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Abstract. Under the assumption that a defining graph of a Coxeter group

admits only subsequent elementary twists in Z2 or dihedral groups and is of

type FC, we prove Bernhard Mühlherr’s Twist Conjecture.

1. Introduction

We make progress towards verifying Bernhard Mühlherr’s Twist Con-

jecture. This conjecture predicts that angle-compatible Coxeter gener-

ating sets differ by a sequence of elementary twists. By [7] and [10] the

Twist Conjecture solves the Isomorphism Problem for Coxeter groups.

Main Theorem. Let S be a Coxeter generating set of type FC angle-

compatible with a Coxeter generating set S′. Suppose that any Coxeter

generating set twist equivalent to S admits only elementary twists in Z2

or the dihedral groups. Then S is twist equivalent to S′.

Note that in the case where S does not admit any elementary twist,

we proved the Twist Conjecture in [3]. The bookkeeping in the proof

was much simpler assuming S is of FC type, but we managed to remove

that assumption in the last section of [3]. In [9] we kept that assumption

and we confirmed the Twist Conjecture in the case where we allow

elementary twists but require they are all in Z2. In the current article

we follow this strategy amounting to allowing gradually elementary

twists in larger groups. We believe that eventually we will understand

the necessary bookkeeping to resolve the entire Twist Conjecture both

under FC assumption and without it. For more historical background,

see our previous paper [9]. Note that we will be invoking some basic

lemmas from [9], but not its Main Theorem.

Definitions. A Coxeter generating set S of a group W is a set

such that (W,S) is a Coxeter system. This means that S generates W

subject only to relations of the form s2 = 1 for s ∈ S and (st)mst = 1,
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where mst = mts ≥ 2 for s 6= t ∈ S (possibly there is no relation

between s and t, and then we put by convention mst = ∞). An S-

reflection (or a reflection, if the dependence on S does not need to

be emphasised) is an element of W conjugate to some element of S.

We say that S is reflection-compatible with another Coxeter generating

set S′ if every S-reflection is an S′-reflection. Furthermore, S is angle-

compatible with S′ if for every s, t ∈ S with 〈s, t〉 finite, the set {s, t}
is conjugate to some {s′, t′} ⊂ S′.

We call a subset J ⊆ S spherical if 〈J〉 is finite. If J is spherical,

let wJ denote the longest element of 〈J〉. We say that two elements

s 6= t ∈ S are adjacent if {s, t} is spherical. This gives rise to a graph

whose vertices are the elements of S and whose edges (labelled by mst)

correspond to adjacent pairs in S. This graph is called the defining

graph of S. Occasionally, when all mst are finite, we will use another

graph, whose vertices are still the elements of S, but (labelled) edges

correspond to pairs of non-commuting elements of S. This graph is

called the Coxeter–Dynkin diagram of S. Whenever we talk about

adjacency of elements of S, we always mean adjacency in the defining

graph unless otherwise specified.

Given a subset J ⊆ S, we denote by J⊥ the set of those elements

of S \J that commute with J . A subset J ⊆ S is irreducible if it is not

contained in K ∪K⊥ for some non-empty proper subset K ⊂ J . We

say that S is of type FC if each J ⊆ S consisting of pairwise adjacent

elements is spherical.

Let J ⊆ S be an irreducible spherical subset. We say that C ⊆
S \ (J ∪ J⊥) is a component, if the subgraph induced on C in the

defining graph of S is a connected component of the subgraph induced

on S\(J∪J⊥). Assume that we have a nontrivial partition S\(J∪J⊥) =

AtB, where each component C is contained entirely in A or in B. In

other words, for all a ∈ A and b ∈ B, we have that a and b are non-

adjacent. We then say that J weakly separates S. The map τ : S → W

defined by

τ(s) =

{
s for s ∈ A ∪ J ∪ J⊥,
wJsw

−1
J for s ∈ B,

is called an elementary twist in 〈J〉 (see [1, Def 4.4]). Coxeter gen-

erating sets S and S′ of W are twist equivalent if S′ can be obtained

from S by a finite sequence of elementary twists and a conjugation.

We say that S is k-rigid if for each weakly separating J ⊂ S we have

|J | < k. Thus the assumption in the Main Theorem amounts to all
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Coxeter generating sets twist equivalent to S being 3-rigid. Note that

being of type FC is invariant under elementary twists.

Proof outline. Let Aamb be the Davis complex for (W,S′), and

for each reflection r ∈ W , let Wr be its wall in Aamb. In Section 2,

following [2], we explain that to prove that S (which might differ from

the original S by elementary twists) is conjugate to S′, we must find

a ‘geometric’ set of halfspaces for s with s ∈ S. To this end, we will

use ‘markings’, introduced in [3] and discussed in Section 3. These are

triples µ = ((s, w),m) with w = j1 · · · jn where ji, s,m ∈ S satisfy

certain conditions guaranteeing in particular Ws ∩ wWm = ∅. This

determines a halfspace Φµ
s for s containing wWm. As in [3], to prove

that the set of these halfspaces is geometric, it suffices to prove that

Φµ
s depends only on s.

Until the last section, our goal becomes to prove the following ‘con-

sistency’ of irreducible spherical {s, t} ⊂ S. Consistency means that

all Φµ
s with j1 = t are equal, all Φµ

t with j1 = s are equal, and these two

halfspaces form a geometric pair. To this end, we introduce the ‘com-

plexity’ (K1(S),K2(S)) of S with respect to S′. The first entry K1(S)

is the sum of the distances in A(1)
amb between all the pairs of residues CL

fixed by maximal spherical L ⊂ S. The second entry K2(S) is the sum

of the distances between more subtle objects. Namely, for maximal

spherical L ⊂ S let DL ⊆ CL consist of chambers adjacent to each

Wl with l ∈ L. The contribution to K2(S) of a pair L, I of maximal

spherical subsets of S is the distance between particular EL,I ⊆ DL

and EI,L ⊆ DI . Let us explain in detail what EL,I is for L irreducible.

First notice that then DL consists of exactly two opposite chambers.

We say that L is ‘exposed’ if |L| ≤ 2 or |L| = 3 and there are at least

two elements of L not adjacent to any element of S \ (L ∪ L⊥). For

L exposed we set EL,I = DL. Otherwise, we can predict which of the

two chambers is better positioned with respect to I, and we set EL,I
to be that chamber. Namely, we choose EL,I inside Φµ

s for m ∈ I and

‘good’ s and {s, j1}. The notion of ‘good’ is discussed in Section 4.

For example if m adjacent to both j1 and j2, then s and {s, j1} are

good. We designed this notion to make EL,I independent of the choice

of s, j1, which is proved in Sections 5 and 6. This allows us to define the

complexity in Section 7. From now on we assume that the complexity

of S is minimal among all Coxeter generating sets twist equivalent to S.

Going back to the goal of proving the consistency of {s, t}, we con-

sider the components of S \ ({s, t} ∪ {s, t}⊥). Using the 3-rigidity of S

and ‘moves’, markings µ = ((s, tp · · · ),m) and ((s, t), p) with various
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p in a fixed component A give rise to the same Φs,A := Φµ
s . Thus

to prove the consistency of {s, t} one needs to prove that the pair

Φs,A,Φt,A is geometric (which we call the ‘self-compatibility’ of A),

and that Φs,A = Φs,B and Φt,A = Φt,B for every other component B

(which we call the ‘compatibility’ of A and B). We gradually show that

in the subsequent sections. There we call A ‘small’ if all the elements

of A are adjacent to both s, t; we call A ‘big’ otherwise. We call (small

or big) A ‘exposed’ if there is an exposed L ⊃ {s, t} intersecting A.

In Section 8 we prove that small components are self-compatible, and

that each exposed component is self-compatible and compatible with

any other component. This is done using various elementary twists

provided by an exposed L, which allow to turn EL,I = DL ‘towards’ CI
and decrease K2 in the case of incompatibility. In Section 9, we prove

the compatibility of big components. A crucial concept there is that of

‘peripherality’, which picks out the ‘least’ inconsistent {s, t} and allows

to decrease K1. Finally, in Section 10 we prove the self-compatibility

of big components, and their compatibility with small ones.

Having established the consistency of doubles, it is not hard to prove

that Φµ
s depends only on s (which as we explained implies the Main

Theorem), following a simplified version of the main argument of [9],

which we present in Section 11.

Reading the article. Upon a first reading, we recommend to ig-

nore K2. This means skipping Sections 4–8 except for the definition

of K1 and the ones in Section 8, and focusing on understanding the

details of Section 9. After that, it should become clear that to treat

small components it is not enough to use only K1, which motivates the

introduction of K2 with all its technical aspects.

Let us also mention that our construction of a ‘folding’ in Section 9

for mst = 4 agrees with the construction in the article of Weigel

[12, Fig 1]. His assumptions on the defining graph do not allow for

irreducible spherical subsets L with |L| > 2, so he does not need to

discuss small components or K2. However, our Main Theorem does

not immediately imply the Main Theorem of [12] since Weigel allows

for some subsets of S that violate FC.

While we could modify our article to also allow for these subsets, we

refrain from that in order not to complicate the notation. In the future

work, we plan to divide the subsets violating FC into two types. One

type will be treated similarly to subsets of S containing a non-adjacent

pair. The second type will have to be treated similarly to weakly
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separating spherical subsets of S of cardinality ≥ 3. The methods to

prove the consistency of such subsets still need to be developped.

Acknowledgements. We thank Pierre-Emmanuel Caprace, with

whom we designed a large bulk of the strategy executed in this paper,

including the main ideas in Section 9. We also thank Jingyin Huang

for many long discussions and for designing together Sections 4–6.

2. Preliminaries

2.1. Davis complex. Let A be the Davis complex of a Coxeter sys-

tem (W,S) (see [4, §7.3] for a precise definition). The 1-skeleton of

A is the Cayley graph of (W,S) with vertex set W and a single edge

spanned on {w,ws} for each w ∈ W, s ∈ S. Higher dimensional cells

of A are spanned on left cosets in W of remaining finite 〈J〉. The left

action of W on itself extends to the action on A.

A chamber is a vertex of A. Collections of chambers corresponding

to cosets w〈J〉 are called J-residues of A. A gallery is an edge-path

in A. For two chambers c1, c2 ∈ A, we define their gallery distance,

denoted by d(c1, c2), to be the length of a shortest gallery from c1 to c2.

Let r ∈ W be an S-reflection. The fixed point set of the action

of r on A is called its wall Yr. The wall Yr determines r uniquely.

Moreover, Yr separates A into two connected components, which are

called halfspaces (for r). If a non-empty subset K ⊂ A is contained

in a single halfspace, then Φ(Yr, K) denotes this halfspace. An edge

of A crossed by Yr is dual to Yr. A chamber is incident to Yr if it

is an endpoint of an edge dual to Yr. The distance of a chamber c

to Yr, denoted by d(c,Yr), is the minimal gallery distance from c to a

chamber incident to Yr.

2.2. Geometric set of reflections. Let (W,S) be a Coxeter system.

Let Aref be the Davis complex for (W,S) (‘ref’ stands for ‘reference

complex’). For each reflection r, let Yr be its wall in Aref . Suppose

that S is angle-compatible with another Coxeter generating set S′.

Let Aamb be the Davis complex for (W,S′) (‘amb’ stands for ‘ambient

complex’). For each reflection r, letWr be its wall in Aamb. Let P ⊆ S.

Definition 2.1. Let {Φp}p∈P be a collection of halfspaces of Aamb

for p ∈ P . The collection {Φp}p∈P is 2-geometric if for any pair p, r ∈
P , the set Φp ∩ Φr ∩ A(0)

amb is a fundamental domain for the action of

〈p, r〉 on A(0)
amb. The collection {Φp}p∈P is geometric if additionally

F =
⋂
p∈P Φp ∩A(0)

amb is non-empty. The set P is 2-geometric if there

exists a 2-geometric collection of halfspaces {Φp}p∈P .
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Theorem 2.2 ([2, Thm 4.2]). If {Φp}p∈P is 2-geometric, then after

possibly replacing each Φp by opposite halfspace, the collection {Φp}p∈P
is geometric.

Theorem 2.2 justifies calling 2-geometric P geometric for simplicity.

We call F as above a geometric fundamental domain for P , since by [6]

(see also [8, Thm 1.2] and [2, Fact 1.6]), we have:

Proposition 2.3. If P is geometric, then F is a fundamental domain

for the action of 〈P 〉 on A(0)
amb, and for each p ∈ P there is a chamber

in F incident toWp. In particular, if P = S, then S is conjugate to S′.

Corollary 2.4 ([9, Cor 2.6]). Let J ⊆ S be spherical. Then J is

conjugate to a spherical J ′ ⊆ S′. In particular, J is geometric, and if

it is irreducible, there exist exactly two geometric fundamental domains

for J .

We will need the following compatibility result.

Lemma 2.5. Let J ⊂ S be irreducible spherical, and let r1, r2 ∈
S \ J with J ∪ {r1, r2} geometric. Let W1 and W2 be walls of Aamb

fixed by some reflections in 〈J〉 and satisfying Wi ∩ Wri = ∅ for

i = 1, 2. Let ∆1,∆2 be the geometric fundamental domains for J sat-

isfying Φ(Wi,∆i) = Φ(Wi,Wri) for i = 1, 2. Then ∆1 = ∆2.

Proof. Let F ⊂ A(0)
amb be the geometric fundamental domain for J ∪

{r1, r2}. By Proposition 2.3, for i = 1, 2, there is chamber xi ∈ F

incident to Wri . Let ∆ be the geometric fundamental domain for J

containing F . Then for i = 1, 2, we have Φ(Wi,Wri) = Φ(Wi, xi) =

Φ(Wi, F ) = Φ(Wi,∆), and so ∆i = ∆. �

We close with the following result, which is [9, Lem 5.4]. Note that

we assumed there that W = Wr for some r ∈ S, but the proof works

word for word without that assumption.

Lemma 2.6. Let {j1, j2} ⊂ S be irreducible spherical. Suppose that

a wall W in Aamb is disjoint from both Wj2 and j1Wj2, and we have

Φ(Wj2 ,W) = Φ(Wj2 , j1W). Let F be a geometric fundamental domain

for {j1, j2}. Then W is disjoint from j2Wj1 and we have Φ(Wj2 ,W) =

Φ(Wj2 , F ) if and only if Φ(Wj1 , j2W) = Φ(Wj1 , F ).

We have the following immediate consequence, which is a variant of

[3, Lem 5.1].
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Corollary 2.7. Let {j1, j2} ⊂ S be irreducible spherical. Suppose that

a wall W in Aamb is disjoint from both Wj2 and j1Wj2, and inter-

sectsWj1. Let F be a geometric fundamental domain for {j1, j2}. Then

W is disjoint from j2Wj1 and we have Φ(Wj2 ,W) = Φ(Wj2 , F ) if and

only if Φ(Wj1 , j2W) = Φ(Wj1 , F ).

3. Bases and markings

Henceforth, in the entire article we assume that S is irreducible,

not spherical, and of type FC. (The reducible case easily follows

from the irreducible.)

In this section we recall several central notions from [3]. LetW,S,Aref ,Yr
(and later S′,Aamb,Wr) be as in Section 2.2. Let c0 be the identity

chamber of Aref .

3.1. Bases.

Definition 3.1. A base is a pair (s, w) with core s ∈ S and w ∈ W
satisfying

(i) w = j1 · · · jn, where n ≥ 0, and ji ∈ S,

(ii) d(w.c0,Ys) = n,

(iii) the support J = {s, j1, . . . , jn} is spherical.

Note that this agrees with [3, Def 3.1]. Indeed, Condition (ii) from [3,

Def 3.1] saying that every wall that separates w.c0 from c0 intersects Ys
follows immediately from our Condition (iii). On the other hand, our

Condition (iii) follows from [3, Lem 3.5] since S is of type FC. Note

also that our Condition (ii) implies that J is irreducible. A base is

simple if s and all ji are distinct. In [3, Lem 3.7] and the paragraph

preceding it, we established the following.

Remark 3.2. If J ⊂ S is irreducible spherical and s ∈ J , then there

is a unique simple base (s, w) with support J and core s. We have

w = j1 · · · jn for any ordering of the elements of J \{s} into a sequence

(ji) with each {s, j1, . . . , ji} irreducible. We often denote that base

(s, w) by (s, J).

The following result is a straightforward generalisation of [9, Lem 3.3],

where a base was assumed to be simple.

Lemma 3.3. Let J ⊂ S be irreducible spherical, and let F be a geomet-

ric fundamental domain for J . Then for any base (s, w) with support J

we have Φ(Ws, F ) = Φ(Ws, wF ).
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3.2. Markings.

Definition 3.4. A marking is a pair µ = ((s, w),m), where (s, w) is a

base with support J and where the marker m ∈ S is such that J ∪{m}
is not spherical. The core and the support of the marking µ are the

core and the support of its base. We say that µ is simple, if its base is

simple.

Our definition of a marking agrees with the notion of a complete

marking from [3, Def 3.8]. To see that, note that since S if of type FC,

m is not adjacent to some element of J and hence by [3, Rem 3.2(ii)]

we have that wYm is disjoint from Ys. We decided to drop the term

‘complete’ since we will not be discussing any other markings in this

article. Similarly, our definition of a simple marking agrees with the

notion of a good marking from [3, Def 3.13], since by FC there are no

semicomplete markings described in [3, Def 3.11].

Remark 3.5 ([9, Rem 3.5]). For each s ∈ I ⊂ S with I irreducible

spherical, there exists a simple marking with support containing I and

core s.

Definition 3.6. Let µ = ((s, w),m) be a marking. Since wYm is

disjoint from Ys, the element wmw−1s is of infinite order, and hence

also wWm is disjoint from Ws. We define Φµ
s = Φ(Ws, wWm).

Proposition 3.7 ([3, Prop 5.2]). Let s1, s2 ∈ S. Suppose that for

each i = 1, 2, any simple marking µ with core si gives rise to the same

Φsi = Φµ
si. Then the pair Φs1 ,Φs2 is geometric.

We summarise Proposition 3.7, Theorem 2.2, and Proposition 2.3 in

the following.

Corollary 3.8 ([9, Cor 3.8]). If for each s ∈ S any simple marking µ

with core s gives rise to the same Φµ
s , then S is conjugate to S′.

3.3. Moves.

Definition 3.9. Let ((s, w),m), ((s, w′),m′) be markings with common

core. We say that they are related by move

(M1) if w = w′, and the markers m and m′ are adjacent;

(M2) if there is j ∈ S such that w = w′j and moreover m equals m′

and is adjacent to j.

We will write ((s, w),m) ∼ ((s, w′),m′) if there is a finite sequence of

moves M1 or M2 that brings ((s, w),m) to ((s, w′),m′).
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The following is a special case of [3, Lem 4.2].

Lemma 3.10. If markings µ and µ′ with common core s are related

by move M1 or M2, then Φµ
s = Φµ′

s .

We have a straightforward generalisation of [9, Prop 4.3].

Proposition 3.11. Let (s, w) be a base with support I. Suppose that no

irreducible spherical I ′ ) I weakly separates S. Let µ1 = ((s, ww1),m1)

and µ2 = ((s, ww2),m2) be markings with supports J1, J2, where each

of wi is a product of distinct elements of Ji \ I. Moreover, for i = 1, 2

define Ki = Ji \ (I ∪ I⊥) when I ( Ji, and Ki = {mi} when Ji = I.

Suppose that K1 and K2 are in the same component of S \ (I ∪ I⊥).

Then µ1 ∼ µ2. Consequently Φµ1
s = Φµ2

s .

3.4. Applications to 3-rigid S. We start with choosing the notation

for the Ki above in the case where µi is simple.

Definition 3.12. Let µ = ((s, J),m) be a simple marking with the

base (s, J) defined in Remark 3.2. Let I ⊆ J with s ∈ I. Then we

denote by Kµ
I the set J \ (I ∪ I⊥) if J 6= I, and the set {m} otherwise.

We simplify the notation Kµ
{s} to Kµ

s etc.

Let {s, t} ⊂ S be irreducible spherical. By Remark 3.5, for each

component A of S \ ({s, t} ∪ {s, t}⊥), there exists a simple marking µ

with support containing t, core s, and Kµ
s,t ⊆ A. If S is 3-rigid, then

by Proposition 3.11 if we have µ′ with Kµ′

s,t ⊆ A, then Φµ
s = Φµ′

s .

Thus each component A of S \ ({s, t}∪{s, t}⊥) determines a halfspace

ΦA,s := Φµ
s for s.

The following is another variation on [9, Prop 4.3].

Proposition 3.13. Suppose that S is 3-rigid. Let µ1, µ2 be simple

markings with common core s. Suppose that Kµ1
s ∩Kµ2

s = ∅ and that

there is an embedded path ω in the defining graph of S outside s ∪ s⊥
starting in k1 ∈ Kµ1

s and ending in k2 ∈ Kµ2
s such that

(i) for any vertex k 6= k1, k2 of ω adjacent to s and any simple

markings ν1, ν2 with supports containing k and core s we have

Φν1
s = Φν2

s .

(ii) if k1 is adjacent to s, then Kµ1

s,k1
lies in the same component of

S \ ({s, k1} ∪ {s ∪ k1}⊥) as k2, and

(iii) condition (ii) holds with indices 1 and 2 interchanged.



10 P. PRZYTYCKI

Then Φµ1
s = Φµ2

s .

Proof. We proceed by induction of the length of ω. Consider first the

case where k1 and k2 are adjacent. If neither k1 nor k2 is adjacent

to s, then µ1 ∼ µ2 by move M1. If exactly one of k1, k2, say k1, is

adjacent to s, then let µ = ((s, k1), k2). We have µ ∼ µ2 by move M2.

Moreover, µ1 ∼ µ by condition (ii) and Proposition 3.11. If both k1, k2
are adjacent to s, then let µ be a simple marking with support contain-

ing k1, k2, and core s, which exists by Remark 3.5. By conditions (ii)

and (iii) and Proposition 3.11 we have µ1 ∼ µ ∼ µ2. Thus Φµ1
s = Φµ2

s

by Lemma 3.10.

Now consider the case where k1 and k2 are not adjacent. Let k be a

vertex of ω distinct from k1, k2. Note that if k1 is adjacent to s, then all

the vertices of ω except for k1 are contained in S \ ({s, k1}∪{s∪k1}⊥),

and thus condition (ii) holds with k2 replaced with k.

First suppose that k is not adjacent to s. Then by the previous para-

graph the pair of markings µ1, ν = ((s, ∅), k) satisfies the hypotheses of

the proposition and thus by induction we have Φµ1
s = Φν

s . Analogously,

Φν
s = Φµ2

s . Finally, suppose that k is adjacent to s. For i = 1, 2 let νi
be a simple marking with support containing k and core s such that

Kνi
s,k lies in the same component of S \ ({s, k} ∪ {s∪ k}⊥) as ki, which

exists by Remark 3.5. As before, by induction we have Φµi
s = Φνi

s .

Furthermore, Φν1
s = Φν2

s by condition (i). �

4. Good pairs

Let (W,S) be a Coxeter system. Throughout the remaining part

of the article, we will assume that all Coxeter generating sets

twist equivalent to S are 3-rigid.

The following notion of a good element t varies slightly from the one

in [9], where we allowed r to be adjacent to t.

Definition 4.1. Let L ⊂ S be irreducible spherical and let r ∈ S. An

element t ∈ L is good with respect to r, if

• r 6= t and r is not adjacent to t, and

• L\(t∪t⊥) is non-empty and in the same component of S\(t∪t⊥)

as r.

Note that being good depends on L. However, we often write shortly

‘t is good with respect to r’ (or even just ‘t is good’), if L (and r) are

fixed.

A non-commuting pair {s, t} ⊂ L is good with respect to r, if
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• {s, t, r} is not spherical, and

• L \ ({s, t} ∪ {s, t}⊥) is non-empty and in the same component

of S \ ({s, t} ∪ {s, t}⊥) as r.

The following lemma and its corollary exceptionally do not require

the 3-rigidity assumption on S.

Lemma 4.2. Let {s, t} ⊂ S be spherical irreducible, and let r ∈ S

with {s, t, r} not spherical. Suppose that s ∈ L = {s, t} is not good

with respect to r and t ∈ L is not good with respect to r. Then r lies in

a component of S \ ({s, t} ∪ {s, t}⊥) that has no element adjacent to s

or t.

Proof. If r is not adjacent to, say, s, then r is not adjacent to t (since

s is not good). For contradiction, suppose that r lies in a component

of S \ ({s, t} ∪ {s, t}⊥) that has an element adjacent to s or t. Let

ω = r · · · k be a minimal length path in the defining graph of S outside

{s, t}∪ {s, t}⊥ ending with a vertex k adjacent to s or t, say t. Since s

is not good, there is a vertex k′ of ω that lies in s⊥. By the minimality

of ω, we have k′ = k, and hence k is also adjacent to s. Analogously,

since t is not good, we have k ∈ t⊥. Consequently, k ∈ {s, t}⊥, which

is a contradiction. �

Lemma 4.2 immediately implies the following.

Corollary 4.3. Let L ⊂ S be irreducible spherical and let {s, t} ⊂ L

be a non-commuting pair. Let r ∈ S \ L. If {s, t} is good with respect

to r, then s or t is good with respect to r.

Lemma 4.4. Let L ⊂ S be irreducible spherical and let r ∈ S. Let

s, t, p be consecutive vertices in the Coxeter–Dynkin diagram of L with

{s, t, p, r} not spherical. If {s, t} is not good with respect to r and {t, p}
is not good with respect to r, then none of the elements in S\({s, t, p}∪
{s, t, p}⊥) are adjacent to s or p.

Proof. If r is not adjacent to, say, s or t, then since {s, t} is not good

with respect to r, we have that r is also not adjacent to p. For contra-

diction, suppose that an element in S \({s, t, p}∪{s, t, p}⊥) is adjacent

to s or p. Since S is 3-rigid, we have a minimal length path ω = r · · · k
in the defining graph of S outside {s, t, p} ∪ {s, t, p}⊥ with k adjacent

to s or p, say p. Since {s, t} is not good, a vertex k′ of ω lies in {s, t}⊥.

Then k′ = k by the minimality of ω. Thus k ∈ {s, t}⊥. Analogously,

since {t, p} is not good, a vertex of ω lies in {t, p}⊥ giving k ∈ {t, p}⊥.

Thus k ∈ {s, t, p}⊥, which is a contradiction. �
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We have the following immediate consequence of Lemma 4.4.

Corollary 4.5. Let L ⊂ S be irreducible spherical with |L| ≥ 4 and let

r ∈ S. Let s, t, p be consecutive vertices in the Coxeter–Dynkin diagram

of L with {s, t, p, r} not spherical. Then at least one of {s, t} or {t, p}
is good with respect to r.

We have also the following variant of Lemma 4.4.

Lemma 4.6. Let L ⊂ S be irreducible spherical and let r ∈ S. Let

s, t, p be consecutive vertices in the Coxeter–Dynkin diagram of L with

{s, t, p, r} not spherical. If {s, t} is not good with respect to r and p is

not good with respect to r, then none of the elements in S \ ({s, t, p} ∪
{s, t, p}⊥) are adjacent to t or p.

Proof. Again, if r is not adjacent to s or t, then since {s, t} is not

good, we have that r is also not adjacent to p. On the other hand,

if r is not adjacent to p, then since p is not good, we have that r is

also not adjacent to t. For contradiction, suppose that an element in

S \ ({s, t, p} ∪ {s, t, p}⊥) is adjacent to t or p. Since S is 3-rigid, we

have a minimal length path ω = r · · · k in the defining graph of S

outside {s, t, p} ∪ {s, t, p}⊥ with k adjacent to t or p, say t (the other

case is similar). Since p is not good, a vertex k′ of ω lies in p⊥. Then

k′ = k by the minimality of ω. Thus k ∈ p⊥. Analogously, since {s, t}
is not good, a vertex of ω lies in {s, t}⊥ giving k ∈ {s, t}⊥. Thus

k ∈ {s, t, p}⊥, which is a contradiction as before. �

5. Fundamental domains for good pairs

Let S, S′,W,Aref and Aamb be as in Section 3. In this and the

following section, we fix L ⊂ S irreducible spherical.

Definition 5.1. Let µ = ((s, w),m) be a marking with support con-

tained in L. By ∆µ (or ∆(s,w),m) we denote the geometric fundamental

domain for L that is contained in Φµ
s = Φ(Ws, wWm). Equivalently,

by Lemma 3.3, it is the geometric fundamental domain for L that is

contained in Φ(w−1Ws,Wm).

Note that ∆µ depends on L but we suppress this in the notation.

Remark 5.2. By Lemma 3.10, for µ ∼ ν we have ∆µ = ∆ν .

In the remaining part of the section, let {s, t} ⊂ L be a non-

commuting pair, and let r ∈ S with {s, t, r} not spherical. Here is

the main result of the section.
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Figure 1

Proposition 5.3. Suppose that {s, t} is good with respect to r. Suppose

that both s and t are good with respect to r. Then ∆(t,s),r = ∆(s,t),r.

Proposition 5.3 makes the following notion well-defined.

Definition 5.4. Suppose that {s, t} is good with respect to r. By

Corollary 4.3, at least one of s, t, say s, is good with respect to r. Then

we define ∆{s,t},r to be ∆(s,t),r.

Proposition 5.3 follows immediately from the following.

Proposition 5.5. Suppose that both {s, t} and s are good with respect

to r and that there are consecutive vertices s, t, p in the Coxeter–Dynkin

diagram of L. Then ∆(t,s),r = ∆(s,t),r.

In preparation for the proof of Proposition 5.5 we discuss several

lemmas. We will denote shortly ∆s = ∆(s,t),r,∆t = ∆(t,s),r.

Lemma 5.6. Suppose that s, t, p are consecutive vertices in the Coxeter–

Dynkin diagram of L, and mst 6= 3. Suppose also ((s, t), r) ∼ ((s, tp), r)

and ((t, s), r) ∼ ((t, spt), r). Then ∆t = ∆s.

Note that it is easy to check that for mst 6= 3 the pair (t, spt) is

indeed a base. Making use of this base and its extensions is exactly the

reason for which we need to discuss in this article bases that are not

simple.

Proof. By the classification of finite Coxeter groups, we have mtp = 3.

We want to apply Lemma 2.6 to the conjugate tpSpt, to j1, j2 the

conjugates of t, s, so that j2 = tpspt = tst, j1 = tptpt = p, and

to W = Wr. Since ((s, t), r) ∼ ((s, tp), r), by Lemma 3.10 we have

Φ(Wj2 ,W) = Φ(tWs,Wr) = Φ(tWs, pWr) = Φ(Wj2 , j1W), so the as-

sumption of Lemma 2.6 is satisfied. It is easy to see (Figure 1) that

∆s lies in a geometric fundamental domain F for {j1, j2}. By the



14 P. PRZYTYCKI

definition of ∆s we have Φ(Wj2 ,W) = Φ(Wj2 , F ), so by Lemma 2.6

(and Lemma 3.3), we have Φ(j2Wj1 ,W) = Φ(j2Wj1 , F ). This implies

Φ(tstWp,Wr) = Φ(tstWp,∆s). Since tstWp = tpsWt, and ((t, s), r) ∼
((t, spt), r), Remark 5.2 implies ∆t = ∆s. �

Corollary 5.7. Suppose that L = {u, s, t, p} ⊂ S is of type F4, and

that u, s, t, p are consecutive vertices in the Coxeter–Dynkin diagram

of L. Suppose also that r is not adjacent to s and that both {s, t} and

{u, s} are good with respect to r. Then ∆t = ∆s.

Proof. Since {s, t} is good, by Proposition 3.11 and the 3-rigidity of S

we have ((s, t), r) ∼ ((s, tp), r) and ((t, s), r) ∼ ((t, spu), r). Since

{u, s} is good, there is a minimal length path rr1 · · · rnt in the defining

graph of S outside {u, s} ∪ {u, s}⊥ ⊃ {u, s, p} ∪ {u, s, t, p}⊥. By the

classification of finite Coxeter groups {u, s, t, p} is maximal irreducible

spherical. Thus using moves M1 and M2 we obtain

((t, spu), r) ∼((t, spu), r1) ∼ · · · ∼ ((t, spu), rn) ∼
((t, sput), rn) ∼ · · · ∼ ((t, sput), r1) ∼ ((t, sput), r).

By the 3-rigidity of S and Proposition 3.11 we have ((t, sput), r) =

((t, sptu), r) ∼ ((t, spt), r). Thus Lemma 5.6 applies. �

Lemma 5.8. Suppose that L = {u, s, t, p} and that u, s, t, p are con-

secutive vertices in the Coxeter–Dynkin diagram of L. Suppose that

{s, t, r} is not spherical. Then {u, s} or {t, p} is good with respect to

r.

Proof. If r is adjacent to s or t, then the lemma follows, so suppose

otherwise. By the classification of finite Coxeter groups we can assume

without loss of generalitymus = 3. Suppose that {u, s} is not good. Let

Γτ be the defining graph of the Coxeter generating set Sτ obtained by

the elementary twist in 〈u, s〉 that conjugates by the longest word wus
in 〈u, s〉 all the elements of the component B of S \ ({u, s} ∪ {u, s}⊥)

containing r. Note that t /∈ B as {u, s} is not good. Since Sτ is 3-rigid,

{s, t, p} does not weakly separate Sτ . Consider then a minimal length

path ωτ in Γτ from wusrw
−1
us to u outside {s, p, t}∪{s, p, t}⊥. Note that

by the minimality of ωτ all the vertices of ωτ are conjugates by wus of

the elements in B, except for u and possibly the vertex preceding u,

which might be in {u, s}⊥. Thus conjugating ωτ back, we obtain a path

ω from r to s in the defining graph of S, contained in B∪{u, s}⊥∪{s}
and outside {u, p, t}∪{u, s, p, t}⊥. We claim that ω lies outside {t, p}⊥
justifying that {t, p} is good. Otherwise, let k be the first vertex of
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ω in {t, p}⊥, and let ωk be the subpath r · · · k of ω. Since t /∈ B, the

path ωk must have a vertex in {u, s}⊥. By the minimality of ωτ , this

must be the vertex k. Thus k is a vertex of ω lying in {u, s, p, t}⊥,

which is a contradiction. �

Proof of Proposition 5.5. Assume mst 6= 3, since otherwise sWt = tWs

and so ∆t = ∆s is immediate.

Suppose first that r is adjacent to one of s, t, say t. By definition we

have Φ(Wt, sWr) = Φ(Wt,∆t). Thus applying Corollary 2.7 with j1 =

t, j2 = s, F ⊃ ∆t we obtain Φ(Ws,Wr) = Φ(Ws,∆t). As ((s, ∅), r) ∼
((s, t), r) (move M2), by Remark 5.2 we have ∆t = ∆s, as required.

It remains to consider the case where r is adjacent neither to s nor t.

Since {s, t} ⊂ L is good with respect to r, by Proposition 3.11 and

the 3-rigidity of S we have ((s, t), r) ∼ ((s, tp), r) and ((t, s), r) ∼
((t, sp), r). Since s ∈ L is good with respect to r, there is a path

in the defining graph of S from r to t outside s ∪ s⊥. If for each

vertex u 6= t on this path the set {s, t, p, u} is not spherical, then using

moves M1 and M2 we have ((t, sp), r) ∼ ((t, spt), r) and Lemma 5.6

applies. Otherwise, if u is a vertex of that path adjacent to all s, t, p,

we are in the setup of Lemma 5.8, with L replaced by L′ = {u, s, t, p}.
Thus one of {u, s}, {t, p} ⊂ L′ is good with respect to r. Note that

L′ and L both contain s, t, p, so we have that {s, t} ⊂ L′ is still good

with respect to r. Then, possibly after interchanging s with t and u

with p, Corollary 5.7 applies, with L′ in place of L (which is of type F4

by mst 6= 3 and the classification of finite Coxeter groups). Thus for

∆′s,∆
′
t defined as ∆s,∆t, with L′ in place of L, we have ∆′t = ∆′s. Since

by definition ∆′t and ∆t (and analogously ∆′s and ∆s) are contained in

the same geometric fundamental domain for {s, t}, we have ∆t = ∆s,

as desired. �

6. Independence of fundamental domains

This section is devoted to the proof of the following.

Proposition 6.1. Let L ⊂ S be irreducible spherical and I ⊂ S be

spherical. Suppose that {s, t} and {p, q} are non-commuting pairs in L.

Let r, r′ ∈ I be such that {s, t} ⊂ L is good with respect to r, and

{p, q} ⊂ L is good with respect to r′. Then ∆{s,t},r = ∆{p,q},r
′
.

The key to the proof is:

Lemma 6.2. Let L ⊂ S be irreducible spherical with |L| ≥ 3 and let

r ∈ S with L ∪ {r} not spherical. Consider s ∈ L that is not a leaf of
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the Coxeter–Dynkin diagram of L. Let µ = ((s, L), r). Then ∆µ does

not depend on s.

Here (s, L) denotes the unique simple base (s, w) with support L and

core s from Remark 3.2. Before we give the proof of Lemma 6.2, we

record the following.

Remark 6.3. Let L ⊂ S be irreducible spherical and let r ∈ S. Sup-

pose that {s, t} ⊂ L is a non-commuting pair that is good with respect

to r.

(i) Let ν = ((s, t), r). Since we can assume that w above starts with

t, by the 3-rigidity of S, Proposition 3.11, and Remark 5.2 we

have ∆ν = ∆µ.

(ii) Since s ∈ L is not a leaf of the Coxeter–Dynkin diagram of L, by

Proposition 5.5 we have ∆{s,t},r = ∆ν .

Note that Proposition 6.1 follows immediately from Remark 6.3 and

Lemma 6.2 since Wr ∩Wr′ 6= ∅ and hence ∆(s,L),r = ∆(s,L),r′ .

Proof of Lemma 6.2. Suppose that t ∈ L is also not a leaf of the

Coxeter–Dynkin diagram of L. If we have mst = 3, then sWt = tWs

and ∆(s,L),r = ∆(t,L),r follows. It remains to analyse the situation

where u, s, t, p are consecutive vertices in the Coxeter–Dynkin diagram

of L of type F4. If {s, t} is good, then we have ∆(s,L),r = ∆(t,L),r by

Proposition 5.5 and Remark 6.3(i).

Suppose now that {s, t} is not good. We claim that at least one of

{u, s}, {t, p} is good. We first establish that r is not adjacent to at

least one of u, p. Indeed, if {s, t, r} is not spherical, then since {s, t} is

not good we have that r is neither adjacent to u nor to p. If {s, t, r}
is spherical, then since L ∪ {r} is not spherical, r is not adjacent to at

least one of u, p, say u. Then by Corollary 4.5 the pair {u, s} is good,

justifying the claim. In particular, we have

((s, u), r) ∼ ((s, ut), r) ∼ ((s, utp), r), (6.1)

where ∼ follow from the assumptions that {u, s} is good, that S is

3-rigid and from Proposition 3.11.

Let ν = ((s, u), r). Let H1 = Φ(Wt,∆
ν) and H2 = Φ(Wt, psuWr).

By Remark 6.3(i), to prove ∆(s,L),r = ∆(t,L),r it suffices to show H1 =

H2.

Let H = Φ(Ws, uWr). By Equation (6.1) and Lemma 3.10, we have

Wr ⊂ uH∩ptuH =: U . ThusWr ⊂ U ∩uspH2. On the other hand, by
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Lemma 3.3, we have ∆ν ⊂ U∩uspH1. Hence H1 = H2 by Corollary 2.4

and Lemma 6.4 below. �

Lemma 6.4. Suppose W is a Coxeter group of type F4 with u, s, t, p

consecutive vertices in its Coxeter–Dynkin diagram. Consider the Tits

representation W y E4. Let H+
j and H−j be the two open halfspaces

in E4 bounded by the hyperplane fixed by a generator j. Let U =

uH+
s ∩ ptuH+

s . Then one of U ∩ uspH+
t and U ∩ uspH−t is empty.

Proof. The simple roots associated to u, s, t, p are αu = (1,−1, 0, 0), αs =

(0, 1,−1, 0), αt = (0, 0, 1, 0) and αp = (−1
2 ,−

1
2 ,−

1
2 ,−

1
2). One com-

putes directly uαs = αu + αs, tuαs = αu + αs + 2αt, ptuαs = αu +

αs + 2αt + 2αp. Moreover, pαt = αt + αp, spαt = αs + αt + αp,

and uspαt = αu + αs + αt + αp. Note that uαs + ptuαs = 2uspαt.

Thus for any vector v ∈ E4, if 〈v, uαs〉 > 0 and 〈v, ptuαs〉 > 0, then

〈v, uspαt〉 > 0, as desired. �

7. Complexity

In this section, we introduce the complexity of the Coxeter generating

set S with respect to S′. This extends the ideas of [9, §6]. We keep the

setup from Section 5. To start with, we need to distinguish particular

spherical subsets.

Definition 7.1. Let L ⊂ S be irreducible spherical. L is exposed if

|L| ≤ 2 or |L| = 3 and there are at least two elements of L not adjacent

to any element of S \ (L ∪ L⊥).

Here are several criteria for identifying exposed L.

Lemma 7.2. Let L ⊂ S be irreducible spherical, and let r ∈ S with

L∪{r} not spherical. Suppose that each non-commuting pair {s, t} ⊂ L

is not good with respect to r. Then L is exposed.

Proof. Suppose |L| ≥ 3. If for some non-commuting pair {s, t} ⊂ L

we have that r is adjacent to both s, t, then let p ∈ L \ {s, t} be non-

commuting with one of s, t, say t. Since r is adjacent to s and {t, p} is

not good, we have that r is adjacent to p. Proceeding in this way we

get that r is adjacent to all the elements of L, which contradicts our

hypothesis. Thus by Corollary 4.5 we have |L| = 3, and by Lemma 4.4

there are at least two elements of L not adjacent to any element of

S \ (L ∪ L⊥). �

Lemmas 4.4 and 4.6 give also immediately the following.
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Lemma 7.3. Let L ⊂ S be irreducible spherical, and s, t, p be consecu-

tive vertices in the Coxeter–Dynkin diagram of L. Let r ∈ S be distinct

from and not adjacent to p. Suppose that both of the following hold:

• {s, t} ⊂ L is not good with respect to r,

• {t, p} ⊂ L is not good with respect to r or p ∈ L is not good

with respect to r.

Then L is exposed.

We now describe particular subsets of pairs of maximal spherical

residues.

Definition 7.4. Let L ⊂ S be a maximal spherical subset. By Corol-

lary 2.4, 〈L〉 stabilises a unique maximal cell σL ⊂ Aamb. Let CL be the

collection of vertices in σL and let DL be the elements of CL incident

to each Wl for l ∈ L.

When L is irreducible, then by Corollary 2.4 it is easy to see that

DL consists of two antipodal vertices. In general, let L = L1 t · · · tLk
be the decomposition of L into maximal irreducible subsets. Let σL =

σ1 × · · · × σk be the induced product decomposition of the associated

cell. Then DL is a product of pairs of antipodal vertices {ui, vi} for

each σi. Let πi : DL → {ui, vi} be the coordinate projections.

Definition 7.5. For each ordered pair (L, I) of maximal spherical

subsets of S, we define the following subset EL,I ⊆ DL. First, for

each i = 1, . . . , k, consider the following EiL,I ⊆ DL. If Li is exposed

or Li ⊂ I, then we take EiL,I = DL. Otherwise, since I is maximal

spherical, there is r ∈ I with Li ∪ {r} not spherical. Moreover, by

Lemma 7.2, there is {s, t} ⊂ Li that is good with respect to r. Then

we take EiL,I = CL ∩∆{s,t},r, where in Definition 5.1 we substitute L

with Li. Note that such EiL,I is contained in DL and equal π−1i (ui)

or π−1i (vi). Furthermore, EiL,I does not depend on {s, t} and r by

Proposition 6.1. We define EL,I = E1
L,I ∩ · · · ∩ E

k
L,I .

Remark 7.6. In Definition 7.5, in the case where Li is neither exposed

nor a subset of I, the set EiL,I can be characterised in the following

alternate way that does not involve the notion of a good pair. Namely,

by Remark 6.3 and Lemma 6.2 we have that ∆{s,t},r is the fundamental

domain for Li that is contained in Φ(Ws′ , wCI), for any s′ ∈ S that is

not a leaf of the Coxeter–Dynkin diagram of Li and (s′, w) the unique

simple base with support Li and core s′.
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Definition 7.7. We define the complexity of S, denoted K(S), to be

the ordered pair of numbers(
K1(S),K2(S)

)
=
(∑

L6=I d(CL, CI),
∑

L6=I d(EL,I , EI,L)
)

,

where L and I range over all maximal spherical subsets of S. For

two Coxeter generating sets S and Sτ , we define K(Sτ ) < K(S) if

K1(Sτ ) < K1(S), or K1(Sτ ) = K1(S) and K2(Sτ ) < K2(S).

In the following lemma we prove that elementary twists preserve

exposed L. This will enable us later to trace the change of K2(S).

Definition 7.8. Let L ⊂ S be maximal spherical and let τ be an

elementary twist with S \ (J ∪ J⊥) = A t B as in the definition of an

elementary twist in the Introduction. We define the following spherical

subset Lτ ⊂ τ(S). If L ⊆ A ∪ J ∪ J⊥, then we set Lτ = L. If

L ⊆ B ∪ J ∪ J⊥, then we set Lτ = wJLw
−1
J . Note that this definition

is not ambiguous if L ⊆ J ∪ J⊥, since then by the maximality of L

we have J ⊆ L and hence L = wJLw
−1
J . If L′ is an irreducible subset

of L, then similarly L′τ denotes L′ or wJL
′w−1J depending on whether

L ⊆ A ∪ J ∪ J⊥ or L ⊆ B ∪ J ∪ J⊥ as before. Note that L′τ might

depend on L, but only if L′ ( J . In particular this cannot happen for

|L′| ≥ 3 and |J | = 2.

Note that Lτ ⊂ τ(S) is still maximal spherical and the assignment

L→ Lτ is a bijection between the maximal spherical subsets of S and

τ(S).

Lemma 7.9. Let τ be an elementary twist of S. Let L be a maximal

irreducible subset of a maximal spherical subset of S. If |L| = 3 and L

is exposed in S, then Lτ is exposed in τ(S).

Proof. We can assume that τ is an elementary twist with J = {s, t} and

mst odd, since otherwise the defining graph of S is invariant under τ .

Let S \ ({s, t}∪{s, t}⊥) decompose into AtB as in the definition of an

elementary twist. Without loss of generality assume L ⊂ A ∪ {s, t} ∪
{s, t}⊥. Then Lτ = L.

First consider the case where {s, t} is disjoint from L. Then l ∈ L
is adjacent to r ∈ S if and only if τ(l) = l is adjacent to τ(r) in the

defining graph of τ(S) and mlr = mτ(l)τ(r). In particular (Lτ )⊥ =

τ(L⊥). Then Lτ is exposed.

Secondly, consider the case where {s, t} ⊂ L. Then (Lτ )⊥ = τ(L⊥).

Moreover, since k = 1 or 2 elements among s, t are not adjacent to any

element of S \ (L∪L⊥), we have that S \ (L∪L⊥) is contained entirely
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in A or B. Consequently, there are k elements among τ(s) = s, τ(t) = t

that are not adjacent to any elements of τ(S \ (L ∪ L⊥)), and thus Lτ
is exposed.

Thirdly, consider the case where {s, t} ∩L = {t}. Then t is the only

element of L adjacent to some element of S \ (L∪L⊥). Note also that

since t ∈ L, s /∈ L, we have L⊥ ⊆ A ∪ {s, t}⊥. Thus (Lτ )⊥ = τ(L⊥).

Moreover, none of the elements of τ(S \ (L ∪ L⊥)) is adjacent to an

element of Lτ \ {t}, and so Lτ is exposed. �

Remark 7.10. (i) Suppose that Li in Definition 7.5 is not exposed

and that we have Li ⊂ I. Then we also have (Li)τ ⊂ Iτ in τ(S).

Thus by Lemma 7.9 EiL,I = DL if and only if EiLτ ,Iτ = DLτ .

(ii) Consequently, by Remark 7.6, if L ∪ I ⊆ A ∪ J ∪ J⊥, then

E(Li)τ ,Iτ = ELi,I and so in particular we have d(EL,I , EI,L) =

d(ELτ ,Iτ , EIτ ,Lτ ). We have the same conclusion for L ∪ I ⊆
B ∪ J ∪ J⊥, since then E(Li)τ ,Iτ = wJELi,I .

(iii) Suppose that L ⊆ A ∪ J ∪ J⊥ and I ⊆ B ∪ J ∪ J⊥ with J ⊆ I.

Then CI = wJCI = CIτ . Consequently, by Remark 7.6 we have

E(Li)τ ,Iτ = ELi,I . Analogously, if L ⊆ B ∪ J ∪ J⊥ and J ⊆ I,

then E(Li)τ ,Iτ = wJELi,I .

8. Proof of the main theorem : exposed components

We keep the setup from Section 5. The Main Theorem reduces to

the following.

Theorem 8.1. Let S be a Coxeter generating set of type FC angle-

compatible with a Coxeter generating set S′. Suppose that any Cox-

eter generating set twist-equivalent to S is 3-rigid. Assume moreover

that S has minimal complexity among all Coxeter generating sets twist-

equivalent to S. Then S is conjugate to S′.

The main step in the proof of Theorem 8.1 will be to establish the

consistency of doubles.

Definition 8.2. Let S be a Coxeter generating set and let I ⊂ S be

irreducible spherical with |I| = 2. We say that I is consistent if for any

simple markings µ1, µ2 with supports containing I and cores s1, s2 ∈ I
the pair Φµ1

s1 ,Φ
µ2
s2 is geometric (which means Φµ1

s1 = Φµ2
s2 for s1 = s2).

Otherwise we say that I is inconsistent. We say that S has consistent

doubles, if any such I is consistent.

In the following we use the notation from Definition 3.12.
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Definition 8.3. Let {s, t} ⊂ S be irreducible spherical. We say that

components A1, A2 of S \ ({s, t} ∪ {s, t}⊥) are compatible if ΦA1,s =

ΦA2,s and ΦA1,t = ΦA2,t. We say that a component A of S \ ({s, t} ∪
{s, t}⊥) is self-compatible if the pair ΦA,s,ΦA,t is geometric.

Note that if all components of {s, t} are compatible and self-compatible,

then {s, t} is consistent. We will prove the compatibility in different

ways depending on the type of the components.

Definition 8.4. Let {s, t} ⊂ S be irreducible spherical. A compo-

nent A of S \ ({s, t} ∪ {s, t}⊥) is big if there is r ∈ A with {s, t, r}
not spherical. Otherwise A is small. We say that a component A of

S \ ({s, t} ∪ {s, t}⊥) is exposed if there is p ∈ A such that {s, t, p} is

exposed.

The goal of this section is the following.

Proposition 8.5. Under the assumptions of Theorem 8.1, if there is

an exposed component of S \ ({s, t}∪{s, t}⊥), then {s, t} is consistent.

In the proof we will need the following terminology and lemmas.

Definition 8.6. Let J ⊂ S be irreducible spherical. ByWJ we denote

the union ofWj over all reflections j ∈ 〈J〉. The components of Aamb \
WJ are called sectors for J . The two sectors containing the geometric

fundamental domains for J are called geometric.

Lemma 8.7. Under the hypotheses of Theorem 8.1, let J ⊂ S be

exposed with |J | = 3. Suppose that we have simple markings µ1, µ2
with supports contained in J , and cores s1, s2. Then the pair Φµ1

s1 ,Φ
µ2
s2

is geometric.

Proof. Case 1. The unique component of S \ (J ∪ J⊥) has no

element adjacent to an element of J. Since S \ (J ∪ J⊥) is a

single component, all the walls Wr for r ∈ S \ (J ∪ J⊥) lie in Aamb

in a single sector Λ for J . If Λ is a geometric sector, then the pair

Φµ1
s1 ,Φ

µ2
s2 is geometric, since by Lemma 3.3 each Φµi

si is the halfspace

for si containing Λ.

If Λ is not geometric, suppose that it is of form wΛ0 for Λ0 a geo-

metric sector for J and w ∈ 〈J〉. Let w = t0 · · · tn−1 with ti ∈ J

and minimal n. Consider the following Coxeter generating sets Si with

S0 = S and elementary twists τi with Si+1 = τi(Si). Namely, we set

Ji = {ti}, Ai = J \ (ti ∪ t⊥i ) (which is a component of S \ (ti ∪ t⊥i )),

and Bi = S \ (Ji ∪ J⊥i ∪Ai). The elementary twist τi conjugates Bi by
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ti and fixes the other elements of Si. Let τ = τn−1 ◦ · · · ◦ τ0, so that

Sn = τ(S).

We now argue, similarly as in [9, §7.2], that K1(τ(S)) = K1(S)

and K2(τ(S)) < K2(S). A maximal spherical subset L of S either

contains J , and is then called idle or intersects S \ (J ∪ J⊥). Thus all

DI with I ⊂ S maximal spherical that are not idle, are contained in Λ.

For L idle we have DLτ = DL. In particular, for all maximal spherical

I ⊂ S we have CIτ = w−1CI , implying K1(τ(S)) = K1(S).

To compare K2(τ(S)) and K2(S), first note that if both L and I are

maximal spherical and idle (resp. not idle), then by Remark 7.10(ii)

we have d(EL,I , EI,L) = d(ELτ ,Iτ , EIτ ,Lτ ). Now suppose that L is idle

and I is not idle. Then by Remark 7.10(iii) we have EIτ ,Lτ = w−1EI,L.

Furthermore, J ⊂ L is maximal irreducible, and so the decomposition

of L into maximal irreducible subsets has the form L = L1 t · · · t Lk
with L1 = J . Since J is exposed, by Lemma 7.9 we have E1

Lτ ,Iτ
=

D(Lτ ) = D(L) = E1
L,I . For i 6= 1 we have Li ⊆ J⊥ and so by

Remark 7.10(ii) we have EiLτ ,Iτ = w−1EiL,I , which equals EiL,I since w

commutes with Li. Thus ELτ ,Iτ = EL,I . Let β = β′β′′ be a minimal

gallery from a chamber in EI,L to a chamber x ∈ EL,I , where β′ ⊂ Λ

and β′′ is contained in the J-residue containing x. (Such a gallery

exists by [11, Thm 2.9].) Then w−1β′ connects a chamber in EIτ ,Lτ to

a chamber in ELτ ,Iτ , proving K2(τ(S)) < K2(S).

Case 2. The unique component of S \ (J ∪ J⊥) has an element

r′ adjacent to an element t ∈ J. Let Λ be a sector for J with

Λ ∪ tΛ containing Wr′ . If Λ or tΛ is a geometric sector, then the pair

Φµ1
s1 ,Φ

µ2
s2 is geometric as in Case 1. Suppose now that neither Λ nor tΛ

is geometric. Let w ∈ 〈J〉 be of minimal word length with wΛ0 = Λ or

tΛ and Λ0 a geometric sector for J . Say we have wΛ0 = Λ.

Since Wr′ intersects Wt, there is t′ ∈ J satisfying wt′w−1 = t. By

[5, Prop 5.5] there is n ≥ 0, elements t0 = t, . . . , tn = t′ ∈ J and

s0, . . . sn−1 ∈ J such that for each i = 0, . . . , n− 1 we have si 6= ti, and

for

wi =

{
si, if si and ti commute

the longest word in 〈si, ti〉, otherwise

we have

• witi+1w
−1
i = ti, and

• w = w0 · · ·wn−1 or w = tw0 · · ·wn−1.
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We focus on the case where w = w0 · · ·wn−1. Construct the following

Coxeter generating sets Si ⊃ J with S0 = S and elementary twists τi
with Si+1 = τi(Si). We will also get inductively that the unique com-

ponent of Si\(J∪J⊥) does not have an element adjacent to an element

of J distinct from ti.

If si and ti commute, we set Ji = {si}, Ai = J\(si∪s⊥i ), Bi = S\(Ji∪
J⊥i ∪ Ai). The elementary twist τi conjugates Bi by si = wi and fixes

the other elements of Si. Note that Ai is a component of S \ (Ji ∪ J⊥i )

since ti ∈ s⊥i . If si and ti do not commute, we set Ji = {si, ti} and keep

the same formulas for Ai, Bi. Then the elementary twist τi conjugates

Bi by wi and fixes the other elements of Si.

We argue analogously as in Case 1 to obtain K1(Sn) = K1(S0). For L

idle and I not idle we also obtain analogously EIτ ,Lτ = w−1EI,L, ELτ ,Iτ =

EL,I . Let β = β′β′′ be a minimal gallery from a chamber in EI,L to

a chamber x ∈ EL,I , where β′ ⊂ Λ or tΛ and β′′ is contained in the

J-residue containing x. Then w−1β′ connects a chamber in EIτ ,Lτ to

x ∈ ELτ ,Iτ for β′ ⊂ Λ or to a chamber adjacent to x for β′ ⊂ tΛ.

Moreover, in the latter case β′′ has length at least 2 by the minimality

assumption on w. This shows d(ELτ ,Iτ , EIτ ,Lτ ) < d(EL,I , EI,L) and

hence K2(Sn) < K2(S0).

If w = tw0 · · ·wn−1, then we start with an additional elementary

twist in 〈t〉 and we continue analogously. �

Lemma 8.8. Under the assumptions of Theorem 8.1, if S \ ({s, t} ∪
{s, t}⊥) is a single component that is small, then it is self-compatible.

Proof. Let A = S \ ({s, t} ∪ {s, t}⊥). Let µ be a simple marking with

support J containing s, t guaranteed by Remark 3.5. Without loss

of generality, discarding part of J , we can assume that the Coxeter–

Dynkin diagram of J is a path starting with s. Thus µ = ((s, tpw), r))

where p ∈ A and s commutes with pw. Since A is the unique com-

ponent of S \ ({s, t} ∪ {s, t}⊥), we have that r is adjacent to s. Thus

W = pwWr intersects Ws and so by Corollary 2.7 there is a geometric

fundamental domain F for {s, t} that is contained in both Φ(tWs,W),

and Φ(Wt,W) = Φ(Wt, sW), which is Φµ′

t for µ′ = ((t, spw), r). Thus

by Lemma 3.3 the pair Φµ
s ,Φ

µ′

t is geometric, as desired. �

Proof of Proposition 8.5. Let J = {s, t, p} be exposed and let A be the

component of S \ ({s, t} ∪ {s, t}⊥) containing p. Consider first the

case where A = S \ ({s, t} ∪ {s, t}⊥). If A is small, then it suffices to
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apply Lemma 8.8. If A is big, then let r ∈ A with {s, t, r} not spheri-

cal. By Lemma 8.7, the halfspaces for s, t determined by the markings

((s, t), r), ((t, s), r) are geometric and hence A is self-compatible.

It remains to consider the case where A ( S \ ({s, t} ∪ {s, t}⊥).

Let B be a component of S \ ({s, t} ∪ {s, t}⊥) distinct from A and

let r ∈ B. Since the unique component of S \ (J ∪ J⊥) has no el-

ement adjacent to one of s, t, we have that {s, t, r} is not spherical.

By Lemma 8.7, the halfspaces for s, t determined by the markings

((s, t), r), ((s, tp), r), ((t, s), r), ((t, sp), r) are geometric and hence B is

compatible with A and they are both self-compatible. �

Corollary 8.9. Under the assumptions of Theorem 8.1, each small

component of S \ ({s, t} ∪ {s, t}⊥) is self-compatible.

Proof. Let A be a small component of S \ ({s, t} ∪ {s, t}⊥). If A =

S \ ({s, t} ∪ {s, t}⊥), then it suffices to apply Lemma 8.8. Otherwise,

let r be an element of a component B of S \ ({s, t} ∪ {s, t}⊥) distinct

from A. Let p ∈ A, suppose without loss of generality msp = 2, and

set µ = ((s, tp), r). If A is exposed, then we can apply Proposition 8.5.

Otherwise, by Lemma 7.3 we have that {t, p} ⊂ {s, t, p} is good with

respect to r. Thus by the 3-rigidity of S and Proposition 3.11, we

have Φ(Wt, pWr) = Φ(Wt, psWr). By Lemma 2.6 there is a geometric

fundamental domain F for {s, t} that is contained in both Φ(tWs, pWr)

and Φ(Wt, pWr), which is Φµ′

t for µ′ = ((t, sp), r). Thus by Lemma 3.3

the pair Φµ
s ,Φ

µ′

t is geometric, and so A is self-compatible. �

9. Big components

The content of this section was designed together with Pierre-Emmanuel

Caprace.

Lemma 9.1. Under the assumptions of Theorem 8.1, if mst = 3, then

{s, t} is consistent.

Proof. By Proposition 8.5 we can assume that no component of S \
({s, t} ∪ {s, t}⊥) is exposed.

For a big component B of S \ ({s, t} ∪ {s, t}⊥) and r ∈ B with

{s, t, r} not spherical, let F be the geometric fundamental domain for

{s, t} lying in Φ(sWt,Wr) = Φ(tWs,Wr). By Lemma 3.3 we have that

F lies in ΦB,s ∩ ΦB,t, which thus form a geometric pair. Hence B is

self-compatible and by Corollary 8.9 it remains to prove that all ΦB,s

coincide (including small B).
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Otherwise, let A be the union of all components Ai with one ΦAi,s,

and B the union of components Bi with the other ΦBi,s. Let τ be the

elementary twist that sends each element b ∈ B to wstbw
−1
st , where

wst = tst, and fixes the other elements of S. For a contradiction, we

will first prove that if there are incompatible big components, then

K1(τ(S)) < K1(S). For maximal spherical L ⊂ S we say that L is

twisted if it contains an element of B. We then have CLτ = wstCL.

If I is maximal spherical and not twisted, then we have CIτ = CI .

Consequently d(CLτ , CIτ ) might vary from d(CL, CI) only if, say, L is

twisted and I is not twisted, and {s, t} 6⊆ L, I. Such L, I exist exactly if

there are incompatible big components. Then CL, CI lie in the opposite

halfspaces of tWs = Wwst , and consequently d(CLτ , CIτ ) < d(CL, CI),

as desired.

If all big components are compatible, we have K1(τ(S)) = K1(S),

and we need to analyse the effect of τ on K2. Consider maximal spher-

ical subsets L, I ⊂ S. If both L, I are twisted, or both are not twisted,

then by Remark 7.10(ii) we have d(ELτ ,Iτ , EIτ ,Lτ ) = d(EL,I , EI,L).

Suppose now that L is twisted and intersects Bi ⊆ B and I is not

twisted. If I ⊆ {s, t} ∪ {s, t}⊥, the same equality holds, so we can

assume I 6⊆ {s, t} ∪ {s, t}⊥.

We claim EL,I ⊂ ΦB,s. Indeed, let L1 ⊆ L be maximal irreducible

containing {s, t}, and let u ∈ L1 with {s, t, u} irreducible, so that

u ∈ Bi. Let r ∈ I \ ({s, t} ∪ {s, t}⊥). Since B is self-compatible,

after possibly interchanging s with t, we can assume that u, s, t are

consecutive in the Coxeter–Dynkin diagram of L1. Then s is not a

leaf in the Coxeter–Dynkin diagram of L1 and by Remark 7.6 we have

EL,I ⊂ Φµ
s for µ = ((s, L1), r). Since Kµ

s,t ⊂ Bi, the claim follows. The

proof of the lemma splits now into two cases.

Case 1. I contains {s, t}. Interchanging the roles of L and I, from

the claim we have EI,L ⊂ ΦA,s. Consequently, EL,I and EI,L lie in the

opposite geometric fundamental domains for {s, t}. In particular, they

lie in the opposite halfspaces of tWs =Wwst . By Remark 7.10(iii), we

have ELτ ,Iτ = wstEL,I and EIτ ,Lτ = EI,L. Thus d(ELτ ,Iτ , EIτ ,Lτ ) <

d(EL,I , EI,L).

Case 2. I contains an element r not adjacent to s or t.

By the claim and Lemma 3.3 we have EL,I ⊂ tΦB,s. Consider the

marking µ = ((s, t), r). Since Kµ
s,t ⊆ A, we have Wr ⊂ tΦA,s, and so

EI,L ⊂ tΦA,s. Furthermore, we have EIτ ,Lτ = EI,L as in Case 1. To

finish as in Case 1, it remains to prove ELτ ,Iτ = wstEL,I .
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To this end, let u ∈ L1 as in the proof of the claim. Note that

in the Coxeter–Dynkin diagram of (L1)τ we have consecutive vertices

s, t and τ(u). We have that (L1)τ is not exposed by Lemma 7.9.

By Lemma 7.3, u ∈ L1, {u, s} ⊂ L1 are good with respect to r and

τ(u) ∈ (L1)τ , {τ(u), t} ⊂ (L1)τ are good with respect to τ(r) = r.

Consequently it suffices to prove ∆(τ(u),t),r = wst∆
(u,s),r. This follows

from the fact that the reflections sts and sus commute, hence each of

the halfspaces of sWu is preserved by wst, and thus Φ(twstWu,Wr) =

Φ(wstsWu,Wr) = wstΦ(sWu,Wr). �

For mst 6= 3, we will need the following measure of consistency.

Definition 9.2. Let {s, t} ⊂ S be irreducible spherical and let V be

one of the two geometric fundamental domains for {s, t}. We define

the consistency CV (s, t) = CV (t, s) as the number of maximal spherical

L ⊂ S with CL intersecting sV ∪V ∪tV . We say that inconsistent {s, t}
is peripheral if CV (s, t) is maximal among all inconsistent {s, t} ⊂ S

and both V .

Obviously, if S does not have consistent doubles, then there is pe-

ripheral {s, t}. The following remark describes the role of the union

sV ∪ V ∪ tV .

Remark 9.3. Let {s, t} ⊂ S be irreducible spherical and let V be a

geometric fundamental domain for {s, t}. Suppose that we have r ∈ S
with Wr ⊂ sV ∪ V ∪ tV . Then µ = ((s, t), r), µ′ = ((t, s), r) are

markings, and we have V ⊂ Φµ
s ,Φ

µ′

t . Consequently, the component

of S \ ({s, t} ∪ {s, t}⊥) containing r is self-compatible. Conversely, if

{s, t, r} is not spherical, and the component B of S \ ({s, t} ∪ {s, t}⊥)

containing r is self-compatible, thenWr ⊂ sV ∪V ∪ tV for a geometric

fundamental domain V for {s, t}. Furthermore, V depends only on B,

not on r.

Proposition 9.4. Under the assumptions of Theorem 8.1, if {s, t} is

peripheral, then big components of S \ ({s, t}∪ {s, t}⊥) are compatible.

Moreover, if there is a big component that is not self-compatible, then all

Wr with {s, t, r} not spherical are contained in a single sector for {s, t}.

In the proof we will need the following key notion.

Definition 9.5. Let {s, t} ⊂ S be irreducible spherical. A folding is a

map f : 〈s, t〉 → {s, Id, t} such that for each w ∈ 〈s, t〉 we have

• f(ws) = f(w) or f(ws) = f(w)s, and
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• f(wt) = f(w) or f(wt) = f(w)t.

In other words, f is a simplicial type-preserving map on the Cayley

graph of 〈s, t〉.

Example 9.6. Let mst = 3 and wst = tst. Let f : 〈s, t〉 → {s, Id, t} be

the map whose restriction to {s, Id, t} is the identity map and whose

restriction to {wsts, wst, wstt} is the reflection wst. It is easy to see

that f is a folding.

Lemma 9.7. Let f : 〈s, t〉 → {s, Id, t} be a folding. Let V be a geomet-

ric fundamental domain for {s, t}. Let f̃ : A(0)
amb → sV ∪ V ∪ tV be the

map sending each wV to f(w)V via f(w)w−1, where w ∈ 〈s, t〉. Then

f̃ induces a simplicial map on A(1)
amb. Moreover, for x ∈ wV, y ∈ w′V

we have d(f̃(x), f̃(y)) = d(x, y) if and only if the restriction of f to the

vertices of some path π from w to w′ in the Cayley graph of 〈s, t〉 is

injective.

Proof. To prove the first assertion, consider adjacent chambers g, gp

of A(1)
amb, where g ∈ W, p ∈ S′. If g, gp belong to the same wV , then

f̃(g) = f(w)w−1g and f̃(gp) = f(w)w−1gp are obviously adjacent. If

g, gp belong to distinct translates of V , then we have, say, g ∈ wV, gp ∈
wsV . In that case we also have wsw−1g = gp and so g and gp are in the

same orbit of the action of 〈s, t〉 on A(0)
amb. Consequently, if f(ws) =

f(w), then since f(w)V intersects each 〈s, t〉-orbit in one chamber,

we have f̃(g) = f̃(gp). On the other hand, if f(ws) = f(w)s, then

f(ws)(ws)−1 = f(w)w−1, and hence f̃(g) = f(w)w−1g and f̃(gp) =

f(ws)(ws)−1gp are adjacent.

For the second assertion, let γ be a minimal gallery from x to y, let

wV, . . . , w′V be the distinct consecutive translates of V traversed by γ

and let π = w · · ·w′ be the corresponding path in the Cayley graph of

〈s, t〉. If d(f̃(x), f̃(y)) = d(x, y), then in view of the previous paragraph

the consecutive vertices of the path f(π) are distinct, as desired. Con-

versely, if d(f̃(x), f̃(y)) < d(x, y), then a pair of consecutive vertices of

f(π) coincides. Since γ was minimal, the length of of π is at most mst,

and consequently the length of the second path π′ from w to w′ in the

Cayley graph of 〈s, t〉 is ≥ mst > 2. Since f takes only values s, Id, t,

the restriction of f to π′ is also not injective. �

Proof of Proposition 9.4. Let Λ0 be the geometric sector containing V

from Definition 9.2. First consider the case where mst is odd, so the

longest word wst in 〈s, t〉 is a reflection. This case will not require the

peripherality hypothesis.
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We begin with focusing entirely on the case where a component B of

S \ ({s, t}∪{s, t}⊥) is not self-compatible. Observe that if p ∈ B is ad-

jacent to s, then it is also adjacent to t (and vice versa): indeed, other-

wise the pair of halfspaces determined by markings ((s, t), p), ((t, s), p)

would be geometric by Corollary 2.7 (and Lemma 3.3).

We now claim that if r ∈ B is not adjacent to s, then s ∈ {s, t} is

not good with respect to r. Indeed, otherwise let µ1 = ((s, ∅), r), µ2 =

((s, t), r). If Φµ1
s = Φµ2

s , then Lemma 2.6 (and Lemma 3.3) contra-

dict the assumption that B is not self-compatible. Thus by Proposi-

tion 3.13, there is a vertex p 6= t on a minimal length path from r to t

in the defining graph of S outside s ∪ s⊥, with p adjacent to s and

{s, p} inconsistent. By Lemma 9.1, we have mst,msp > 3, so from FC

it follows that p is not adjacent to t. This contradicts the observation

above, and justifies the claim.

Analogously t ∈ {s, t} is not good with respect to r. Consequently,

by Lemma 4.2, the elements of B are adjacent neither to s nor t. Thus

B is also a component of S \ (s∪ s⊥) and a component of S \ (t∪ t⊥).

Furthermore, all Wr for r ∈ B lie in a single sector wBΛ0 for some

wB ∈ 〈s, t〉 and by Remark 9.3 we have wB 6= s, Id, t, wsts, wst, wstt.

Consequently, for L maximal spherical intersecting B, we have CL ⊂
wBV .

Let j be the first letter in the minimal length word representing wB.

We set τB to be the composition of elementary twists conjugating B

by the letter s or t in the order in which they appear as consecutive

letters in wBj. As a result, for L maximal spherical intersecting B,

we have CLτB = jw−1B CL ⊂ jV . (Here by LτB with τB a composition

τn ◦ · · · ◦ τ1 of elementary twists and σ = τn−1 ◦ · · · ◦ τ1 we mean,

inductively, (Lσ)τn .)

Consider now a self-compatible component B of S \({s, t}∪{s, t}⊥).

By Remark 9.3 either

(i) for each L maximal spherical intersecting B, we have that CL
intersects sV ∪ V ∪ tV , or

(ii) each such CL intersects wstsV ∪ wstV ∪ wsttV .

If B is big, then there is L for which we can replace the word ‘intersects’

by ‘is contained in’ in the preceding statement. In case (ii), we perform

an elementary twist τB with J = {s, t}, which sends each p ∈ B to

wstpw
−1
st . As a result, for L maximal spherical intersecting B, we have

CLτB = wstCL, which intersects sV ∪V ∪ tV . Let τ be the composition

of all τB above.
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To summarise, consider the folding f : 〈s, t〉 → {s, Id, t} defined by:

• f(w) = w for w = s, Id, t,

• f(w) = wstw for w = wsts, wst, wstt,

• f(w) = j for other w, where j is the first letter in the minimal

length word representing w.

By Lemma 9.7, for x ∈ wV, y ∈ w′V we have d(f̃(x), f̃(y)) ≤ d(x, y)

with equality if and only if w = w′ or both w,w′ lie in {s, Id, t} or

they both lie in {wsts, wst, wstt}. Furthermore, for each L maximal

spherical we have CLτ ⊇ f̃(CL) (where the inclusion is strict exactly

when L ⊇ {s, t}). Thus we get K1(τ(S)) ≤ K1(S). Moreover, we have

strict inequality as soon as there are two incompatible big components

or a big component B that is not self-compatible, and Wr 6⊂ wBΛ0

with {s, t, r} not spherical.

Secondly, consider the case where mst is even. We treat compo-

nents B that are not self-compatible exactly as before. Suppose now

that B is a self-compatible component of S \ ({s, t} ∪ {s, t}⊥) as in

case (ii). A refined component of B is a component of B \ (s⊥ ∪ t⊥).

Let L ⊂ S be maximal spherical intersecting B. Suppose that CL
does not intersect wstV . Then it is contained in one of swstV, twstV ,

say swstV . By the maximality of L, there is r ∈ L that is not adjacent

to s and so Wr ⊂ swstΛ0. In particular r is not adjacent to t and

so r lies in a refined component B′ of B. We claim that s ∈ {s, t}
is not good with respect to r. Indeed, otherwise as before let µ1 =

((s, ∅), r), µ2 = ((s, t), r) so that Φµ1
s 6= Φµ2

s . Thus by Proposition 3.13,

there is a vertex p 6= t on a minimal length path ω from r to t in the

defining graph of S outside s ∪ s⊥, with p adjacent to s and {s, p}
inconsistent. Note that all the vertices of ω distinct from t lie in B′

except for possibly the vertex preceding t that might lie in B ∩ t⊥,

which is excluded below.

By Lemma 9.1, we have again mst,msp > 3, so from FC it follows

that p is not adjacent to t. Then pWs, sWp are disjoint from sWt, tWs.

Moreover, since p ∈ B′, we have Wp ⊂ wstsΛ0 ∪ wstΛ0 ∪ wsttΛ0,

and so pWs, sWp ⊂ wstsΛ0 ∪ wstΛ0 ∪ wsttΛ0. Consequently, there

is a geometric fundamental domain V ′ for {s, p} that contains V and

intersects CL for some L maximal spherical containing s, p. Since CL
is disjoint from sV ∪V ∪ tV , we have CV ′(s, p) > CV (s, t), contradicting

the hypothesis that {s, t} is peripheral. This justifies the claim.

By the claim, there is no element in B′ adjacent to t or to B ∩ t⊥.

Thus B′ is a component of S \ (s ∪ s⊥).
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Furthermore, we will prove that for each L′ ⊂ S maximal spheri-

cal intersecting B′ we have that CL′ intersects swstV . Otherwise, for

r′ ∈ L′ that is not adjacent to s we have r′ ∈ B′ and Wr′ ⊂ wstΛ0.

Consequently, for µ1 = ((s, ∅), r), µ2 = ((s, ∅), r′) we have Φµ1
s 6= Φµ2

s .

Then by Proposition 3.13, there is an element p ∈ B′ with p adjacent

to s and {s, p} inconsistent. As before, this contradicts the hypothesis

that {s, t} is peripheral.

Consequently, for each self-compatible component B of S \ ({s, t} ∪
{s, t}⊥) as in case (ii), and its refined component B′, there is at least

one element wB′ among swst, wst, twst with CL ⊂ wB′V for all L max-

imal spherical intersecting B′.

We perform now a sequence of elementary twists as follows. We

treat the components that are not self-compatible as before. For a self-

compatible component B of S\({s, t}∪{s, t}⊥) as in case (ii) we do the

following. First, for each refined component B′ ⊂ B satisfying wB′ =

swst (resp. wB′ = twst) we apply the elementary twist with J = {s}
(resp. J = {t}) that conjugates all the elements of B′ by s (resp. t) and

fixes all the other elements of S. Afterwards, we apply the elementary

twist with J = {s, t} that conjugates the entire image of B under the

preceding elementary twists by wst. Let τ be the composition of all

these elementary twists. Then CLτ ⊇ f̃(CL) with f : 〈s, t〉 → {s, Id, t}
the folding defined by:

• f(w) = w for w = s, Id, t,

• f(w) = Id for w = wsts, wst, wstt,

• f(w) = j for other w, where j is the first letter in the minimal

length word representing w.

We can thus apply Lemma 9.7 as before. �

10. Small components

Proposition 10.1. Under the assumptions of Theorem 8.1, doubles

are consistent.

Proof. Otherwise, let {s, t} ⊂ S be peripheral and let V be as in Defi-

nition 9.2. By Proposition 8.5, Corollary 8.9, and Proposition 9.4, we

can assume that none of the components of S \ ({s, t} ∪ {s, t}⊥) are

exposed, that all small components are self-compatible, and that big

components are compatible. Thus it remains to prove that each small

component is compatible with any other component and that all big
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components are self-compatible. Divide the components into two fami-

lies {Ai} and {Bi} such that all ΦAi,s coincide and are distinct from all

ΦBi,s, which also coincide. Let A (resp. B) be the union of all Ai (resp.

Bi) and suppose that all big components are in B. If there are self-

compatible big components, then this implies V ⊂ ΦBi,s. If there are

no self-compatible big components, then, after possibly switching V ,

we can also assume V ⊂ ΦBi,s.

Let wst be the longest word in 〈s, t〉 and for each Ai let τAi be the

elementary twist that sends each element a ∈ Ai to wstaw
−1
st , and fixes

the other elements of S. For a big component Bi that is not self-

compatible, we define wBi , τBi as in the proof of Proposition 9.4. Let

τ be the composition of all these τAi and τBi . Let L ⊂ S be a maximal

spherical subset. L is twisted if it contains an element of A. In that

case s, t ∈ L. L is rotated if it contains an element of Bi that is not

self-compatible. If L is neither twisted nor rotated, it is idle.

Note that if we have rotated subsets, then by Proposition 9.4 we have

no idle subsets not containing {s, t}, and that all wBi coincide. Conse-

quently K1(S) = K1(τ(S)). We will now prove K2(S) < K2(τ(S)).

Consider maximal spherical subsets L, I ⊂ S. If both L, I are

twisted, both are rotated, or both are idle, by Remark 7.10(ii) we

have d(ELτ ,Iτ , EIτ ,Lτ ) = d(EL,I , EI,L). Suppose for a moment that L

is twisted and I is rotated or idle. If I ⊆ {s, t} ∪ {s, t}⊥, the same

equality holds, so we can assume I 6⊆ {s, t} ∪ {s, t}⊥. We then have

EL,I ⊂ ΦA,s, word for word as in the proof of the claim in Lemma 9.1,

and so EL,I ⊂ wstV . Analogously, if L is idle and contains {s, t},
and I is rotated or twisted, we have EL,I ⊂ V , except in the ‘special’

case where L ⊆ {s, t} ∪ {s, t}⊥ and so, say, L1 = {s, t} is exposed

and E1
L,I = DL. Furthermore, for L idle not containing {s, t} we have

CL ⊂ sV ∪ V ∪ tV , and for L ⊂ Bi rotated we have CL ⊂ wBiV . This

accounts for all possible positions of EL,I . We now need to analyse

the effect of τ on all EL,I . Let f be the folding from the proof of

Proposition 9.4. We will prove that except in the ‘special’ case where

L1 = {s, t}, we have

ELτ ,Iτ = f̃(EL,I). (∗)

Case 1. I is twisted or idle containing {s, t}. Then (∗) follows

from Remark 7.10.(iii).

Case 2. I is rotated or idle not containing {s, t}. In that case L

contains {s, t}. Suppose first that I is idle not containing {s, t}, and so

L is twisted. Then (∗) amounts to ELτ ,Iτ = wstEL,I . Let r ∈ I\({s, t}∪
{s, t}⊥). We have mst = 4 or 5. If mst = 5, we choose u ∈ L1 as in
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Figure 2. On the right both possible positions of f̃(Σ)

for the shaded sector of Σ

the proof of the claim in Lemma 9.1 (possibly interchanging s with t).

Each of the halfspaces of tsWu is preserved by wst, since the reflections

tstst and tsust commute, and so wstΦ(tsWu,Wr) = Φ(wsttsWu,Wr).

This implies ELτ ,Iτ = wstEL,I as in Case 2 of the proof of Lemma 9.1.

If mst = 4, we have (stst)tsWu = stWu = sWu. Thus wst exchanges

the halfspaces of tsWu and sWu, and in fact acts on them as t does,

so in particular Φ(wstsWu,Wr) = Φ(tsWu,Wr). Since {u, s} ⊂ L1 is

good with respect to r, and S is 3-rigid, by Proposition 3.11 we have

Φ(tsWu,Wr) = wstΦ(sWu,Wr), and (∗) follows.

It remains to consider the case where I is rotated. Let r ∈ I

and suppose first mst = 4. Let K = Φ(sWu,Wr) ∩ tΦ(sWu,Wr),

which contains Wr as in the preceding paragraph. Since the pair

sΦ(sWt,Wr), tΦ(tWs,Wr) is not geometric, Wr may lie only in two

sectors for {u, s, t}, indicated in Figure 2, left. Denoting by Σ the

union of the interiors of these two sectors, we have that 〈s, t〉Σ lies

entirely in K. This implies (∗) for L idle since Σ and its image f̃(Σ)

under the folding lie in the same halfspace of sWu. It also implies (∗)
for L twisted, since Φ(tsWu, f̃(Σ)) = wstΦ(sWu,Σ). The case mst = 5

is similar: though the union Σ of possible sectors containing Wr is

larger (see Figure 2, right), its image f̃(Σ) under the folding, in both

possible cases for V , still lies entirely in one halfspace of tsWu, which

is wst invariant.

This ends the proof of (∗) as long as L1 6= {s, t}. Then by Lemma 9.7,

as long as L1, I1 6= {s, t}, we have d(ELτ ,Iτ , EIτ ,Lτ ) ≤ d(EL,I , EI,L),

with strict inequality if L, I are not both idle, both twisted or both ro-

tated. It remains to consider the case where I is idle with I1 = {s, t}.
Recall that then E1

I,L = DI and so EI,L = wstEI,L. Consequently,

if L is twisted, by (∗) we have d(ELτ ,Iτ , EIτ ,Lτ ) = d(EL,I , EI,L). If L
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is rotated, and chambers x ∈ EL,I , y ∈ EI,L realise the distance

d(EL,I , EI,L), then f̃(y) ∈ EIτ ,Lτ , and so by (∗) and Lemma 9.7 we

have d(ELτ ,Iτ , EIτ ,Lτ ) ≤ d(f̃(x), f̃(y)) < d(EL,I , EI,L).

To summarise, if there is a big component that is not self-compatible,

then there is maximal spherical L that is rotated and maximal spher-

ical I that contains {s, t}, hence not rotated. If all big components

are self-compatible, and there is a small component incompatible with

another component, then one of them is twisted and another is idle,

so there is maximal spherical L that is twisted and maximal spher-

ical I that is idle with I1 6= {s, t}. In both situations we obtain

K2(S) < K2(τ(S)), which is a contradiction. �

11. Making use of consistent doubles

In this section we prove Theorem 8.1, which as pointed out in Sec-

tion 8 implies the Main Theorem.

Lemma 11.1. Suppose that S has consistent doubles. Let L ⊂ S be

irreducible spherical and let r ∈ S with L∪{r} not spherical. Consider

non-commuting s, t ∈ L with {s, t, r} not spherical. Then ∆(s,t),r does

not depend on s, t, and we can denote it ∆L,r

Moreover, for L exposed, for CL the vertex set of any cell of Aamb

fixed by L, and for any chamber x incident to Wr, we have d(CL ∩
∆L,r, x) < d(CL ∩ wL∆L,r, x).

Proof. To start we focus on the first assertion. Since doubles are con-

sistent, by Remark 5.2 we have ∆(s,t),r = ∆(s,L),r. Consider first the

case where |L| ≥ 3. Then by Lemma 6.2 we have that ∆(s,L),r does

not depend on s as long as s is not a leaf of the Coxeter–Dynkin dia-

gram of L. However, if s is a leaf and t is not a leaf, since the doubles

are consistent observe that the pair Φ
(s,t),r
s ,Φ

(t,s),r
t is geometric. This

implies ∆(s,t),r = ∆(t,s),r and the assertion follows. In the case where

|L| = 2 it is enough to invoke that last observation.

For the second assertion, assume first that we have |L| = 2 and that

V is the sector for L containing ∆ := ∆L,r. Then by Remark 9.3 we

have Wr ⊂ sV ∪ V ∪ tV . The required inequality follows then from

e.g. Lemma 9.7 applied to one of the two foldings from the proof of

Proposition 9.4. If |L| = 3, suppose that s, t, p are consecutive vertices

in the Coxeter–Dynkin diagram of L. Since

Wr ⊂ Φ(tWs,∆)∩Φ(tWp,∆)∩Φ(sWt,∆)∩Φ(pWt,∆)∩Φ(psWt,∆),
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we have thatWr is contained in a sector for L separated by at most two

walls in WL from V . Since WL consists of at least 6 walls separating

∆ from wL∆, the inequality follows. �

Proof of Theorem 8.1. By Proposition 10.1, S has consistent doubles.

By Corollary 3.8, to prove Theorem 8.1 it suffices to show that for

any simple markings µ and µ′ with common core s ∈ S, we have

Φµ
s = Φµ′

s . For each component A of S \ (s∪ s⊥), by Remark 3.5 there

exists a simple marking µ with core s such that Kµ
s ⊆ A (where Kµ

s

is as in Definition 3.12). We now repeat the construction of halfspaces

associated to components from Definition 3.12, with {s, t} replaced

by s. Namely, since S has consistent doubles, by Proposition 3.13, if

Kµ′

s ⊆ A, then Φµ
s = Φµ′

s . Thus each component A of S \ (s ∪ s⊥)

determines a halfspace ΦA := Φµ
s for s. Two components A1, A2 are

compatible if ΦA1
= ΦA2

. We will show that all components of S \ (s∪
s⊥) are compatible.

Let A be a component of S \ (s ∪ s⊥) and let L ⊂ S be maximal

spherical intersecting A. Note that if s /∈ L, then there is m ∈ L

not adjacent to s and hence using the marking ((s, ∅),m) we observe

that CL ⊂ ΦA. Suppose now that L contains s, and let L1 ⊂ L

be maximal irreducible containing s and hence also containing some

t ∈ A. Let I ⊂ S be maximal spherical with some r ∈ I ∩ B for

another component B of S \ (s ∪ s⊥). If L1 is not exposed, then using

the marking µ = ((s, t), r), by the first assertion in Lemma 11.1, we

have EL,I ⊆ ΦA. If L is exposed, then by the second assertion in

Lemma 11.1, for each chamber y in EL,I realising the distance to any

fixed chamber of EI,L, we have y ∈ ΦA as well.

If some components of S \ (s ∪ s⊥) are not compatible, let A be

the union of all components Ai with one ΦAi,s, and B the union of

components Bi with the other ΦBi,s. Let τ be the elementary twist

that sends each element b ∈ B to sbs, and fixes the other elements

of S. Let L, I ⊂ S be maximal spherical. By the observation above

on CL, we have d(CLτ , CIτ ) ≤ d(CL, CI) with strict inequality if and

only if s /∈ L, I and L∩Ai, I∩Bj 6= ∅ or vice versa. Thus we can assume

that such L, I do not exist, and hence K1(τ(S)) = K1(S) so that we can

focus on K2. Then again from the above paragraph if L∩Ai, I∩Bj 6= ∅,
then the chambers realising the distance between EL,I and EI,L lie in

the opposite halfspaces for s. Thus d(ELτ ,Iτ , EIτ ,Lτ ) < d(EL,I , EI,L)

and consequently, K2(τ(S)) < K2(S), which is a contradiction. �
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