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ABSTRACT. We prove that 7-located locally 5-large simplicial complexes are as-
pherical.

1. INTRODUCTION

A simplicial complex is flag if every set of vertices pairwise connected by edges
spans a simplex. For k > 5, a flag simplicial complex is k-large if it has no induced
cycles of length 4 < n < k. A simplicial complex is locally k-large, if each of its vertex
links is k-large. This notion was introduced by Januszkiewicz and Swiatkowski [6],
and independently by Haglund [3], as a simplicial analogue of a locally CAT(0)
(i.e. nonpositively-curved) cube complex. They showed that such complexes are
ubiquitous in any dimension, and come with interesting automorphism groups. A
cornerstone feature is that for £ > 6 they are aspherical. The 1-skeleta of simply
connected locally 6-large simplicial complexes were studied earlier in graph theory
under the name of bridged graphs, see [1] for a survey.

The boundary of the icosahedron is locally 5-large, so in order to obtain asphericity
under this weaker condition, Osajda introduced an extra hypothesis of m-location [10]
(we will give the definition in a moment). 7-located locally 5-large simplicial complexes
include many 3-manifolds, as well as all locally weakly systolic complexes [4], which
were studied earlier in |2,9]. The properties of m-located complexes were investigated
in [4,[10]. A related condition was introduced in [7].

Maybe the most prominent example of a 7-located locally 5-large simplicial com-
plex is the triangulation of the hyperbolic space H* where each of the vertex links is
isomorphic to the boundary of the 600-cell. The symmetry group of that triangula-
tion is the Coxeter group with Coxeter diagram the linear graph of length 4 with
consecutive labels 5333. We are interested in this triangulation since the associated
Artin group is one of the smallest Artin groups for which the K (7, 1) conjecture,
asking for the contractibility of the associated Artin complex, is still open.

In this paper, we prove the following related result.

Main Theorem. Every 7-located locally 5-large simplicial complex is aspherical.

2. LOCATION
Let X be a flag simplicial complex.

Definition 2.1. A k-wheel W in X is an induced subcomplex isomorphic to the
cone over the k-cycle. We write W = (vg, v1vg - - - vy ), where the centre vy is the cone
vertex and vy, ..., v, are the consecutive vertices of the boundary cycle.
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A pair W = (W, Ws) of wheels, with Wy = (vg, vy - - - vg), Wa = (wo, wy - - - wy), is
a (k,l)-dwheel if

® VU = Wo,

® Wy = Vo,

® Vp_1 = Wy—_1, and

e either vy equals wy or is a neighbour of w;.

The boundary OW of the dwheel W is the cycle vy - - - vp_qwp_g - - wy. (If wy = vy,
then we discard the redundant wy.) If v; = wy, then we say that W is planar.

Definition 2.2. Let m > 4. X is m-located, if for every dwheel W = (W, W3) with
|OW| < m, all the vertices of W; U W; have a common neighbour in X.

Example 2.3. Let X be the simplicial complex that is the triangulation of the
hyperbolic space H* where each of the vertex links is isomorphic to the boundary
Sgoo of the 600-cell, which is 5-large. Note that the vertex links of S3, are isomorphic
to the boundary S3; of the icosahedron. Since each induced 5-cycle in S§, and S3,
is the boundary of a 5-wheel, each 5-wheel in X can be extended to the join of the
5-cycle and a triangle A. Furthermore, each 6-wheel in X can be extended to the
join of the 6-cycle and an edge e. Hence X does not contain a planar (5, 6)-dwheel
(Wy, Ws) with Wy U Wy without a common neighbour, since otherwise appropriate
A and e are disjoint and so A, e, and v; = w; span a simplex of dimension 5 in X,
which is a contradiction. The (5,5)-dwheels are excluded similarly, which implies
that X is 7-located.

2.1. Disc diagrams. A disc diagram D is a simplicial complex homeomorphic to a
disc. A disc diagram in X is a simplicial map f: D — X that is nondegenerate, i.e.
does not send any edge to a vertex. We say that f has boundary cycle f(0D). A disc
diagram f: D — X is minimal if it has minimal area (i.e. the number of triangles
in D) among all the diagrams in X with the same boundary cycle. We say that f is
reduced if it is locally injective at D\ D°. The following is a well-known variation of
a result by Van Kampen.

Lemma 2.4 (|8, Lem 2.16 and 2.17]|). Any homotopically trivial cycle embedded
in X1 is the boundary cycle of a disc diagram in X. Any minimal disc diagram is
reduced.

Lemma 2.5 (|4, Thm B]). If X is 7T-located and locally 5-large, then so is D for
each mimimal disc diagram D — X. In other words, D has no

e interior vertices of valence 3 or 4, or
e neighbouring interior vertices with valences 5 and 5 or 6.

Since by (the proof of) [4, Cor 4.7] each D above with |[0D| = 4 has at most five
triangles, we have:

Corollary 2.6. Each D as in Lemma is H-large.

Remark 2.7. The &' method from the proof of Proposition can be used to
give an alternative proof of Corollary 2.6 since in a minimal counterexample to
Corollary [2.6] each valence 5 interior vertex has non-positive r’.
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3. LUNAR DIAGRAMS

In this section, we assume that all disc diagrams D are 7-located and locally
5-large. On the 1-skeleton X! of X we consider the path metric d, where all the
edges have length 1.

Definition 3.1. Let z and v be distinct vertices of a simplicial complex X, and
suppose that v, and v, are geodesics from x to v in X! that are disjoint except at
the endpoints. A minimal diagram D — X with boundary v, Uy, is a lunar disc
diagram between x and v.

If the identity map D — D is lunar (that is, if 9D is a union of geodesics 71,72
in D! from z to v), then D is lunar. Then for a vertex u of D, an interior vertex
of D of valence 5 is u-exposed, if it is a neighbour of both neighbours of u in 9D.

By Corollary [2.6], for each u there is at most one u-exposed vertex.

Proposition 3.2. Let D be a lunar disc diagram between x and v and let vy, vy be
the neighbours of v in 0D. Then

(i) v1 and vy are neighbours and have a common neighbour closer to x than vy, vs,
or

(i1) there is a v-exposed neighbour v' of v whose neighbours vy, vy distinct from
v, V1, Uy are closer to x than v'.

In the proof, we need the following.

Lemma 3.3. Let D be a lunar disc diagram between x and v and let vy, vy be the
neighbours of v in OD. Then there is a lunar disc diagram D' C D between z and v
such that
(1) the path vivvy lies in 0D/,
(2) the function d(-,z) — d(-,z) is constant on all the vertices of D' at distance
<2 from v,
(8) each vertex on 0D’ has valence at least 4, except possibly for z, v, vy, or vy,
(4) each interior vertex of D' of valence 5 that is a neighbour of > 3 wvertices
of 0D’ is u-exposed with u € {z,v,v1,v9}.

Remark 3.4. By (1) and (2), if D’ satisfies Proposition [3.2i) or (ii), then so does D.

Proof of Lemma[3.5. Let D" C D be the lunar disc diagram of minimal area satisfying
(1) and (2). Then D’ satisfies (3). To verify (4), let zy be an interior vertex of D" of
valence 5 that is a neighbour of m > 3 vertices of 0D’.

If m =5, then by (3) 2y is v-exposed. The same holds for m = 4, unless z, has
exactly 2 neighbours on each v/, which are distinct from z,v, and consecutive by
Corollary [2.6] We will discuss this possibility below, together with the case m = 3.
Namely, if m = 3, then zy is u-exposed with u € {z,v, vy, v}, unless it has, say, two
consecutive neighbours z1, zo on 7] and a neighbour z3 on 74, all of which are distinct
from z,v. We can assume d(z1,v) = d(z2,v) — 1. Let n = d(z0,v). By the triangle
inequality, we have d(z1,v) =n — 1 or n, and d(z3,v) =n — 1,n or n+ 1. In each of
the cases we will prove that zy is u-exposed, with u € {z,v, v, v2}, or we will reach
a contradiction by finding a properly contained lunar disc diagram D” C D’ between
a vertex 2’ of D" and v satisfying (1) and (2) and hence contradicting the minimality
hypothesis. Consider the top and bottom components obtained from D’ by cutting
along the path z;z923 containing v, and z, respectively. Each of the two neighbours
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of zg distinet from 2y, 29, 23 is top (resp. bottom) if it lies in the top (resp. bottom)
component.
Case 1: d(z,v) =n — 1.

a) d(z3,v) =n — 1. In that case, if z is not v-exposed, then n > 3 and we can
take 2/ = zp.

b) d(z3,v) = n. If zy has exactly one bottom neighbour, then we can take 2’
to be that vertex. Note that the function from (2) is constant on all the
vertices of D" except for 2’ and zg, since it is constant on 21, 29, 23 and the
top neighbour of zy, which separate the remaining vertices of D" from 2z’
and z. If zp has two bottom neighbours, then we can take 2z’ = z3. If zy has
no bottom neighbours, then 25 is a neighbour of 23, so they have a common
neighbour 2’ # z, (which is distinct from z if zy is not z-exposed).

¢) d(z3,v) =n+ 1. In that case, take 2z’ = z3.

Case 2: d(z1,v) = n.

a) d(z3,v) =n — 1. In that case, take 2’ = z5.

b) d(z3,v) = n. If zy has no bottom neighbours, then take 2’ = 2z, (which is
distinct from z if zg is not z-exposed). If zy has exactly one bottom neighbour,
then denote it z4. If 2y is not v-exposed, then n > 2. Then we can take as 2’
the common neighbour of 2z, and z, distinct from 2y (which is distinct from z
if zy is not z-exposed). Note that the function from (2) is constant on all the
vertices of D" except for 2’ and z4, since it is constant on zg, 21, 22, and z3,
which separate the remaining vertices of D” from 2z’ and z. If zy has two
bottom neighbours, then this contradicts d(zp,v) = n.

c) d(z3,v) = n+ 1. If z, has at least one bottom neighbour, we obtain a
contradiction with d(zp,v) = n. If 2y has no bottom neighbours, then z; is a
neighbour of z3, and they have a common neighbour 2’ # z; (which is distinct
from z if zy is not z-exposed).

O

Proof of Proposition[3.2. By Remark [3.4, and Lemma [3.3], we can assume that
D = D' and satisfies Lemma [3.3|(3,4). For any interior vertex w of D', let x(w) = 6
minus the valence of w. For w in 0D’, let k(w) = 4 minus the valence of w. By the
combinatorial Gauss—Bonnet theorem (see e.g. |8, Thm 4.6]), the sum of all x(w)
equals 6. For each interior vertex w of valence 5, let x'(w) = x(w) — &, where N is
the number of the interior neighbours of w (all of which have valence > 7). For each
interior vertex w of valence > 7, let x'(w) = k(w) + ¥, where N is the number of
the interior neighbours of w of valence 5. We let x'(w) = k(w) for the remaining w.
Then the sum of all '(w) equals 6 as well.

If there is a v-exposed vertex, we call it v'. If such a vertex does not exist, but
there are v;-exposed vertices, then we call them v]. If there is an x-exposed vertex,
we call it 2/.

Claim. £’ is non-positive except possibly at

e v, v, where it is < 2,
e v;, where it is <1,
o u-exposed vertices, for u € {z,v,v1,ve}, where it is < 1.

Indeed, if an interior vertex w of valence 5 is not u-exposed for u € {x, v, vy, v2},
then by (4) we have N > 3, and so '(w) = k(w)—% < 1—1. On the other hand, if an
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interior vertex w has valence 7, then we have N < 3 and so #'(w) =
and if it has valence k > 8, then N < ¥ and so #'(w) = k(w) + § <6 —k+ £ =
6 — % < 0. This justifies the Claim.

To verify (i) or (ii) it suffices to check that

(i) K'(v) = 2 and k(v;) = 1 for some i, or

(ii) K'(v) = K'(v1) = K'(vy) = 1, and v’ exists.

Note that if one of the v} exists, then '(v;) = 1 and £'(v) < 0. If both v, exist,
then x'(v) < —1.

Thus for the sum of all '(w) to be equal to 6, the only remaining possibilities, up
to a symmetry, are:

o /1(3:) =rK'(v ") =K (V) = 1,/1’(/1)}1_: k' (vg) = 0,

) K'( K
K(x) =2,k (v) = K'(v1) = K (v2) = K (x 1, and there is no ¢/,
K(x) =2,k (v) = K(vn) =K'(2)) = K (V) =1,k (v2) =0, or
K(x) =2,k (v1) = K (v) = K'(v]) = K'(v}) = K'(2) = 1,k (v) = —1
However, in all these cases, by (3), the vertex 2’ has at least one interior neighbour,
which contradicts £'(2') = 1. O

4. CONTRACTIBILITY

Lemma 4.1. Suppose that K is a flag simplicial complex
(1) of diameter < 2,
(2) 5-large, and such that
(8) any induced 5-cycle is the boundary of a wheel of K.

Then K s contractible.
In the proof, we will use the following.

Lemma 4.2 (|5, Lem 8.11]). Let K be as in Lemma[{.1]. Then for any pair of
simplices of K with vertex sets Ay, As, there is a vertexr a of K that is a neighbour
or equal to all of the elements of A1 U A,.

Proof of Lemmal[{.1. By Whitehead theorem, it suffices to show that any finite
subcomplex K’ of K is contained in a contractible subcomplex K” of K. We
consider all the subsets Vp, ...,V of the vertex set of K’ that span a simplex of K.
Let My be the simplex spanned on Vj. Using Lemma we construct inductively
simplices M, ..., M, so that M; O M; 1 and M; contains a vertex a; such that
ViU {a;} spans a simplex. Let K" be the span of the union of K’ and M,,. Note that
K" is flag and each maximal simplex of K" intersects M,,. Then K" is contractible
(see e.g. |5, Lem 8.13|). O

An induced subcomplex C' of a simplicial complex K is 3-conver if for every
path abc with vertices a, ¢ in C' at distance 2 in K, we have that b also belongs to C'.

Remark 4.3. Let K be as in Lemma [4.1] If C is a 3-convex subcomplex of K,
then K also satisfies the hypotheses of Lemma [1.1]

4.1. Downward links. In the entire subsection, we assume that X is a simply
connected, 7-located, locally 5-large simplicial complex.

We fix a basepoint vertex x of X. The ball B, (x) (resp. the sphere S, (z)) is the
subcomplex of X spanned by all the vertices at distance < n (resp. = n) from z
in X!. Let n > 0 and let ¢ be a simplex contained in S, (z). The link of o is the
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intersection of the links of all the vertices of o, treated as subcomplexes of X. The
intersection K (v) of the link of o with S,,_;(z) is the downward link of v.

Our goal is to show that downward links satisfy the hypotheses of Lemma 4.1
and so they are contractible. To start with, let ¢ = v be a vertex. Note that K(v)
satisfies Lemma [4.1]2) since X is locally 5-large.

From Proposition it follows that K (v) satisfies Lemma [£.1(1), and more
generally:

Corollary 4.4. Let vy, vy be vertices of K (v).
(i) If vi and vy are neighbours, then K (vy) intersects K (vq).
(i) If v1 and vy are not neighbours, then they have a common neighbour v’ in K(v)
such that there is an edge vivh with v] in K(viv') and vl in K(vev').

Proposition 4.5. Any induced 5-cycle in K(v) is the boundary of a wheel in K(v).

Proof. Let v = vowowyv1u be an induced 5-cycle in K(v). Let v/, v, v} be as in
Corollary [£.4{ii). If v’ is a neighbour of w; or wy, then, since K (v) is 5-large, we
have that (v/,) is the required wheel. Otherwise, Wi = (v, vowswyv10’) is a 5-wheel.
Since Wy = (v/, vovhviv1v) is also a 5-wheel, (W7, W3) is a (5, 5)-dwheel, and so all
the vertices of W; U W5 have a common neighbour y of X. Since y is a neighbour of
both v and vy, we have that y is a vertex of K (v). Since K (v) is b-large, considering
the cycle vjuvey we obtain that y is also a neighbour of w. Thus (y,~) is the required
wheel.

O

Corollary 4.6. Each K(v) satisfies the hypotheses of Lemma and so it s
contractible.

Proposition 4.7. Let n > 0, and let o be a simplex of S,(z). Then K(o) is
nonempty.

Proof. Suppose first that o is an edge of S, (z) with vertices v; and vy. We may
obtain a new complex X' by artificially adding to X a vertex v and a triangle vv;vs.
This does not affect local 5-largeness or 7-location, so the proposition follows from
Corollary [£.4(i) applied to v in X'.

Now suppose dim(o) > 1. We fix two distinct vertices v and y of 0. Let o’ be the
subsimplex of ¢ spanned on all the vertices except for y, and let e = vy. By induction,
we have vertices vy in K (0’) and vy in K(e). If neither v; nor vy lie in K (o), then
there is u # v in ¢’ that is not a neighbour of vy, and y is not a neighbour of v;. By
the 5-largeness of the link of v, the vertex v; is not a neighbour of ve. Let v/, v}, v
be the vertices from Corollary (ii). Note that if v" is a neighbour of y, then by
the 5-largeness of the link of v it lies in K'(¢”). Thus we can assume that v’ is not a
neighbour of y and so Wy = (v, veyuwv,v’) is a 5-wheel. Since Wy = (v/, vovhviviv) is
also a 5-wheel, (Wy, W) is a (5, 5)-dwheel, and so all the vertices of W; U W, have a
common neighbour z, which lies in K (v). By the 5-largeness of the link of v, the

vertex z lies in K (o).
O

Lemma 4.8. Let n > 0, and let o be a simplex of S,(x). Then for any vertex v
of o, the complex K (o) is a 3-convex subcomplex of K (v).

Before the proof, let us note that from Lemma [£.8] Remark [1.3] Lemma [.1]
Corollary [4.6] and Proposition 1.7, we deduce:
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Corollary 4.9. Each K (o) is contractible.

Proof of Lemmal[{.8 Let abc be a path in K(v) with a,c in K (o) at distance 2
in K (v). Let y be any vertex of ¢ distinct from v. Applying the 5-largeness of the
link of v to the cycle abcy, we obtain that b is a neighbour of y. Since this holds for

each y, we have that b belongs to K (o), as desired.
U

Proof of the Main Theorem. Let X be a 7-located locally 5-large simplicial complex.
By passing to the universal cover of X, we can assume that X is simply connected.
It suffices to prove that each B,(x) is contractible. To do this, it suffices to show
that for each finite induced subcomplex A of S, (z), the span Ay of AU B,,_1(x)
deformation retracts to B,_1(x). To this end, we order the simplices of A in the order
of nonincreasing dimension oy, 09, ...,0%. Let A; be the (not necessarily induced)
subcomplex obtained from A;_; by removing the open star of ¢;. Each such star is
the join of o; with K (0;), and so by Corollary the complex A;_; deformation
retracts to A;. Consequently, Ay deformation retracts to Ay = B,_1(z). O
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