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Abstract. Given a group action on a finite-dimensional CAT.0/ cube complex, we give
a simple criterion phrased purely in terms of cube stabilisers that ensures that the group
satisfies the strong Tits alternative, provided that each vertex stabiliser satisfies the strong
Tits alternative. We use it to prove that all Artin groups of type FC satisfy the strong Tits
alternative.

1 Introduction

The Tits alternative and its many variants, originating in the work of Tits [27],
deals with a striking dichotomy at the level of subgroups of a given group. A group
satisfies the Tits alternative if every finitely generated subgroup either contains
a non-abelian free subgroup or is virtually soluble, and satisfies the strong Tits
alternative if this dichotomy holds also for infinitely generated subgroups. Tits
showed that linear groups in any characteristic satisfy the Tits alternative, while
linear groups in characteristic zero satisfy the strong Tits alternative [27]. Since
then, many groups of geometric interest, and in particular groups displaying non-
positively curved features, have been shown to satisfy the Tits alternative, includ-
ing mapping class groups of hyperbolic surfaces [20, 22], outer automorphism
groups of free groups [2,3], groups of birational transformations of compact com-
plex Kähler surfaces [4]. The aim of this short note is to give a simple criterion
to prove the Tits alternative for groups acting on finite-dimensional CAT(0) cube
complexes, and to discuss applications, in particular to a large family of Artin
groups, a class of groups generalising braid groups. We emphasise here that the
term “strong Tits alternative” has also been used in the literature to mean a dif-
ferent property, namely that every finitely generated subgroup virtually maps onto
a non-abelian free group, see for instance [1].
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Groups acting on CAT(0) cube complexes have a rich structure, and many tools
have been developed over the years in connection with the Tits alternative. Let
us mention in particular that Sageev–Wise proved the strong Tits alternative for
groups acting properly on CAT(0) cube complexes with a bound on the order of
finite subgroups [26]. Caprace–Sageev [5, Theorem F] found a non-abelian free
subgroup for groups acting on finite-dimensional CAT(0) cube complexesX with-
out a finite orbit in X [ @X , where @X is the visual boundary. Fernós [11, Theo-
rem 1.1] proved the analogous result for groups without a finite orbit in X [ @X
for @X the Roller boundary. For groups acting on CAT(0) cube complexes, it is
natural to ask whether the strong Tits alternative for all vertex stabilisers implies
the strong Tits alternative for the whole group. This is however not the case, as
already noted in [26], see Remark 2.3 below. In order to obtain such a combina-
tion result, it is necessary to impose additional conditions on the group and the
action. Such conditions do exist, and they generally require that, for a particular
class of subgroups of G, increasing sequences of subgroups eventually stabilise.
This condition is on the finite subgroups of G in the case of proper actions [26],
and on the finitely generated virtually soluble subgroups of G in the general case,
as was probably known to experts (see Corollary 2.2). However, such conditions
presuppose an understanding of the global structure of G by requiring a control
of subgroups of G in a given class. It seems to us preferable to have a criterion
that does not involve the global structure of G but instead focuses solely on cube
stabilisers. The main advantage of our criterion is thus to be formulated purely in
local terms, i.e. in terms of the cube stabilisers.

All the actions we consider are by cellular isometries. Stab.C / denotes the set-
wise stabiliser of a cube C .

Theorem A. Let G be a group acting on a finite-dimensional CAT.0/ cube com-
plex such that each vertex stabiliser satisfies the strong Tits alternative, and we
have the following property:

for every pair of intersecting cubes C;C 0; there exists a cube D
containing C such that Stab.C / \ Stab.C 0/ D Stab.D/:

(�)

Then G satisfies the strong Tits alternative.

As an application, we prove the strong Tits alternative for a large class of Artin
groups. Let us first recall their definition. Let S be a finite set. To every pair of ele-
ments s ¤ t 2 S , we associate mst D mts 2 ¹2; 3; : : : ;1º. The associated Artin
group AS is given by the following presentation:

AS D hS j sts � � �„ƒ‚…
mst

D tst � � �„ƒ‚…
mst

i;
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and the associated Coxeter groupWS is obtained by adding the relation s2 D 1 for
every s 2 S . For a subset S 0 of S , the subgroup of AS generated by S 0 is isomor-
phic to AS 0 (see [28]), so we think of AS 0 as a subgroup of AS , and call it a stan-
dard parabolic subgroup. The conjugates in AS of standard parabolic subgroups
are called parabolic subgroups of AS . An Artin group is said to be spherical if
WS is finite, and is of type FC if, for every subset S 0 � S such that mst <1 for
every s; t 2 S 0, the subgroup AS 0 is spherical.

Artin groups have been the topic of intense research in recent years, with a com-
mon theme being to show that they enjoy many of the features of non-positively
curved groups [14,16,18,19,21]. Several classes of Artin groups have been shown
to satisfy the strong Tits alternative, including spherical Artin groups [8], many
two-dimensional Artin groups [21,25], and Artin groups that are virtually cocom-
pactly cubulated [15, 17]. In this note, we prove the following.

Theorem B. Artin groups of type FC satisfy the strong Tits alternative.

In order to emphasise the wider applicability of our criterion, we also mention
a new proof of a result of Antolín–Minasyan [1], stating that the strong Tits alter-
native is stable under graph products (see Proposition 4.3).

2 First combination result

In this section, we prove a first combination result for the strong Tits alternative,
under a “global” condition on the action.

Proposition 2.1. Let G be a group acting on a finite-dimensional CAT.0/ cube
complex such that each vertex stabiliser satisfies the strong Tits alternative. Sup-
pose that the poset of fixed-point sets of finitely generated virtually soluble sub-
groups of G satisfies the descending chain condition, i.e. every decreasing se-
quence

F1 � F2 � � � �

of fixed-point sets of finitely generated virtually soluble subgroups of G satisfies
Fi D FiC1 for i large enough. Then G satisfies the strong Tits alternative.

Note that we have the following immediate corollary phrased purely in terms
of subgroups of G, which was probably folklore and known to experts, although it
does not seem to appear in the literature.

Corollary 2.2. LetG be a group acting on a finite-dimensional CAT.0/ cube com-
plex such that each vertex stabiliser satisfies the strong Tits alternative. Suppose
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that the poset of finitely generated virtually soluble groups of G satisfies the as-
cending chain condition, i.e. for every increasing sequence

H1 � H2 � � � �

of finitely generated virtually soluble subgroups of G, the inclusionHi � HiC1 is
an isomorphism for i large enough. Then G satisfies the strong Tits alternative.

Remark 2.3. Note that Proposition 2.1 and Corollary 2.2 do not hold if we only
assume that all the vertex stabilisers satisfy the strong Tits alternative. Indeed,
consider the case of the wreath product

G D A5 o Z D
�M

n2Z

A5

�
Ì Z;

where A5 denotes the alternating group on 5 elements and Z acts on
L

n2ZA5 by
shifting the indices. It is known thatG acts properly on a two-dimensional CAT.0/
cube complex [29, Proposition 9.33], and in particular vertex stabilisers satisfy the
strong Tits alternative. However, G itself does not satisfy the Tits alternative. In-
deed,G does not contain non-abelian free subgroups, andG is not virtually soluble
since finite index subgroups of G contain a copy of the non-soluble group A5.

Proof of Proposition 2.1. Let H be a subgroup of G. Since X is finite-dimen-
sional, by [11, Theorem 1.1], we have thatH contains a non-abelian free subgroup
or virtually fixes a point in the Roller boundary of X . In the latter case, by [7,
Theorem B.1], we have that H admits a finite index subgroup H 0 that fits into
a short exact sequence

1! N ! H 0 ! Q! 1;

where Q is a finitely generated virtually abelian group of rank at most dim.X/,
and N is a locally elliptic subgroup of G, i.e. every finitely generated subgroup
of N fixes a point of X . If N contains a non-abelian free subgroup, then we are
done. If N does not contain a non-abelian free subgroup, consider the poset F of
fixed-point sets of finitely generated subgroups of G contained in N . Since each
finitely generated subgroup of N fixes a point of X , and hence satisfies the strong
Tits alternative, it is virtually soluble. By the descending chain condition, there
exists a smallest element F 2 F . Consequently, for each element g 2 N , we have
Fix.hgi/ � F , and so Fix.N / � F . Thus Fix.N / is non-empty, and soN satisfies
the strong Tits alternative. Since N does not contain a non-abelian free subgroup,
it is virtually soluble. Since the class of virtually soluble groups is stable under
extensions, it now follows that H 0, and hence H , is virtually soluble.
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Remark 2.4. It follows from [11, Theorem 1.1] and [7, Theorem B.1] that one
can replace the first “strong Tits alternative” by “Tits alternative” in Corollary 2.2.
However, we cannot do the same in Proposition 2.1 since N might not be finitely
generated even if H is finitely generated.

Similarly, as observed by Pierre-Emmanuel Caprace, since the family of ame-
nable groups (resp. elementarily amenable groups) is closed under direct limits,
if G acts on a finite-dimensional CAT.0/ cube complex such that each finitely
generated subgroup of each vertex stabiliser contains a non-abelian free subgroup
or is amenable (resp. elementarily amenable), then each subgroup of G contains
a non-abelian free subgroup or is amenable (resp. elementarily amenable).

3 Local condition

The descending chain condition for fixed-point sets appearing in Proposition 2.1 is
global in nature, as it requires an understanding of the virtually soluble subgroups
of the groups under study (and their fixed-point sets). In this section, we prove
Theorem A, which involves the more tractable local condition (�) that implies the
descending chain condition.

A poset .F ;�/ has height at most n if every chain

F1 < F2 < � � �

of elements of F has length at most n.

Proposition 3.1. Let G be a group acting on an n-dimensional CAT.0/ cube com-
plex X satisfying property (�) of Theorem A. Then the poset F of non-empty
fixed-point sets of subgroups of G has height at most nC 1.

In particular, Theorem A is a direct consequence of Propositions 2.1 and 3.1.
We prove Proposition 3.1 in several steps. The first one is the following “local to
global” result.

Lemma 3.2. Let G be a group acting on a CAT.0/ cube complex X satisfying
property (�). Then property (�) holds also for disjoint cubes C;C 0.

Proof. Let C0 D C;C1; : : : ; Ck D C
0 be the unique normal cube path from C0 to

Ck (see [24, § 3]). We prove by downward induction on l D k � 1; : : : ; 0 the claim
that Stab.Cl/ \ Stab.Ck/ D Stab.Dl/ for some Dl � Cl . For l D k � 1, this is
property (�). Now let m < k � 1, and assume that we have proved the claim for
l D mC 1. We have

Stab.Cm/ \ Stab.Ck/ D Stab.Cm/ \ Stab.CmC1/ \ Stab.Ck/
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by the uniqueness of normal paths. By the induction hypothesis, we have

Stab.Cm/ \ Stab.CmC1/ \ Stab.Ck/ D Stab.Cm/ \ Stab.DmC1/

for some DmC1 � CmC1. Thus, by property (�), we have

Dm � Cm with Stab.Dm/ D Stab.Cm/ \ Stab.DmC1/;

proving the claim for l D m.

Corollary 3.3. Let G be a group acting on an n-dimensional CAT.0/ cube com-
plex X satisfying property (�). Then the poset P of all cube stabilisers has height
at most nC 1.

Proof. Suppose by contradiction that we have P1 ¨ P2 ¨ � � � ¨ PnC2 in P . Let
CnC2 be a cube with PnC2 D Stab.CnC2/. Then, by Lemma 3.2, we can choose
a cube CnC1 � CnC2 such that

Stab.CnC1/ D Stab.CnC2/ \ PnC1 D PnC1:

Analogously, we can inductively define Cl for l D n; : : : ; 1 with Cl � ClC1 and
Stab.Cl/ D Pl . Since the dimension of X is n, for some l , we have Cl D ClC1,
contradicting Pl ¤ PlC1.

Remark 3.4. Note that if a poset P has finite height and the intersection of any
two elements of P belongs to P , then P is stable under all intersections, that is,
the intersection of any family of elements of P belongs to P .

Definition 3.5. Let G be a group acting on a cube complex X . Suppose that the
poset P of all cube stabilisers is stable under all intersections, and let H be a sub-
group of G that fixes a point of X . We denote by PH 2 P the intersection of the
non-empty family of the elements of P containing H .

Lemma 3.6. LetG be a group acting on a cube complexX . Suppose that the poset
of all cube stabilisers is stable under all intersections, and let H be a subgroup
of G that fixes a point of X . Then Fix.H/ D Fix.PH /.

Proof. SinceH � PH , we have Fix.H/ � Fix.PH /. Now, let C be a cube whose
barycentre lies in Fix.H/. Then H � Stab.C / 2 P , and so, by the definition
of PH , we also have PH � Stab.C /, or in other words, the barycentre of C lies in
Fix.PH /. Thus, we get the reverse inclusion Fix.H/ � Fix.PH /.
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Proof of Proposition 3.1. Suppose by contradiction that we have a chain

Fix.H1/ © Fix.H2/ © � � � © Fix.HnC2/

of non-empty fixed-point sets of subgroups of G. After replacing each Hi by
hH1;H2; : : : ;Hi i, we can assumeH1 ¨ H2 ¨ � � � ¨ HnC2. By Lemma 3.2, Cor-
ollary 3.3, and Remark 3.4, the poset P of all cube stabilisers has height at most
nC 1 and is stable under all intersections. Consider then the chain

PH1
� PH2

� � � � � PHnC2

of elements of P . For some k, we have PHk
D PHkC1

. Lemma 3.6 implies that,
for i D k; k C 1, we have Fix.Hi / D Fix.PHi

/, which contradicts

Fix.Hk/ ¤ Fix.HkC1/:

4 Application: Graph products and Artin groups of type FC

As a first application, we recover the stability of the strong Tits alternative under
graph products, as first proved by Antolín–Minasyan [1].

Definition 4.1. Let � be a simplicial graph with vertex set V.�/, and let

G D ¹Gv j v 2 V.�/º

be a collection of groups. The graph product �G is defined as follows:

�G D
�
�

v2V.�/
Gv

�
=hhgh D hg; h 2 Gu; g 2 Gv; ¹u; vº an edge of �ii:

For an induced subgraph ƒ of � , the subgroup of �G generated by ¹Gvºv2ƒ is
isomorphic to ƒG (see [13]). We thus think of ƒG as a subgroup of �G .

We first recall the construction of a cube complex associated to a graph product
of groups, introduced in [10].

Definition 4.2. The Davis complex of the graph product �G is defined as follows:

� Vertices correspond to left cosets gƒG for g 2 �G and ƒ � � a complete sub-
graph of � .

� We add an edge between vertices gƒ1G and gƒ2G whenever g 2 �G and
ƒ1 � ƒ2 are complete subgraphs of � that differ by exactly one vertex.

� More generally, for g 2 �G and ƒ1 � ƒ2 complete subgraphs of � that differ
by exactly k vertices, we add a k-cube spanned by the vertices gƒG for all
complete subgraphs ƒ1 � ƒ � ƒ2.
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The group �G acts on the vertices by left multiplication of left cosets, and this
action extends to the entire Davis complex.

Davis [10, Theorem 5.1] showed that the Davis complex associated to a graph
product of groups is a CAT.0/ cube complex.

Proposition 4.3. Let � be a finite simplicial graph, and let G D ¹Guºu2V.�/ be
a collection of groups that satisfy the strong Tits alternative. Then the graph prod-
uct �G satisfies the strong Tits alternative.

Proof. Let us verify property (�) of Theorem A. Let C;C 0 be two cubes of the
Davis complex with non-empty intersection C 00 D C \ C 0. Up to the action of an
element of �G , we can assume that there exist complete subgraphs

ƒ1 � ƒ
00
1 � ƒ

00
2 � ƒ2

of � such that the following holds: C has vertices ƒG for all complete subgraphs
ƒ1�ƒ�ƒ2, and C 00 has verticesƒG for all complete subgraphsƒ001 �ƒ�ƒ

00
2.

Moreover, since C 0 contains C 00, there exists an element g 2 Stab.C 00/ and com-
plete subgraphsƒ01 � ƒ

0
2 of � , withƒ01 � ƒ

00
1 � ƒ

00
2 � ƒ

0
2, such that the vertices

of C 0 are the gƒG for all complete subgraphs ƒ01 � ƒ � ƒ
0
2. We thus get

Stab.C 0/ D g
� Y

u2V.ƒ01/

Gu

�
g�1
D

Y
u2V.ƒ01/

Gu;

the last equality following from the fact that g 2 Stab.C 00/ D
Q

u2V.ƒ001/Gu. In
particular, Stab.C / \ Stab.C 0/ D

Q
u2V.ƒ1\ƒ01/Gu. Let D be the cube of the

Davis complex with verticesƒG for all complete subgraphsƒ1 \ƒ
0
1 � ƒ � ƒ2.

The previous equality can then be rewritten as Stab.C / \ Stab.C 0/ D Stab.D/. As
the cube D contains the cube C , this implies property (�) of Theorem A.

Moreover, since the strong Tits alternative is stable under finite direct products,
the stabilisers of vertices of the Davis complex satisfy the strong Tits alternative.
It now follows from Theorem A that �G satisfies the strong Tits alternative.

We conclude this note by proving the strong Tits alternative for Artin groups of
type FC. Recall the following construction from [6].

Definition 4.4. The Deligne cube complex of an Artin group AS of type FC is the
cube complex defined as follows:

� Vertices correspond to left cosets gAS 0 for g 2 AS and S 0 � S with AS 0 spher-
ical.
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� We add an edge between vertices gAS1
and gAS2

whenever g 2AS and S1� S2

are subsets of S that differ by exactly one element.

� More generally, for g 2 AS and S1 � S2 subsets of S that differ by exactly
k elements, with AS2

spherical, we add a k-cube spanned by the vertices gAS 0

for all S1 � S
0 � S2.

The group AS acts on the vertices by left multiplication of left cosets, and this
action extends to the entire Deligne cube complex.

In [6, Theorem 4.3.5], Charney–Davis showed that the Deligne cube complex
of an Artin group of type FC is a CAT.0/ cube complex.

Proof of Theorem B. Let AS be an Artin group of type FC. By construction, the
stabilisers of vertices of the Deligne cube complex are exactly the parabolic sub-
groups of AS that are spherical. Such Artin groups are known to be linear in char-
acteristic zero [8], and thus satisfy the strong Tits alternative.

For property (�) in Theorem A, letC;C 0; C 00 D C \ C 0 be cubes of the Deligne
cube complex. After replacing C by a cube in its AS -orbit, we can assume that
there exist S1 � S

00
1 � S

00
2 � S2 with AS2

spherical such that the vertices of C
correspond to the cosetsAS 0 over S1 � S

0 � S2 and the vertices ofC 00 correspond
to the cosets AS 0 over S 001 � S

0 � S 002 . Moreover, since C 0 contains C 00, there ex-
ists an element g 2 Stab.C 00/ D AS 001

and S 01 � S
00
1 � S

00
2 � S

0
2 with AS 02

spheri-
cal such that the vertices of C 0 correspond to the cosets gAS 0 over S 01 � S

0 � S 02.
To obtain property (�), it suffices to show that the intersection AS1

\ gAS 01
g�1 is

a parabolic subgroup of AS1
. The fact that the intersection of two parabolic sub-

groups of AS 001
is again a parabolic subgroup of AS 001

is a consequence of [9, Theo-
rem 9.5], and the fact that a parabolic subgroup of AS 001

contained in AS1
is a para-

bolic subgroup of AS1
is a consequence of [12, Theorem 0.2]. It now follows from

Theorem A that AS satisfies the strong Tits alternative.

Note that here property (�) for arbitrary cubes C;C 0, which follows from Lem-
ma 3.2, amounts to saying that the intersection of two parabolic subgroups is again
a parabolic subgroup. This was proved independently by Rose Morris-Wright [23].
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