S), is isomorphic to the triangle group 7'r,, defined
in [BEEROG].

Proof. For (1), suppose that we have w’ € S, with w'(k’) = i,w'(K' + 1) = j. Then w™ 1w’
sends K/, k' + 1 to k,k + 1. Consequently, w™'w’ conjugates wy k'+1 to wiky1 and oy to oy,
and thus opwy 1w w = w™w o wy 14, as desired.

Parts (2) and (3) follow by the Reidemeister—Schreier procedure, see e.g. [LS01, Prop 11.4.1]
(where T' = S,,). Namely, we consider a set X with elements x;; corresponding to o;;. For
every relation in vS,,, say o90102010901, we consider all the expressions WOo10901090109w
for w € S,,. Each such word is the image under z;; — wopwy r+1w L, after reductions in S,
of a word in the alphabet X. The first three terms in our example will be

(wdlwlzw_l) ((ww12)02w23(ww12)_1) ((ww12w23)01w12(ww12w23)_1),
which are the image of xj;xyx; for w(l) = i,w(2) = j,w(3) = . The group PvS, is pre-
sented by these relations over X. The three types of relations in (2) come from the relations
between oy,. The relation wo;w™! = ow(i) is already taken into account by the identifications
between different wopwy 1w ™.
For part (4), let 0;; = wopwy gr1w ™" and let u € Sy,. Then uw(k) = u(i), vw(k+1) = u(j).
Consequently, uojju™! = (uw)opwij(uw) ™ = 0y3i)y(j), as desired. O

An ordered subset of [n] is a sequence A = (ay,...,a;) of distinct elements of [n]. The
reverse of A is the ordered subset A” = (ag,...,a1). Finally, AB denotes the concatenation
of the sequences A and B.

For each ordered subset A = (ay,...,ax) of [n], we define sy € PvC), by s4 = wsijwijw_l,
where w € Sy, 1 <i<j<nand w(i)=a,w(i+1)=ag,...,w(j) = ag.
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Lemma 10.12. (1) sa is independent of the choice of w,i,j above.
(2) These elements satisfy the relations

sASAr =1, SASB = SBSA, SATSCAB = SCATBSA

for any disjoint ordered subsets A, B, C.
(3) PvC, is generated by the elements sa subject to the above relations.
(4) vCp, = Spx PvC,y, whereu € S, maps each generator s 4 to s,(ay, where u((al, e ak)) =

(u(al), e ,u(ak)) .

Proof. For (1), suppose that we have w’ € S, with w'(i') = a1, w' (V' +1) = ag,...,w'(j) = ay.
Then w™'w' is a translation on [¢’j] and sends it to [ij]. Consequently, w™w’ conjugates wy ;s
to w;j and sy to s;5, and thus sijwijw ' = wilw’siljrwi/j/, as desired.

Parts (2) and (3) follow by the Reidemeister—Schreier procedure from the three types of
relations in the definition of the usual cactus group as in the proof of Lemma 10.10.

For part (4), let s4 = ws;j;w;jw™! and let u € Sy,. Then (vw(i),...uw(j)) = u(A). Conse-
quently, usau™ = (uw)siwi;(uw) ™! = 5,4y, as desired. O

11. FUNDAMENTAL GROUPS

11.1. Equivariant fundamental groups. Let G be a finite group acting on a path-connected,
locally simply-connected space X. Let x € X be a basepoint.

Definition 11.1. The G-equivariant fundamental group 7T1G(X ,x) is defined as follows.
(X, z) = {(g,p) : g € G, p is a homotopy class of paths from z to gz}
The multiplication in 7{(X, x) is defined as follows. We define

(91,p1) - (92:p2) = (9192, P1 * g1(p2))

where * denotes concatenation of paths.

The map (g, p) — ¢ defines a group homomorphism 7r1G(X ) — G and there is a short exact

sequence of groups
lomX)—=7r¥(X) =G —1

Our combinatorial spaces P, D, ... all carry .S, actions. Indeed, the group Sy, acts on the
set of planar forests by permuting the labels. Thus, it acts on the cube complexes Dn, Dn7 D
We also have evident actions of S, on the permutahedron P, and its quotients B, P Thus
we will consider their S,-equivariant fundamental groups. From Proposition 8.7 and Lemma
8.12, we obtain the following commutative diagram.

o

n)

an(Dn) B— 7T1 (Dn) B— an(

) | | |
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Remark 11.2. Note that all these spaces are nonpositively curved. Indeed, for D, Dn,
and ﬁn this is Lemma 8.10. For ﬁn, this is Remark 8.3, and for P,, this follows from Proposi-
tion 9.20. Thus all these spaces are aspherical [BH99, 11.4.1(2)], and so their higher homotopy
groups vanish.

Theorem 11.3. There are isomorphisms
Cp 2 75(D,) AC, 2 75"(Dy,) vCp =7 (D,,)
Sp 2 adn(P,) A8, = ad(B,) vS, 2w (P,)
such that the two commutative diagrams (12) and (18) match.

Before proceeding to the proof of this result, note that it has the following consequence.
Corollary 11.4. The group homomorphisms C,, — En and Zén — vCy, are injective.
Proof. By Theorem 11.3, we need to show that the maps

0" (Dn) = 7" (Dp) = 77" (D)

are injective. It suffices to show that the maps between the fundamental groups of these
complexes are injective. This follows from Lemma 8.11. O

11.2. Fundamental groups of the combinatorial spaces.
Lemma 11.5. 7y (D D,,) = vC,

Proof. Let T''(PvC,) be the Cayley graph of PvC,, with respect to the generators {SA} from

Lemma 10.12. Note that PvC,\I''(PvC,,) is isomorphic with the 1-skeleton of D,, under
the map sending the orbit of the directed 1-cubes of the form (g,gsa) to the directed 1-
cube corresponding to A. Furthermore, the relators of length 4 from the presentation in
Lemma 10.12(2) are sent, bijectively, to the boundary paths of 2-cubes. Consequently, we

have ﬂl(ﬁn) = PvC,. By Lemma 10.12(4), we have that S,, permutes the generators s4 of
PvC, exactly as it acts on the 1-cubes of D,,, by interchanging the corresponding A, and the
lemma follows. U

Lemma 11.6. 77" ( P,) =vS,

Proof. Let T'(PvS,) be the Cayley graph of PvS,, with respect to the generators {04} from

Lemma 10.10. Note that PvC,\I'!(PvC,,) is isomorphic with the 1-skeleton of P, under the
map sending the orbit of the directed 1-cells of the form (g, goi;) to the directed 1-cell corre-
sponding to the pair ij. Furthermore, the relators from the presentation in Lemma 10.10(2)

are sent, bijectively, to the boundary paths of 2-cells. Consequently, we have 771(P ) = PvS,
(this was also proved in [BEER06, Thm 8.1]). By Lemma 10.10(4), we have that u € S,, acts
on the generators o;; of PvS, by replacing ij with u(i)u(j) exactly as it does on the 1-cells

of P,, since uw (k) = u(i), uw(k + 1) = u(j). O
Recall the homomorphism 1, : AC,, — vC,, from diagram (12).

Lemma 11.7. We have 7['15" (Dn) = Zén, and dv)n: D, — ]_/5” induces 1[}” between their equi-
variant fundamental groups.
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Proof. Let T'?(AC,,) be the Cayley 2-complex of the affine cactus group with the presentation
from Definition 10.5. More precisely,
e the set of the O-cubes of I'2(AC,,) is AC,,
e we join by single 1-cube, labelled by s;;, the O-cubes g and gs;;, and
e we span 2-cubes on the closed edge-paths of length four labelled by the words of length
four in points (2) and (3) of the presentation.

Then I'?(AC,,) is simply connected. The affine cactus group AC,, acts on T'?(AC,,) by left
multiplication. Identifying the O-cubes of I'?(AC,,) with the cosets gZ/n in AC, by assigning
to each g € AC,, the coset gZ/n, this action extends to an action of ZX\C/'n (by left multiplication
of the cosets).

Let Pjﬁl\(jn be the kernel of the homomorphism ZC/’n — S,,. Note that le\C/'n acts freely
on the 0-cubes of T'?(AC,,), since PAC, N Z/n = (. Similarly, since (for n > 3, leaving the
case n = 2 for the end) the images of all the generators of AC), in S,, lie outside the subgroup
generated by the long cycle, the action of P;fén is free on the 1-cubes of I?(AC,,). It remains
to justify that PAC,, acts freely on the 2-cubes of I'?(AC,).

Indeed, assume that a nontrivial element of PZén maps a 0-cube to an opposite 0-cube
inside the same 2-cube, connected by an edge-path of two 1-cubes of types corresponding to the
generators S;j, sg. For [ij] disjoint or properly containing [kl], the composition w;jwy € Sp
lies in Z/n only if (up to a cyclic permutation of indices) [ij] = [In] and [kl] = [1(n — 1)] or
[kl] = [2n]. However, the elements of AC,, permute cyclically the types of 1-cubes in I'2 (ACy)
corresponding to the generators s(,_1), S2n, 31 etc. Fixing the above 2-cube would mean
interchanging the first two of these types, which is a contradiction.

If n = 2, we have only 1-cubes, and the action of nontrivial g € Pjél\én is free on them since
otherwise g would coincide with a conjugate of s12 or s9; that do not belong to PZén.

Thus PAC,, = m,(D?), where we define D2 as PAC,\I'’2(AC,,). Note that D? is equipped
with the action of S,, = P@H\ZE” by left multiplication.

We will now show how to identify D2 as the 2-skeleton of D,. The 0-cubes of D2 are
PAC ,-orbits of the 0-cubes in I'2(AC,,), and thus double cosets P;X\C/'ngZ/n. Denoting by g
the image of g in S, these double cosets correspond to the cosets §Z/n, where Z/n denotes
the cyclic subgroup generated by the long cycle in S,.

Note that the O-cubes of D,, corresponded to cyclic forests T with trees having only one
edge. Thus 7 corresponded to the cyclic orders of their leaves in [n], hence with the cosets
GZ/n. The 1-cubes of D,, connected 7,7’ differing by reversing the cyclic order in a (cyclic)
interval [, j]. Thus 7,7’ corresponded to §Z/n, gw;;Z/n, which are also connected by a 1-cube
in D2 that is the image of 1-cubes gZ/n, gsi;Z/n in T?(AC,,). The 2-cubes of D,, and D2 are
identified analogously.

Consequently, we have my (Dn) = P%n. Since the actions of S,, on the 0-cubes of both ﬁn
and lv)?l are by the left multiplication of the cosets gZ/n, we also have ﬂf "(ﬁn) = AC,,.

We denote by I'(AC,,) the universal covering space of D, which contains I2(AC,,) as its
2-skeleton. Let id be the base 0-cube of ['(AC,,), that is, the identity element of AC), (or the
trivial coset of Z/n). Note that id projects to the 0-cube of D,, with the trivial cyclic order
(1,2,...,n). Let T(PvC,) be the universal covering space of D,,, which contains T'*(PvC,,).
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Finally, let an: I'(AC,) — I'(PvC,,) be the map covering b, with id = gn(la) the base 0-cube
of I'(PvC),), that is, the identity element of PvC,.

We will now show that with our identifications the homomorphism (qbn)* induced by qﬁn
equals wn It suffices to verify that (qﬁn)* = wn on the generators s1;,7 of AC’n, where
1 < 7 < n. First note that (gzﬁn)* respects the homomorphisms of ACn and vC), into S,,, since
n is S,-equivariant. Thus, since 7 fixes id, we have that (¢, )«(r) is the unique element in the
stabiliser S, of id mapping to the long cycle under vC,, — S, which is the long cycle TZJH (r),
as desired.

Second, note that (¢, ). (515)s ¢n(813) € vCy, both have image wy; € S, under vC,, — S,,.
Observe that the 1-cube in I'2(AC),) startlng at id and labelled by s1; is send by qbn to the
directed 1-cube of T''(PvC,,) starting at id and labelled by s4, where A = (1,2, ...,j). Since
Un(51j) = 815 = saw1j, and wy; € Sy, it follows that (¢ )«(s1;) = ¥n(s15)- O

The proof of the following is analogous to the proof of Lemma 11.7 and we omit it.

Lemma 11.8. We have an(Pn) = A\Sn, and P, — ﬁn induces the map //lTS’n — vS, from
diagram (12).

Recall the homomorphism v, : Cp, — jﬁl\C/'n from diagram (12).

Lemma 11.9. We have Wf”(Dn) = Cp, and ¢p: D, — D,, induces Yy, between their equi-
variant fundamental groups.

Proof. Let T?(C,,) be the Cayley 2-complex of C,, with respect to the standard presentation.
Let PC,, be the kernel of the homomorphism C,, — S,,. Note that PC,, acts freely on I'?(C,,)
and hence PC, = m(D?), where we define D2 = PC,\I'*(C,). Note that D2 is equipped
with the action of S,, = PC,\C,, by left multiplication.

We will now show how to identify D2 as the 2-skeleton of D,,. The 0-cubes of D2 are PC,,-
orbits of the 0-cubes in I'?(C},), and thus correspond to the elements of S,. Each element
of Sy, is of form w;, for a unique planar forest 7 with trees having only one edge, i.e. a 0-
cube of D,. The l-cubes of D,, connect 7,7’ differing by reversing the order in an interval
[¢,]. Then w,,w.. correspond to the cosets PCpg, PCygs;j. Thus the corresponding 0-cubes
in D2 are also connected by a 1-cube. The 2-cubes of D,, and D? are identified analogously.
Since the action of S, on the 0-cubes of D, is also by the left multiplication of w,, we have
7" (Dy) = Ch.

The Sp-equivariant local isometry ¢,: D2 — D2 lifts to a map from I2(C,) to T2(AC,)
sending the identity 0-cube to the identity 0-cube and each incident 1-cube labelled by s;; to
the 1-cube labelled by s;;. Consequently, we have (¢p)« = ¥p.

O

E\e/mma/lvl.lo. The maps ﬁn — )A(n & ]3n and Dn — ]5” induce the maps vCp, — vS,, and
AC,, — AS,, from diagram (12).

Proof. For UC — vSn, by the Sy,-equivariance, we just need to prove that the homomorphism
induced by D — X is correct on s1;. For A = (1,...,k), we have s4 = s1xwix. The directed
1-cube of Dn labelled by s (we treat the 1-skeleton of ﬁn as the quotient of the Cayley graph
I'Y(PvC,)), starting at the identity element, corresponds to the set of planar trees 7 with
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one tree not a single edge, and with leaves corresponding to 1,...,k. By Example 8.8, the
map D, — X, sends this l-cube to the main diagonal of the image in P of the cell in
P corresponding to the trivial coset of # = (w12, ..., wr_1x). This diagonal is homotopic

in P, relative the endpoints, to an edge-path with vertices w! = id,w?,...,w™, where w™

is the longest word we in # and m — 1 = k(k2—1)_ In P (with 1-skeleton treated as the
quotient of the Cayley graph I''(PvS,)), the Ith of these 1-cells is labelled by s;;, where
i =w'(k),j = w'(k+1) and k is defined by w'! = whwy 1. Since s;; = wlopwypy1(w!) ! in
vSy, we see that the product of all consecutive s;;, after cancellations, has the form oy wy,
which are the longest elements of 7 in the two copies of the symmetric group. Consequently,
s1 is mapped to oy, as desired.

For Zén — ATS’TL, by the r-equivariance, we just need to prove that the homomorphism

induced by Dn — ]5n is correct on sy;. This follows from Example 8.8, as before. U

11.3. Fundamental groups of real points. The group S, acts on the schemes %, 7, by
permuting the labels on the v, coordinates in the obvious way (equivalently, it permutes
the labels on the marked curves). This action restricts on actions on the real points of these
schemes as well as on fibres of the € map.

From Theorems 9.18 and 11.3, we immediately deduce the following result.

Theorem 11.11. There are isomorphisms 70" (Fp(R)) = vC,y, and 75" (t,(R)) = vS,, making
the following diagram commute.

7" (Fp(R)) —— vCh
7 (1, (R)) —— 08,

Theorem 11.12. There are isomorphisms Wf”(M;_Q(R)) ~ AC, and i (U()"/U(1)) =
AS,,.

Proof. The first isomorphism follows from the work of Ceyhan [Cey07, Theorem 8.3] who gave

a presentation of the fundamental groupoid of M, , ,(R). The isomorphism (U1 /U(1)) =
AS), is immediate from Lemma 10.2 (or from Proposition 9.20 and Theorem 11.3). O

Now, recall that by Theorem 9.24 we have a deformation retraction of %, (R) onto F',,(R).
Thus the inclusion of F,(R) < %,(R) gives an isomorphism 72" (F,(R)) = 79" (% ,(R)).
Also, we use the identification of M, ,(R) with the ¢ = 4 fibre of F,(R) to give a map

T (M i(R)) = 7 (Fa(R)).
Theorem 11.13. The following diagram commutes

7" (M 15(R)) —— 17" (Fu(R)) = 77" (Fu (R))

i |

AC, > vC,
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Before proceeding to the proof, we note that this would follow from Conjecture 9.22 and
Theorem 11.3, but we will give a proof avoiding this conjecture.

Proof. As in the proof of Lemma 11.7, we just need to check this for the generators sy, r of
AC,,.

Fix a basepoint p € M, 42(R) which corresponds to a configuration of n evenly spaced
points on U(1). In terms of the a coordinates, this means that a;j1(p) = €*™/™ and that
Vjj+1 = % - %cot% fOl“j = 1,...,n71.

The generator sy is represented by a path which begins at p and ends at wix(p). This
path passes transversely through the codimension 1 stratum given by two component curves

where the points z1, ..., 2, are on one component and the points zg, 2k11, - - -, Zn, Znt+1 are ON
the other component (recall that the points z,...,z, are real, while 29, 2,41 are complex
conjugate).

Recall that we have a diffeomorphism f : [0,1] — [0, oc]. Define maps a,b : [0, 3]x[0,1] — C
by

s S T
==+ = —— f(2
a(t, s) 5 + 2cotn f(2t)
s S T s
b(t,s) == — + =((1 — 2t) cot — + 2t cot ————
(t,s) 2+2(( ) co — +2tco n—k:+1)

and then define H : [0, 1] x [0,1] — F,(R) by

a(t,s)if j=1,...,k—1

H(t,s)) =i
b(t,s)ifj=k,...,n—1 e(H(t,5)) =is

vijri(H(t ) = {

Aslong ast # %, this this point lives in °Z~l[[n” = ?Z and so only these v coordinates are needed.

But when t = %, then v ;11 = oo for j = 1,...k—1 and we move into the open set Us defined
by & = {{1,...,k},{k+1},...,{n}}. On this open set we have additional coordinate fipc
for abc € t([k]). A simple computation show that for any ¢,s and any j = 1,...,k — 2, we

have p1; 1142 = %:)S)_w and thus at the limit ¢ = % we get (14142 = 2. So this gives a

well-defined point H(3, ).

Now, we extend H to [5,1] x [0,1] by setting H(t, s) = wi(H(1 —t,s)). This makes sense
because H(3,s) is invariant under the action of wyy (to see this, note that p; 142 = 2
implies that 40,415 = 2).

Now H(t,1) : [0,1] — M, _,(R) gives the generator sy; € P (M?LH(]R)) (this is because
at H (%, 1) we pass through the desired codimension 1 stratum). On the other hand, if we
compare H(t,0) : [0,1] — Fp(R) with the map from the appropriate 1-cube of D,, defined in
above Theorem 9.18, we see that this loop gives the generator sy € 72" (F,,(R)).

Thus, we conclude that the two sy;, generators are homotopic within %, (R), which proves
the desired result.

U

Remark 11.14. A more conceptual explanation of the compatibility of the cactus group
generators is as follows. Consider & = {[n]}, the set partition with one part. Then we have
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the stratum 7% =~ M, 1 x Al by Proposition 6.11 (equivalently this is the “zero section” of
the deformation of the line bundle ./,%;H).

The involution o acts trivially on the M, factor and so we get 7% (R) = M, ;1 (R) xiR C
F,(R). This gives embeddings of M,1(R) into both M, _,(R) and F,;1(R) and hence we
get a commutative diagram of fundamental groups

Cn = ﬂ'ign (Mn—i-l (R)) — f/éfén = 7rlsn (MZ—&—Q(R))

H |

Cr & 75" (M1 (R) —— vCy = 157 (Fr1 (R))

This analysis also applies to the equivariant fundamental group of the standard real form

70" (M,42(R)) which we will investigate in a future paper.

APPENDIX A. THE PERMUTAHEDRON, THE STAR, AND THE REAL POINTS OF THE
COMPACTIFICATION OF THE CARTAN

A.1. Introduction. Let g be a semisimple Lie algebra over C and h a Cartan subalgebra.
The compactification h of b is a complex projective variety that contains the complex vector
space b as an open dense subvariety. The variety b turns out to be defined over Z. Tts set of
real points, equipped with the classical topology, will be denoted by h(R).

Let ® be the set of roots associated with (g,h). The real vector space Spang(a : a € @)
will be denoted by b. If @ is a choice of positive roots (positive system), then the Weyl
vector p with respect to @, is defined to be the element

1
3@
oc6¢'+
of hg. Write W for the Weyl group associated with ®. The convex hull in by of the set
{w-p:weW}

is called the permutahedron associated to ® and will be denoted by P.
The permutahedron P is a convex polytope. Hence it makes sense to speak of its faces.
Two faces F7 and F» of P are said to be parallel if there exists a vector v € by such that

Fy +v=F.
In this case, we say that vectors v; € F} and ve € F5 are related if

V1 + U = vy,
and we write

V1 ~ V2.
It is clear that ~ is an equivalence relation on P. We equip the set P = P/ ~ of equivalence
classes with the quotient topology.
Each root gives a linear functional on the Cartan subalgebra and together they provide an

embedding h — C®. We can embed C C P! and then we define b to be the closure of the

image of b in the product (P!)®. This is a special case of the matroid Schubert variety
construction of Ardila-Boocher [AB16].
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The goal of this appendix is to construct a homeomorphism between P and H(R). For this
purpose, we now introduce an intermediate space, which we call the star.

For a choice II of simple roots (simple system), we write Xy for the parallelepiped in b
generated by the fundamental weights corresponding to II. The subset

X = U X1

II is a
simple system

of b is called the star.
A.2. A map from the star to the permutahedron.

A.2.1. Faces of the permutahedron and their centres. Let II be a simple system and A be a
subset of II. Then II determines a positive system ®r;. The Weyl vector defined by @ will
be denoted by pr. The intersection of P with the affine subspace

pri + Spang (I — A)

of hg will be denoted by Fr?. It is clear from the definition that Fr? is a face of P that contains
the vertex pr.
Define

1
AL T
=l Y
a€dy_A
Namely, pﬁ is half of the sum of those roots which are Z>q-linear combination of elements of
Im— A.
Lemma A.1. The centre of Fr? S prr — pﬁ.

Proof. Note that the set II — A is a simple system of a root subsystem ¥ of ®, and that pﬁ is
a vertex of the permutahedron Py associated with W. Hence the vertices of Py are elements
of the set
{fw-ph:we (sq:aecll—A)},
where s, is the reflection associated with a. It follows that the vertices of the translation
Py + prr — pﬁ of Py are of the form
w-pﬁ+pn—pﬁ, where w € (s, : v € T — A).
For any w € W, define
Nw):={ac®g:w ' a¢dg}

PII — W - P11 = Z G

a€N(w)
Since, for w € (sq : a € I — A), we have N(w) C ®1_a, it follows that

Recall that

w- PR + pr— Pt = w - pr1.
Hence, w - pﬁ + prn — pﬁ is a vertex of P and is contained in py + Spang (I — A). Since P is
convex and Py + prp — p4q is the convex hull of {w - p§ + pr1 — pF : w € (50 : @ € T — A)}, we
see that
Py + pn — pft € FR-



60 ALEKSEI ILIN, JOEL KAMNITZER, YU LI, PIOTR PRZYTYCKI, AND LEONID RYBNIKOV

Observe that dim F5 = Card(IT — A) = dim Py. Hence we must have
Py + pu — pit = Ff-
Since the centre of Py is 0, we conclude that the centre of FHA is pm1 — pﬁ. (]

A.2.2. Faces of the parallelepiped. Let II and A be as in Section A.2.1. Define
X8 ={zeXn:{a",z) =1Vaec A}

This is a face of the parallelepiped Xp. Write Fund(II) for the set of fundamental weights
corresponding to II. For any set D such that A C D CII, define

w = E w.
w€Fund(II),

w corresponds to
an element of D

It is obvious that w{% is a vertex of Xl% and all vertices of Xl% are of this form.

A.2.3. Mapping XHA to P. Retain the notation from Section A.2.2. Intuitively, we would like
to define a homeomorphism from X to P sending X1 to the “corner” of P at pr, namely, the
intersection of P with the fundamental Weyl chamber @1 determined by II. Naturally,
we want the map to send the “star point” wp := wg of X to the vertex pry of P. It is also
natural to expect that the map sends the vertex w{% of X1 to the centre of the face Fr? of P,
namely the vector pi — pE in view of Lemma A.1.

A point of Xﬁ is of the form

(14) ( > tow) + wd,
weFund(IT)
w does not correspond
to an element of A
where each ¢, is in the interval [0,1]. We define a map
ER X - P

which sends such a point to

Z ( H (1 - tw) H tw)(pH - pg)

ACDCII weFund(IT) weFund(IT)
w does not correspond w corresponds to
to an element of D an element of D—A
Remark A.2. (1) The map =5 is designed in such a way that =5 (wh) = pn — pf for

any A C D CIIL
(2) The diagram

Xi
(15) j =h
Xn=X} — P
=m
is commutative. Hence we have a well-defined map

EH:XH—>P
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whose restriction to Xl% is Eﬁ.

A.2.4. Gluing the maps Z1q.
Lemma A.3. Let IT and II' be simple systems and x a point of X1 N Xv. Then we have
EH([L‘) = EH’ (.CC)

Proof. By assumption, there is a common face of X1 and Xr that contains z. In other words,

there exists a set K such that K C Fund(II), K C Fund(I') and z = Y t,w. When viewed
weK
as point of Xy and expressed in the form of (14), = has the property that ¢, = 0 for all

w € Fund(II) — K. Hence, by definition, we have

EH($) = Z ( H (1 - tw) H tw)(pﬂ - pﬁ)

DCII w€Fund(IT) weFund(IT)
w does not correspond w corresponds to
to an element of D an element of D
— E D
(16) - ( H (1 _tw> H tw)(pl_[ _pH)'
DCII weFund(IT) weFund(IT)
no element of D corresponds  does not correspond w corresponds to
to an element of Fund(IT)—K  to an element of D an element of D

Analogous statements hold if we replace IT with IT'.

Recall that ppp = > w. So, for any D C II, we have py — p& = > w.

weFund(IT) weFund(IT)
w corresponds to
an element of D

In particular, if no element of D corresponds to an element of Fund(IT) — K, then pr — pg
is a sum of elements of the set K. This, together with the last line of (16), implies that

En(x) = Em(z). O
It follows from Lemma A.3 that there exists a map
E: X—>P
whose restriction to Xy is Zy1 for all simple systems 11.

A.3. The map = Is a homeomorphism.

A.3.1. Injectivity of Z. Observe that, for any simple system II, the map =g is an injection.
Since X is the union of the Xp’s and P is the union of the P N @1’s, injectivity follows.

A.3.2. Surjectivity of Z. It suffices to show that, for any simple system II, the image of Xy
under Zp contains P N 6. By [DJS03], P N G is combinatorially isomorphic to a cube of
dimension Card(II). It follows that P N @y is the convex polytope with vertices

pn —pii, D CIL.

The map Zpy is designed so that it is a bijection from X7 to the convex polytope with vertices
oI — pg, D C1I. Hence
EH(XH) = PN®émn,

as desired.
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A.4. Translating the relation ~ from the permutahedron to the star. Let IT and IT’
be simple systems and A (resp. A’) a subset of IT (resp. IT') such that IT — A =TI’ — A’. For
T € Xl% and 2’ € Xl%,/, we say that they are related, and write x ~ 2/, if

(¥, 2) = (", 2y Va e I - A =TI — A",

We show that this relation is well-defined. Namely, we must show that if II” is a simple
system and A” is a subset of II” such that X5 = X7, then z, viewed as a point of X3,

is also related to 2’. The assumption Xl% = Xﬁ,/,/, together with well-definedness of = and
commutativity of the diagram (15), implies that

’_‘A A ’_‘A// A//

=T (XH) = S (XH” )
Observe that the star point wry (resp. wyr) of XI% (resp. Xl%,l,/) is mapped to pr (resp. prv)
under Z§ (resp. Z5,). It follows that py = pr» and, hence, that IT = II”. But then the

assumption X4 = Xl%,,, forces A = A”. This proves what we need.
Now we show that = intertwines the equivalence relations on X and P.

Lemma A.4. For any x,2’ € X, we have
x ~ 2’ if and only if Z(z) ~ Z(2').

Proof. Only if) Suppose that 2z ~ z’. There exist simple systems IT, I, subsets A C II, A’ C II
such that

O-A=1I'-A"={ay, -, a1},
II= {ala"' s Oy Q1,5 " * ° aar}a H,:{Ckl,"' aak’7a;g+17"' 705;}7
Fund(Il) = {wy, -+ ,w,}, Fund(ll') = {w},--- ,wl.}, and

k k
’
T = wﬁ + E tiw;, ' = wﬁl + E tiw)
i=1 i=1

for some t1,--- ,t; € [0,1].
We compute

1 E@= Y JI a-t)][tden e €

TC{hAL, e} i€{ktdo ) =1 i€l
= > I «a-=-w)][tew - i e o — )
IC{RAL, e} i€ (ke ) —T i€l
=@+ Y, (I a-w) ][t —pw)
IC{k+1, 1} i€ (k1 r}—T i€l

[1]

(") + (o — prv),
where the second equality follows from the definition of pﬁu{ai:iEI} and pﬁ: U{ai:id}, and the
assumption that II — A = II' — A’; and the last equality follows from the fact that

Z ( H (1_ti)Hti):1'

IC{k+1, 7} i€{k+1, 7} —1 i€l
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In particular, this computation tells us that, for any I C {k 4+ 1,---,r}, the vertex
AU{ai:z’EI} A A’U{ai:iel} A/
Wiy of X7 and the vertex wyy, of Xj, are related by
—, AU{a;:iel —, A'U{a;uel
(18) = (w1 = 2 ) + (o - o).
Note that ' ‘
E(wﬁu{a”e[}) = om — pﬁu{ai:zel}’
which is the centre of the face FHAU{ai’Ziej} of P by Lemma A.1. Since F@U{ai:ig} is a face of

FHA7 we see that
E(wﬁu{ai:iel}) e FHA
In particular, we have
2(XR) C FL.
In fact, our argument proves that E(Xﬁ) is the “corner” of Fr% near the vertex pr. It follows

that the minimal affine subspace containing E(XI%) is equal to that containing Fr%. The same
conclusions hold if we replace II and A with IT" and A’. Then, by (18), we have

Rt = Fp + (pu — pir)-
From this and (17) it follows that
E(z) ~ E(2).
If) Suppose Z(z) ~ Z(2'). Choose a simple system II and a subset A C IT such X3 is the
minimal face of X that contains x. Choose IT" and A’ similarly. We have proved above that

E(Xf) € Fp and E(XfyY) € Fy -
Minimality of X3 and Xﬁ,,, together with the assumption that Z(x) ~ Z(2'), implies that F3

and Fr%/ are translations of each other. Since vertices of a face of P are Weyl vectors, there
exists a simple system IT” such that

Fit = B + (pu — pur).
Since Z(z) is in the “corner” of F near pr, namely the convex hull
conv{pr — pH : A C D C I},
and similarly for Z(2’), we must have
{pn—pR : ACDCT} = {pw —pfy : A’ C D' CI'} + (o — pur).-
Take D = II. Then there exists A’ C D’ C II’ such that
prt — pit = pv — i + (prt — prv),
equivalently
prv = prv — pi-

The left-hand side of the last equality is a vertex of P, while the right-hand side is the centre
of the face Fr?/. This forces II' = I1” and D’ = II. In particular, we get

{le):AQDQH}:{p%:A/QD/QH/}.
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Now take D = (IT — A) — {a} for some o € IT — A. We see that

%a € Spang (IT" — A").

Varying o, we have
Spang (IT — A) C Spang (1" — A).
By symmetry, we in fact have
Spang (IT — A) = Spang (I — A).
Notice that II—A (resp. II'—A’) is a simple system for the root subsystem ®NSpang (II—A)

(resp. ®NSpang (II'—A')) of ®. So if we can show that p& = p&,, then we have [T-A = TI'— A/,
Take D = A. Then there exists A’ C D’ C II’ such that

PR = pil-
The left-hand side is a vertex of the permutahedron of the root system ® N Spang(IT — A).
The right-hand side is a vertex of the permutahedron of the root system ® N Spang (II' — A’)
only if D' = A’. Hence we get pf = pﬁll, proving IT — A =1I' — A/,
Now we use the same notation as in the proof of the only if part, except that

k
/
r = wﬁ, + g thw!.
i=1

It follows from
E(z) = E(2') + (pn — pr)

that
IC{k+1-r} ie{k+1,- r}—1I el
= > I a-éTwm =,
IC{k+1- r} ie{k+1,- r}—1I el

Since IT — A = II' — A/, the first line is equal to
A/U i:‘ I
Z ( H (1—ti)Hti)pH/ {onsiel}
IC{k+1- 7} i€{kt1, r}—T icl
By linear independence, it follows that
H (1_ti)Hti: H (1—75;)1_[752
i€{k+1, 73T iel i€{k+1, r}—1 iel

forall I C{k+1,---,r}. Hence t; =t, forallie {k+1,---,r}.
U

Equip the set X=X / ~ of equivalence classes in X with the quotient topology. We have
proved:

Proposition A.5. The map = : X — P induces a homeomorphism
X = P.

By abuse of notation, the homeomorphism above will also be denoted by =.
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A.5. Mapping the parallelepiped X1 to the real locus. Recall, from section 9.1, the
increasing diffeomorphism f : [—1,1] — [—o0, o0] such that f(0) = 0.
For any simple system II, we define

On : X — h(R),
Z tow —> (Za)aei)

weFund(IT)

where z == Y (w),@)f(ts,;) and w; is the fundamental weight corresponding to the simple
a; €Il

root ;. Note that, by definition, the image of X1 under the map Op lies in the fundamental

Weyl chamber determined by II.

A.6. Gluing the maps Or. Retain the notation from the proof of Lemma A.3. We would
like to show that

On (.CC) = Oy (LU)

Write
K = {W1,’ t ,Wk},
Fund(H) — {wl) cr Ly We, WE1, awr}a Fund(H,) - {wlv o awkvw;c+1v e aw;}7

O={ay, - ,a}, I'={a}, - ,a.}.

By definition, we have f(t,,) =0forall k+1<i<r.
It is obvious that, for any 1 < i < k, we have

o — O[; S {W]_,' o 7wk}J_'

,
Hence, for any o € ®, if & = > n;«, then we have

=1
k r k r
!
o= E nioy + E nio = g ni(a + Bi) + E niQy
i=1 i=k—+1 i=1 i=k+1
k
where the 3;’s are in {wy, - ,w;}. Hence o € 3 nia + Span(ag g, -+, a;.).

i=1
It then follows from definition that the a-component of ©r(x) and Oy (x) are both equal

k
to Y mif(tw,). Varying a, we see that O (z) = O (z).
i=1
Therefore, there exists a map

0:X — h(R)

whose restriction to Xy is O for every simple system II.

A.7. Surjectivity of ©. Let z = (24)ace be in h(R). Define ¥ := {a € & : z, # oco}. It
is easy to verify that ¥ is a closed root subsystem of ® which is maximal, with respect
to inclusion, in its own R-span. From [Kra09, Lemma 3.2.3(a)], we know that such a root
subsystem is parabolic, namely, ¥ has a simple system which extends to a simple system for
® (we thank Dyer for this reference).
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Choose a simple system FE for ¥ such that z, > 0 for all « € E. Extend F to a simple
system II for ®. Write £ = {1, ,ax}, I = {a1, -+ , o, )11, -+, }, and Fund(II) =
{wi,--- ,w,}. Then, for each 1 <i < k, we have f~1(2,,) € [0,1); and for each k +1 < i <,
we have f~!(zq,) = 1. So

k

>z wi
i=1
k
is a point of X1. By the definition of Oy, it is clear that the a;-component of O (Y. £~ (24, )wi)
=1

1=
is equal to z,,. Notice that z is in the closure of the fundamental Weyl chamber determined
by II. Hence z is determined by z,,, 1 <4 <r, and it follows that

k

O (zar)wi) = 2,

i=1

proving surjectivity of ©.
A.8. Injectivity of ©. Let X° be the interior of X. We have
X=X°U U X3,

IT is a simple system

By the definition of ©, it is clear that no component of the image under © of a point of
X° is equal to oo, whereas at least one component of the image under © of a point of

U X4 is equal to co. Tt follows that ©(X°) and ©( U XR) are
II is a simple system II is a simple system
ACTI ACTI
disjoint.

On X°, since Oy is a combinatorial isomorphism from X°N Xy to h(R) N & for all simple
systems II, we have that © is injective on X°.

Suppose z,x’ € U Xl% are such that
II is a simple system
ACTI
O(x) = O(2)
Define

VU :={a € ®: the a-component of O(x) = O(z’) is not equal to co}.
Again, this is a parabolic subsystem of ®. Hence, there exist simple systems II,II’, subsets
A CTI, A’ C Tl such that IT — A (resp. II' — A') is a simple system for ¥ and = € X4 (resp.
z e XH).
Write
pr: (RPH? — (RP1)Y

for the projection onto the a-components, o € W. Applying the argument in the second
paragraph of this section to the root system ¥, we see that there exists a subset S of (IT —
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A)N (' — A’) such that, if {w;, -+ ,w;} are the fundamental weights for the root system W
corresponding to elements of S, then

Moreover,

l
pr(z) = pr(z’) = thiwi.
i=1

we may assume that II — A =1I' — A/,

It follows that

l
T = wﬁ + thiwi, and
i=1

l

/ A

T =wp + E T, Wi,
i=1

and, hence, that z ~ 2'.
Conversely, if x,2’ € X are such that  ~ 2/, it is clear from definition that O(z) = ©(2’).
Therefore, we have proved:

Theorem A.6. The map © : X — h(R) induces a homeomorphism

X — b(R).

By abuse of notation, the homeomorphism above will also be denoted by ©.
Putting everything together, we have proved:

Theorem A.7. Both maps below are homeomorphisms:

P=P/~+=— X=X/~—25pR).

In particular, h(R) is homeomorphic to the permutahedron P modulo the identification of
parallel faces.
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