Geometric group theory, homework 9.

Definition. Let S be a finite generating set of a group G. The growth function $\beta_{G,S} \colon \mathbf{N} \to \mathbf{N}$ assigns to each n the number of vertices in the Cayley graph Cay(G,S) at distance $\leq n$ from the identity.

Definition. We write $\beta \prec \alpha$ if there are c_1, c_2 satisfying $\beta(n) \leq c_1 \alpha(c_2 n)$. We say that the functions α and β are *equivalent* if $\alpha \prec \beta$ and $\beta \prec \alpha$.

Problem 1. Suppose that Cay(G, S) and Cay(G', S') are quasi-isometric. Show that then $\beta_{G,S}$ and $\beta_{G',S'}$ are equivalent. In particular the equivalence class of the growth of a group G does not depend on the generating set. This class is called the *growth* of G.

Problem 2. Find the growth of

(i) \mathbf{Z}^k ,

- (ii) the free group F_k ,
- (iii) the Heisenberg group $\langle s, t, r | [s, t] = [s, r] = 1, [t, r] = s \rangle$,
- (iv) the solvable group $\langle \mathbf{Z}^2, t \mid t^{-1}vt = Av$ for all $v \in \mathbf{Z}^2 \rangle$, where

$$A = \left(\begin{array}{cc} 2 & 1\\ 1 & 1 \end{array}\right).$$

Hint: if v is not an eigenvector of A, then for all finite $I \subset \mathbf{N}$ the values $\sum_{i \in I} A^i v$ are distinct.

Problem 3. Show that if the growth of a group G is linear, then G is virtually **Z**. Hints:

- (i) Show that there exists n with $\beta_{G,S}(2n) \leq 2\beta_{G,S}(n) + n$.
- (ii) Show that Cay(G,S) contains a bi-infinite geodesic γ .
- (iii) Show that each vertex v is at distance < 2n from γ . To do that, for simplicity say that in (i) $\beta_{G,S}(n)$ denotes the number of vertices at distance < n from the identity. Consider the closest vertex $w \in \gamma$ to vand balls of radius n centred at the vertices of γ at distance n from w.

Problem 4. Describe Ends(X) for

- (i) $\mathbf{R} \times [0, 1]$,
- (ii) the Cayley graph of \mathbf{Z}^2 with the two standard generators,
- (iii) the Cayley graph of $\mathbf{Z}_3 * \mathbf{Z}_3$ with the two standard generators,
- (iv) $X = \{(x, y) \in \mathbf{R}^2 \mid x \in \mathbf{Z} \text{ or } y = 0\}$ with the metric defined as the infimum of lengths of paths.

Problem 5. Show that the following conditions are equivalent.

- (i) G has a finite normal subgroup H such that G/H is Z or $\mathbb{Z}_2 * \mathbb{Z}_2$.
- (ii) $G = H *_H$ where H is finite or $G = A *_H B$ where H is finite of index 2 in A and B.

Theorem (Stallings). A finitely generated group with ≥ 2 ends can be expressed as a free product with amalgamation or an HNN-extension over a finite group.

Problem 6. Show that the conditions in Problem 5 are equivalent to G being virtually \mathbf{Z} .

Problem 7. Let G be a finitely generated torsion-free virtually free group. Show that G is free.