353-COMBINATORIAL CURVATURE AND THE 3-DIMENSIONAL
K(r,1) CONJECTURE

JINGYIN HUANG* AND PIOTR PRZYTYCKI'

ABSTRACT. We prove the K (7, 1) conjecture for Artin groups of dimension 3. As
an ingredient, we introduce a new form of combinatorial non-positive curvature.

1. INTRODUCTION

The K(m,1) conjecture for Artin groups, due to Arnold, Brieskorn, Pham, and
Thom, predicts that each Artin group has a K(m, 1) space that is a complex man-
ifold described in the terms of the canonical linear representation of the associated
Coxeter group. See [Parl4,GP12alDel72,|CD95a], for background and a summary
of progress on this conjecture before the 2010s, and [MS17, Juh18,|PS21]Pao21],
DPS22,|Juh23|Gol24, Hae24, [Hae22a, HH23, Hua24b, Hua24a, GH25| for more recent
developments. In this article we prove the following.

Theorem 1.1. Let A be an Artin group of dimension < 3. Then A satisfies the
K (7w, 1) conjecture. In particular, A is torsion free.

The dimension of an Artin group A is the maximal cardinality of a subset S’ of the
standard generating set of A such that the subgroup of A generated by S’ is spherical.
It is conjectured that this quantity is equal to the cohomological dimension of A,
and by Theorem this is true if one of these two quantities is < 3. The dimension
< 2 case of Theorem [1.1| was established in 1995 [CD95b].

Using [JS23], we also deduce the centre conjecture.

Theorem 1.2. Let A be an Artin group of dimension < 3. If A has no nontrivial
spherical factor, then it has trivial centre.

Theorem is a special case of Theorem [12.20] where we establish the K (m, 1)
conjecture for many new Artin groups in each dimension, since the class of Artin
groups that we treat contains arbitrarily large irreducible spherical parabolic sub-
groups.

1.1. Combinatorial non-positive curvature. A key ingredient of the proof is a
contractibility criterion for a class of complexes satisfying a new form of combina-
torial non-positive curvature, called 353-square complexes.

Theorem 1.3. The thickening of a wide stable 353-square complex is contractible.

Let us define 353-square complexes and their thickenings (for the notions of wide
and stable, see Section [§). A square complex is a 2-dimensional combinatorial com-
plex X, where X! is a bipartite simplicial graph, with vertex set partitioned into
sets A and D, and with attaching maps of the 2-cells distinct embedded cycles of
length 4 (a cycle in a graph is a closed edge-path, or, shortly, an edge-loop). We
often identify a 2-cell with its attaching map, and we call it a square. Not all em-
bedded cycles of length 4 are assumed to be squares. We refer to Section for the
background on (minimal) disc diagrams in X.
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Vertices a,a’ € A (or d,d € D) are close if they belong to a common square.
The thickening X® of a square complex X is the flag simplicial complex whose 1-
skeleton is obtained from X! by adding edges between close vertices. We adopt the
convention that if we label a vertex of X by a,d’, a; etc, then it belongs to A.

Definition 1.4. A cube corner C is a square complex isomorphic to the subcom-
plex of the boundary of a 3-dimensional cube formed of three squares containing
a common vertex, called the centre of C. A cube corner in X is a disc diagram
C — X. A cube corner in X is minimal if its boundary 6-cycle does not bound a
disc diagram in X with < 3 squares.

Definition 1.5. A 353-square complex is a simply connected square complex satis-

fying the following properties.

(1) If dad,a’ and dadsa’ are squares, then djadsa’ is a square (see Figure [1j(1)).

(2) Let d be a vertex of a minimal cube corner C' lying in exactly two squares
adaydy, adasds of C'. Then there is no square d'aidas (see Figure (2))

(3) Let d be a vertex of a minimal cube corner C' lying in exactly two squares
adaydy, adaydy of C'. Suppose that there is @’ # a with aydad’, asda’ also lying in
squares (see Figure[l|3)). Then o’ is a neighbour of d; and d» and add'd;, ada’d,
are squares.

(4) Let E, E’ be as in Figure [[[4a), (4b). For any disc diagram f: E — X whose
restriction to each cube corner of E is minimal, there is a diagram f': F/ — X
with the same boundary as f, such that f’(a’) is a neighbour of f(d).

(5) Previous properties hold if we interchange A and D.
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FIGURE 1.

Definition is motivated by the structure of the icosahedral honeycomb of the
hyperbolic 3-space H?, with Schlafli symbol {3,5,3}. It is one of the four com-
pact, regular, space-filling honeycombs in H?, and it was the least understood one
from the perspective of combinatorial non-positive curvature (while the other three
honeycombs, viewed as cell complexes, are cell-Helly [HO21, Def 3.5]).

Given the icosahedral honeycomb of H?, viewed as a combinatorial complex Z, we
define the associated square complex X. Vertices in A correspond to the icosahedra
of Z, and vertices in D correspond to the vertices of Z. Vertices x € A and y € D are
neighbours if the icosahedron corresponding to x contains the vertex corresponding
to y. We span squares on all embedded 4-cycles of X!. Definition is conceived
by listing local combinatorial features of X of non-positive curvature flavour. The
list of local properties in Definition leads to a collection of global properties
in Lemma [8.5] which is an analogue of the Cartan-Hadamard theorem. These
complexes have quadratic Dehn function (Lemma [8.5[(ii)), and their balls satisfy a
weak form of convexity [Can87] (Lemma [8.5(iv))). Finally, we have contractibility
as in Theorem [L.3l

Let A be the Coxeter diagram that is the linear graph formed of three edges with
consecutive labels 3, 5,3, and let A be the Artin complex (see Definition of Ay,
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which is a 3-dimensional simplicial complex. A major step towards Theorem is
showing that A is contractible. This is done via Theorem [I.3] see Definition [0.1] and
Corollary [9.11]

In |[CD95b], Charney and Davis proposed to equip A with a piecewise Euclidean
metric (the Moussong metric) and to show that A is CAT(0), hence contractible.
Proving CAT(0) amounts to studying loops of length < 27 in the links of the vertices
of A. Each such loop gives an equation of the form wjws---w, = 1 in the Artin
group Ap, of type Hs, subject to the constraint that each w; lies in an appropriate
parabolic subgroup of Ag,. Thus proving that A is CAT(0) relies on understanding
the ‘varieties’ of solutions to a finite (but large) set of such equations over Ag,.
There are no established theories in algebraic geometry to understand the solution
varieties of such equations, and the ambient group Ap, being exceptional further
obscures the picture. This is the main difficulty of the CAT(0) approach.

The CAT(0) approach inspired us to look for a ‘softer’ notion of non-positive
curvature, leading to Definition and its simplicial companion, Definition [9.1]
Like in the CAT(0) approach, proving the contractility of A reduces to studying a
collection of short loops in the link of each vertex. However, it is a much smaller
collection of loops, hence the number of the associated equations over GG that we
need to solve is significantly reduced. Miraculously, we avoid solving some of the
most sophisticated equations needed in the CAT(0) approach. However, we do
not completely avoid the task of analysing the solution varieties of some of these
equations, which takes a substantial portion of the article.

1.2. Reading guide. Section [2| consists of preliminaries. The article is divided into
Part I ranging from Section [3] to Section [9] and Part II ranging from Section [10] to
Section [I2] Part I takes up most of the article, and it concerns the Artin complex
of a single Artin group.

Definition 1.6. Let Aj be an Artin group with Coxeter graph A and generating set
S. Tts Artin compler Ap [CD95b,/GP12b,/CMV20] is a simplicial complex defined
as follows. For each s € S, let A; be the standard parabolic subgroup generated by
s = S\ {s}. The vertices of A, correspond to the left cosets of {Az}scs. More-
over, vertices span a simplex if the corresponding cosets have non-empty common
intersection. A vertex of A, corresponding to a left coset of A; has type s.

Let A be the 353 Coxeter diagram from the previous subsection. The main goal of
Part I is to establish two properties of Ay. First, A, is contractible, which implies
the K (m, 1) conjecture for Ay. Second, each induced embedded 4-cycle in A, of type
§tst has a common neighbour in A of type #, where r is a vertex of A separating
s and t. This second property is useful for proving the K(m, 1) conjecture for other
Artin groups.

Part T is performed in two steps. In Step 1, we show that the link of each vertex
of Aj satisfies a list of properties (Sections . In Step 2, we introduce a more
general family of complexes, called 353-simplicial complexes, that are simply con-
nected and whose vertex links satisfy the same list of properties (Definition .
We prove, under two minor assumptions, that such a complex is contractible and
has the desired 4-cycle property mentioned in the previous paragraph (Sections
and [9)).

Let us discuss Step 2 in more detail. In Section [§] we study 353-square complexes,
establishing properties of minimal disc diagrams bounded by certain cycles in these
complexes and proving the contractility of their thickenings (Theorem . In Sec-
tion [, we introduce the notion of a 353-simplicial complex. For each 353-simplicial
complex A, we can construct an associated 353-square complex X whose thickening
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is homotopy equivalent to A (under mild assumptions), implying the contractibility
of A and the desired 4-cycle property.

Coming back to Step 1, it remains to show that A, is a 353-simplicial complex.
By definition, this reduces to proving that two kinds of critical cycles in Ay, are
admissible. Here Ap, denotes the Artin complex of the spherical Artin group Agys,,
which is isomorphic to the vertex link of A,. Critical cycles in Ay, and the notion
of their admissibility are introduced at the beginning of Sections [6] and [7], and most
of Sections is the proof of the admissibility of critical cycles.

In Section [3] we give the background on hyperplane arrangements and associated
complexes needed later. For each collection A of affine hyperplanes in R™ passing
through the origin, we consider the complex manifold M(A®C") = C" —Jyc4(H®
C). Let A be the collection of reflection hyperplanes for the canonical linear represen-
tation of the Coxeter group of type Hj acting on R3. Then m; M (A®C") is the pure
Artin group PAp, of Ag,. It is difficult to analyse a cycle w in Ay, directly. Instead,
we consider a subset A" C A, which gives an inclusion M(A® C") — M(A' @ C").
This induces a quotient map between groups PAy, — mM (A ® C"), and a sur-
jective simplicial map from Ap, to another complex A 4 (we use this notation only
in the Introduction). The cycle w C Ap, is sent to a cycle w’ C A . It turns out
that for suitable choices of A’, the complex A 4 contains large subcomplexes that
are ‘non-positively curved’. If the subcomplex is large enough to contain w’, then we
can use the non-positive curvature to analyse w’, and then lift the information back
to w. This last step is nontrivial, since we are losing information in the quotient
map PAy, - mM(A @ C").

In Section [4] we discuss the possible subset A’. Actually, we choose two subsets A,
and Aj, so certain information that is lost as a consequence of one choice survives
for the other choice. For each A;, we indicate what is the non-positively curved
subcomplex of A 4, that we have found. This section is mostly a review of [Hua24a].

The material in Section [5[is new. The non-positively curved subcomplex of A 4,
found in |[Hua24a] is not large enough for our purpose. We show in Section
that there is a larger subcomplex of A4, that satisfies a new form of non-positive
curvature, governed by what we have called a splitting system (Definition .
We use it to understand minimal disc diagrams in the subcomplex. Given these
ingredients, we treat critical 8-cycles in Section [ and critical 10-cycles in Section [7]

We prove Theorem in Part I of the paper (Sections . Our point of

departure is the following criterion by Godelle and Paris.

Theorem 1.7 ([Hua24b, Thm 2.2], which is a reformulation of [GP12b, Thm 3.1]).
Let A be non-spherical with Ay contractible. If Ay satisfies the K(m, 1) conjecture
for all subdiagrams N’ induced on all but one vertex of A, then A, satisfies the
K(m, 1) conjecture.

To show the contractibility of Ay, we adopt the strategy from [Hua24b|. Roughly
speaking, we first show that A, deformation retracts to a suitable subcomplex,
which is the relative Artin complex (Definition [10.1). We then show that this sub-
complex is non-positively curved in an appropriate sense, and so it is contractible.
Section [10[summarises the properties of relative Artin complexes from [Hua24b| and
some additional contracitibility criteria from [Bes06,Hae24].

In Section [11, we introduce a geometric tool needed for executing our strategy,
the notion of convexity for a class of simplicial complexes that are closely related
to Garside categories [Bes99,|(CMWO04, Bes06|,|[Hae22b|. A convex subcomplex, as
defined here, can be detected locally—specifically, by examining the links of ver-
tices—using a purely combinatorial criterion (see Definition . This notion is
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inspired by the Bestvina normal form [Bes99]. Intriguingly, even for the tessellation
of E? by equilateral triangles, our notion differs from the more classical ones.

In Section [I12] we prove Theorem [I.1] by induction on the number of generators of
the Artin group. In the process, we obtain the following byproducts or enhancements
of Theorem [1.1] some of which (items 3 and 4) might have applications outside the
K (7, 1) conjecture.

(1) We show that the K (m, 1) conjecture holds not only for all the 3-dimensional
Artin groups, but also for many higher dimensional ones (Theorem [12.20)).

(2) We derive a general result that reduces the K (m, 1) conjecture for arbitrary
Artin groups to properties of Artin groups whose Coxeter diagrams do not

contain triangles (Corollary [12.19)).
(3) We show that the ‘girth condition’ holds for each 3-dimensional Artin group

(Theorem [12.2)
(4) For each 3-dimensional Artin group that is not spherical, we construct a
‘non-positively curved’ relative Artin complex on which the group acts.

2. PRELIMINARIES

2.1. Artin complex. A Cozeter diagram A is a finite simplicial graph with vertex
set S = {s;}; and labels m;; = 3,4,...,00 for each edge s;s;. If s;s; is not an
edge, we define m,;; = 2. The Artin group A, is the group with generator set S
and relations s;s;s;--- = s;8;5; -+ with both sides alternating words of length m;;,
whenever m;; < oo. The Coxeter group W) is obtained from A, by adding relations
s?=1.

The pure Artin group PA, is the kernel of the obvious homomorphism Ay — Wj.
We say that Ap (or A) is spherical, if W) is finite. Recall that any S’ C S generates
a subgroup of A, isomorphic to Ay, where A’ is the subdiagram of A induced on S’.
Such a subgroup is called a standard parabolic subgroup.

We refer to Definition for the notion of the Artin complex A, of the Artin
group Ay. It follows from [GP12b, Prop 4.5] that A, is a flag complex. Note that
given g € Ay, the vertices corresponding to the collection of the left cosets {gAz}ses
span a top-dimensional simplex of A,. This gives a bijective correspondence be-
tween the elements of A, and the top-dimensional simplices of Ay. The Coxeter
complex €, is defined analogously, where we replace A; by W; < W, generated by S.
A vertex of €, corresponding to a left coset of W; has type s. We have that &€, is
the quotient of A, under the action of PA,.

Remark 2.1 ([Hua24b|, Cor 6.5]). For i = 1,2, 3, let x; € A be of type ;. Suppose
that s; and sz belong to distinct components of A\ {so}. If x5 is a neighbour of
both z; and x3, then z; is a neighbour of 3.

We need the following generalisation of Remark [2.1 The type of a face of Ay
is the intersection of the types of its vertices. Again, faces of type 7' = S \ T are
in bijective correspondence with the left cosets of Aj\p, where A\ T C A is the

subdiagram induced on T. The type of a vertex v of the barycentric subdivision A’y
of Ay is the type of the face of A, with barycentre v. Given two vertices x,y of A/,
we write  ~ y if they are contained a common simplex of Ay. Then x ~ y if and
only if the corresponding two left cosets intersect.

Lemma 2.2. Let z1, x9, x5 be vertices of Ay of type §1, §2, §3, respectively. Suppose
that any s; € S1\ Se and s3 € Sz \ Sy belong to distinct components of A\ Sy. If
T1 ~ Ty and xo ~ T3, then x1 ~ x3.
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Proof. The proof is identical to that of [Hua24b, Lem 10.4]. We include it for the
convenience of the reader. We can assume that Sy does not contain S; (or Ss), since
otherwise the left coset corresponding to zs would be contained in the left coset
corresponding to z, and so x5 ~ x3 would imply z; ~ x3.

Up to the left translation, we can assume that x5 corresponds to the identity coset
Aps,- Fori=1,3, let A; be the union of the components of A\ S, that are disjoint
from S;. By our hypotheses, we have A; # () and A; U A3 contains all the vertices
of A\ Sy. Since Ap\g, is the direct sum of the Artin groups with Coxeter diagrams
the components of A\ Sy, any left coset of Ay, in Ap\g, and any left coset of Ay,
in Aj\g, intersect. For i = 1,3, let H; be the left coset of Ax\g, in Ax corresponding
to x;. For i = 1,3, since A; C A\ S;, we have that Ax\g, N H; contains a left coset
of Ax, in Ap\s,. Thus we have Ax\g, N Hy N Hy # 0 and so 1 ~ 3. O

2.2. Posets. Let S be a set of size n. A simplicial complex X is of type S if all the
maximal simplices of X have dimension n— 1 and there is a function Type: X° — S
such that Type(z) # Type(y) if  and y are neighbours. Note that the restriction
of Type to the vertex set of each maximal simplex is a bijection.

As an example, if Ay is an Artin group, and S is the vertex set of A, then the
Artin complex Ay is a simplicial complex of type S (or, rather, S ).

Definition 2.3. Let X be a simplicial complex of type S. Any total order < on S
induces the following relation < on X% We declare < y if 2 and y are neighbours,
and Type(x) < Type(y).

Let P be a poset, i.e. a partially ordered set. Let @ C P. An upper bound (resp.
lower bound) for ) is an element x € P such that ¢ < z (resp. z < ¢q) for any ¢ € Q.
An upper bound z of @) is the join of Q) if x < y for any upper bound y of ). A lower
bound z of @ is the meet of @) if y < x for any lower bound y of Q). We write x V y
and z A y for the join and meet of {x,y} (if they exist). We say that P is a lattice
if P is a poset and any two elements of P have the join and the meet. For a,b € P
with a < b, the interval [a,b] between a and b is the collection of all the elements x
of P satisfying a < x and = < b. A poset P is weakly graded if there is a poset map
r: P — Z, ie. for every x < y in P, we have r(z) < r(y). Such r is called a rank
function. A bowtie x1y;22y2 consists of distinct elements of P satisfying x; < y; for
all 3,7 = 1,2. The name comes from the fact that if we draw yi, y» above x1, x5 in
the Hasse diagram, then we obtain a bowtie shaped configuration.

Definition 2.4. A poset P is bowtie free if for any bowtie x,y;x2ys there exists
z € P satisfying x; <z <y, for all 7,5 =1,2.

Lemma 2.5 ([BM10, Prop 1.5] and [HH23| Prop 2.4]). If P is a bowtie free weakly
graded poset, then any subset Q C P with an upper bound has the join, and any
Q C P with a lower bound has the meet.

Proof. The case of |Q| = 2 is [HH23, Prop 2.4]. This easily implies the case of
finite (). Thus for infinite () with an upper bound u, we have that each finite subset
of @ has the join, which is < u. Let T be a finite subset of () such that the join ur
of T has largest rank among all the joins of the finite subsets of ). We claim that
ur is the join of Q). To justify the claim, it is enough to show that for any ¢ € @,
we have ¢ < up. Let u be the join of T'U {q}. Then we have ur < u. On the other
hand, we have r(u) < r(ur) by our choice of T. Thus ur = u, and so ¢ < ur, as
desired. The assertion on the meet is proved analogously. 0

Definition 2.6. A poset is upward flag if any three pairwise upper bounded elements
have an upper bound. A poset is downward flag if any three pairwise lower bounded
elements have a lower bound. A poset is flag if it is upward flag and downward flag.
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Definition 2.7. A poset is weakly upward flag if any three elements pairwise upper
bounded by non-maximal elements have an upper bound. Analogously, we define
weakly downward flag and weakly flag posets.

We will be often discussing Coxeter diagrams A that are linear graphs with con-
secutive vertices sq,...,s,. In that case, we write shortly A = s;---s,.

Theorem 2.8 ([Hae24, Prop 6.6]). Let A = s1---s, be the Coxeter diagram of
type B, withmg, s, =4, and total order s; < --- < 5,. Then the induced relation <
on A from Definition is a partial order that is weakly graded, bowtie free and
upward flag

Theorem 2.9 ([Hua24a, Thm 7.1]). Let A = s15983 be the Coxeter diagram of
type Hz with m,s, =5, and §; < 83 < 83. Then the induced relation < on A} from
Definition 18 a partial order that is weakly graded, bowtie free and upward flag.

2.3. Disc diagrams. A map from a CW complex Y to a CW complex X is com-
binatorial if its restriction to each open cell of Y is a homeomorphism onto an open
cell of X. A CW complex X is combinatorial, if the attaching map of each open cell
of X is combinatorial for some subdivision of the sphere.

A disc diagram D is a finite contractible combinatorial complex with a fixed
embedding in the plane R%2. We can then view R? U {oo} as the combinatorial
complex that is a union of D and a 2-cell at infinity. The boundary cycle of D is
the edge-loop in D that is the attaching map of the cell at infinity. A disc diagram
in a combinatorial complex X is a combinatorial map f: D — X, where D is a disc
diagram. The boundary cycle of f is the composition of the boundary cycle of D
with f. A disc diagram f: D — X is minimal if it has minimal area (i.e. number
of 2-cells in D) among all diagrams in X with the same boundary cycle. We say
that f is reduced if it is locally injective at D \ D°. The following is a well-known
variation of a result by Van Kampen.

Lemma 2.10 (]MWO02, Lem 2.16 and 2.17]). Any homotopically trivial cycle w in X
is the boundary cycle of a disc diagram f: D — X. Any minimal disc diagram is
reduced.

Note that if w is not embedded, then D might not be homeomorphic to a disc.

Suppose that the corners of each p-gon of a disc diagram D are assigned real
numbers, called angles, with sum (p — 2)7. Let v be a vertex of D whose link in D
has n, components. We define the curvature at v of D to be (2 — n,)m minus the
sum of all the angles at v. We will use the following ‘Gauss-Bonnet theorem’.

Theorem 2.11 ([MW02, Thm 4.6]). The sum of the curvatures at all the vertices v
of D equals 2.

Here is an example of an application of Theorem However, we will be
using without reference various similar results on 2-dimensional CAT(0) simplicial
complexes, especially in Sections [6H7}

Lemma 2.12. Let Y be a 2-dimensional CAT(0) simplicial complex of type {5,t,p},

all of whose triangles have type §tp with angles T 51 OT o5 5

i) Then any induced 4-cycle w in Y has type 5p5p and has a common neighbour
(1) Y Y ype $psp g
of type t.
(i) In the £, 5, % case, forn < 6, any embedded 2n-cycle w in Y'' of type (tp)™ has
a common neighbour of type s and satisfies n = 6.

(i) In the T,5, % case, forn < 4, any embedded 2n-cycle w in Y of type (tp)" has

a common neighbour of type 5 and satisfies n = 4.

T T
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Proof. For part (i), let D — Y be a minimal disc diagram bounded by the 4-cycle w.
Let TY,...,Ty C D be the triangles containing the boundary edges. Note that since
w is induced, the T} are distinct. Furthermore, the sum of the angles of T; incident
to OD is at least 4- 7. Since D is minimal, it is locally CAT(0), and by Theorem [2.11]
the sum of the angles at 0D is at most 2w. Consequently, we have equality, and
there are no other triangles in D incident to dD. As a result, there are no other
triangles in D, as desired.

For part (ii), we consider 2n triangles T; C D containing the boundary edges. The
sum of the angles of T; incident to 0D is at least Qn(g + %) = 5"7” By Theorem m,
the sum of the angles at 9D is at most 2nm — 27. Consequently 5"7” < 2nm —2m, and
son > 6 and we conclude as before. This part also follows from [Hua24b, Lem 9.8].
The proof of part (iii) is analogous to that of part (ii). O

3. COMPLEXES FOR HYPERPLANE ARRANGEMENTS

3.1. Hyperplane arrangements and their dual polyhedra. A hyperplane ar-
rangement in the vector space R" is a locally finite family A of affine hyperplanes.
Let Q(A) be the set of nonempty affine subspaces that are intersections of subfam-
ilies of A (here R" € Q(A) as the intersection of an empty family). Each point
z € R™ belongs to a unique element of Q(A) that is minimal with respect to in-
clusion, called the support of x. A fan of A is a maximal connected subset of R"
consisting of points with the same support. Denote the collection of all fans of A
by Fan(A). Note that R™ is the (disjoint) union of Fan(.A). We define a partial
order on Fan(A) so that U; < U, if U; is contained in the closure of Us. Let b3 4
be the simplicial complex that is the geometric realisation of this poset. For each
U € Fan(A), we choose a point zyy € U. This gives a piecewise linear embedding
bX 4 C R™ sending the vertex of b3 4 corresponding to U to zy.

By [Sal87, pp. 606-607], the simplicial complex bY 4 is the barycentric subdivision
of a combinatorial complex Y 4 whose vertices correspond to the top-dimensional
fans. Namely, for each vertex of b3 4 corresponding to U € Fan(.A), the union of all
the simplices of bY 4 corresponding to chains with smallest element U is homeomor-
phic to a closed disc [Sal87, Lem 6], which becomes the face of ¥ 4 corresponding
to U. We will sometimes view bY¥ 4 and ¥4 as subspaces of R". For B € Q(A),
a face F' of ¥4 is dual to B, if B contains the fan U corresponding to F and
dim(B) = dim(U). We equip the 1-skeleton of ¥ 4 with the path metric d such that
each edge has length 1. Given vertices x,y € X9, it turns out that d(z,y) is the
number of hyperplanes separating = and y [Del72, Lem 1.3].

Lemma 3.1 ([Sal87, Lem 3|). Let x € X% and let F be a face of X 4. Then there
exists unique Ip(x) € FO such that d(x,p(z)) < d(x,y) for anyy € F°.

The vertex IIg(x) is called the projection of x to F'. A hyperplane H € A crosses
a face F' of ¥ 4 if H is dual to an edge of F'. For an edge xy of X 4, if the hyperplane
dual to zy crosses F, then IIp(x)[Ig(y) is an edge dual to the same hyperplane,
otherwise we have IIp(z) = IIg(y). Thus [Ir extends naturally to a map X — F*.

Lemma 3.2. Let E and F be faces of 4. Then IIx(E®) = F° for some face
F'CF.

Proof. Let A’ be the collection of all the hyperplanes that cross both E and F. Note
that for any edge-path P in E, any edge of IIx(P) is dual to an element of A’

Let B € Q(A) be the intersection of all the elements of A’. If A" = (), then we
set B =R". Let £’ be any face of F dual to B, which is a vertex for B = R", and
let w be any vertex of E’. By the above discussion, IIx(w) is contained in a face
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F’ of ¥ dual to B. Moreover, we have F’ C F. Furthermore, IIp(E"®) = F"° and
IIx(E%) C F"°, as desired. O

In the situation of Lemma[3.2] we write F” = II;(E). The assignment £ — [1p(E)
gives rise to a piecewise linear map Ilp: X4 =2 0¥ 4 — OF = F.

3.2. Salvetti complex. Let V = Y. Consider the set of pairs (F,v), where F
is a face of X4 and v € V. We define an equivalence relation ~ on this set by
(F,v) ~ (F',v") whenever F' = F’ and Ilp(v") = IIg(v). Note that each equivalence
class [F,v'] contains a unique representative of form (F,v) with v € F°. The Salvetti
complex 5 A is obtained from ¥ 4 x V' (a disjoint union of copies of ¥ 4) by identifying
faces F' x v and F' x v whenever [F,v] = [F, '] |[Sal87, pp. 608]. For example, for
each edge F' = vgv; of X4, we obtain two edges F' X vy and F' x vy of f]A, glued
along their endpoints vy X < Vg and vy X vy. We orient the edge F' X vy from vy X vy to
v1 X vg = v1 X v7. Then 50 = V', while s 1 1s obtained from L 1 by doubling each
edge. Thus each edge of the form F x v is oriented so that its endpoint is farther
from v in F! than its starting point.

There is a natural map p: 5 4 — 24 forgetting the second coordinate. For each
subcomplex Y of ¥ 4, we write Y = p 1(Y). If F is a face of X 4, then Fis a standard
subcomplex of 5 A-

Lemma 3.3 ([Hua24a, Lem 4.5]). Let E and F' be faces of ¥ 4. If [E,v1] = [E, v],
then [Ip(E),v] = [p(E), vs].

Definition 3.4. Let F' be a face of ¥ 4. Consider the disjoint union of V' copies of
the map Ilp, where Ilp x v: ¥4 X v — F x v. It follows from Lemma that this
map factors to a map IlIz: ¥4 — F, which is a retraction (see [GP12b, Thm 2.2]).

The following key property of I follows directly from Definition .

—

Lemma 3.5. Let E and F be faces of ¥ 4. Then Hﬁ(E) =1p(E).

Let A ® C be the complexification of 4, which is a collection of affine complex
hyperplanes in C". Define

MA®C)=C"- | J(H®C).

HeA

It follows from [Sal87, Thm 1] that S is homotopy equivalent to M (A ® C), and
so they have isomorphic fundamental groups.

In the remaining part of this subsection, we assume that W, is a finite Coxeter
group with its canonical representation p: Wy — GL(n,R) [Dav08, Chap 6.12]. A
reflection of Wy is a conjugate of s € S. Each reflection fixes a hyperplane in R",
which we call a reflection hyperplane. Let A be the family of all reflection hyper-
planes. The hyperplane arrangement A is the reflection arrangement associated
with W,. We denote Xy = X4 and f]A =5 4. Since W, permutes the elemeglts
of A, there is an induced action Wy ~ M(A®C) and an induced action Wy ~ 3 4,
which are free. The union of A cuts the unit sphere of R™ into a simplicial complex,

which is isomorphic to the Coxeter complex €, and dual to 3. The following are
standard [Parl4} §3.2 and 3.3].

e mM(A®C) = PA, [vdL83],
o T(M(A®C)/Wy) = m(Ss/Wa) = Ay,

e Y3 /W, is isomorphic to the presentation complex of A,.
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Definition 3.6. Note that f]}\ is isomorphic to the Cayley graph of W) (with edges
appropriately oriented), and ¥} is isomorphic to the unoriented Cayley graph of Wy
(obtained by collapsing each double edge of the usual Cayley graph to a single edge).
Thus the edges of S, and 3, are labelled by the elements of S. The type of a face
of ¥, or a standard subcomplex of >, is defined to be the collection of the labels
of edges of this subcomplex.

Remark 3.7 (Alternative description of the Artin complex A,). Let iA be the
universal cover of 3. A- Then by the last bullet point above, i}\ can be identified
with the Cayley graph of Ax. An elevation of a subcomplex of EA]A to ¥, is a
connected component of the preimage of this subcomplex under the covering map.
Vertices of Ay are in bijective correspondence with the elevations of the standard
subcomplexes of type s for s € S, since the vertex set of such an elevation is a
left coset gA; C Ay = i(,{ Vertices of Aj span a simplex if their corresponding
elevations have non-empty common intersection. We will call these elevations stan-
dard subcomplezes of ¥ 5. By [vdL83|, the intersection of a collection of standard
subcomplexes of Y4 of types S; is empty or is a standard subcomplex of type ), ;.

3.3. Collapsing hyperplanes. Let A be a hyperplane arrangement and let A" C
A. Note that each fan of A is contained in a unique fan of A’. Since the vertices
of b3 4 (the barycentric subdivision of ¥ 4) correspond to the fans of A, this gives
a map from the vertex set of bX 4 to the vertex set of bX 4. This map extends to
a simplicial map Kk = K4 : bX4 — bX 4, which can also be viewed as a piecewise
linear map from X 4 to X 4.

By the description of the faces of ¥ 4 in the terms of the simplices of X 4 at the
beginning of Section [3.1] x maps each face F of 3 4 onto a face of ¥ 4 that we denote
k(F). Note that if an edge e of ¥ 4 is dual to a hyperplane outside A", then x4 (e)
is a vertex, otherwise k4 (e) is an edge.

Furthermore, for v, € XY satisfying IIz(v') = HF(E)’ WeAhave Hepy(K(V)) =
.7y (k(v)). Thus £ induces a piecewise linear map x: ¥4 — X 4.

3.4. Central arrangements. Let A be a hyperplane arrangement in R™ that is
central, that is, all its hyperplanes pass through the origin. Let H € A and let
R"~! C R™ be parallel to and distinct from H. The deconing Ax of A with respect
to H is the hyperplane arrangement in R"~! consisting of the intersections of the
elements of A with R"~!. Note that Ay is well-defined, since choosing a different
parallel hyperplane R"! gives rise to a hyperplane arrangement differing from the
first one by an affine isomorphism. It is well-known that M (A®C) is homeomorphic
to M(Ap ®C) x C*, where C* = C\ {0}, see e.g. [OT13, Prop 5.1]. Thus mM(A®
C) =2 mM(Ay ® C) & Z. 1t is also possible to see this isomorphism on the level
of the Salvetti complex, where we identify ¥ 4,, with the subcomplex of ¥ 4 on one
side of H.

Lemma 3.8. Let A be a central arrangement and H € A. Then the inclusion
it X4, — X4 is m-ingective. Moreover, m¥i = ix(m1X 4, ) ® Z.

Proof. Let bS: 4 denote the barycentric subdivision of 5 A- Recall that, in [Sal87,

pp. 608], Salvetti constructed a piecewise linear embedding ¢ : by A— MA®C).
He proved in [Sal87, pp. 611] that ¢ is a homotopy equivalence. Let R*~! C R" be
as above. Then M (Ay ® C) is a subspace of R"! @ C. We can homotopy ¢ so that

qﬁ(gAH) C M(Ap®C) and ¢l , iAH — M(Ag ® C) is a homotopy equivalence.
H
Thus the lemma follows from the paragraph preceding its statement. [l
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3.5. Line arrangements. Let A be a central arrangement of lines in R%. Let w be
a locally embedded edge-path in ¥ 4, and ¢ € A. Anj—segment of w is a maximal
subpath mapped to an edge dual to a fan in £ under ¥4 — > 4.

Lemma 3.9 ([Fal95, Lem 3.6]). Suppose that P is a locally embedded homotopically
trivial edge-loop in ¥4, and ¢ € A. Then P contains at least two {-segments.

A minimal positive path in 5 4 is a minimal length path between its endpoints
that is positively oriented. (The orientation of the edges was introduced at the
beginning of Section and discussed in Definition ) Note that the boundary

of each 2-cell of ¥ 4 is a union of two minimal positive paths from some vertex = to
its antipodal vertex y. We call x the source of this 2-cell, and y the sink. Let A,
be the concatenation of a minimal positive path from x toy and a minimal positive
path from y to z. The element represented by A, in 71 (X 4, ) is independent of the
choice of the paths.

Below, we denote the edges of the two minimal length paths from z to y in X%
by e;---e, and d, - - - d;. For an edge e; of 234, we label both edges of €; by e;. Note
that they are oriented in opposite directions. Let z be the common vertex of e;
and es.

Lemma 3.10. (1) Let P be an edge-path in S A from x1 to 5. Then A, P is
homotopic, relative to the endpoints, to PA,,. In particular, A,, is central

in (X4, 21).
(2) Paths Aseytes! ---ertet - esle;t and eje; represent the same element of
Uy (Z.Aa Z) .
Proof. Assertion 1 is a consequence of [Del72, Lem 1.26 and Prop 1.27]. For Asser-
tion 2, note that A, ~ es - - - e,didye, - - - e, where ~ stands for a homotopy relative
to the endpoints. The union of the two 2-cells of ¥4 with sources the two end-
points of ¢; form a cylinder in ¥4 with boundary paths e? and d?. More precisely,
e ~ egez e die;t - -egtey . Thus
AZ ~ €9€3 " - endfer:l ce 6;16516263 B 7 A R A 6%6263 ce e CpCptt €.
O
Let e, d; be dual to the fans in ¢ € A. Let i: iAl — f]A be as in Lemma .
Lemma 3.11. We have a short exact sequence
T1(24,,2) = T1(24, 2) 5 om(ey, 2),
where p = 1lg,. In particular, if for a representative P of o € Wl(z,iA) the path
11z, (P) is homotopically trivial, then o can be represented by a loop in X 4,.

Proof. Since (€, ) is isomorphic to Z, this follows from Lemma [3.8] from imi, <
ker p,, and from the surjectivity of p,. 0

Lemma 3.12. Let A’ = A\ {l}, where | is dual to e;. Let P be an edge-path in
esUeyU---Ue,. If Ka(P) is homotopic, relative to the endpoints, into & (e;)
in Xu, for some j # 1, then P is homotopic, relative to the endpoints, into €;
m E_A.

For j = 2 this means that P is a homotopically trivial edge-loop by Lemma (3.8

Proof. Let f; = k/(e;). By Lemma , ﬁ,UﬁU- . -Uﬁl C f]A/ is mi-injective. Thus
for j # 2 the edge-path K4 (P) is homotopic in f3U fy U---U f, C X4 into f;.
Consequently, P is homotopic in e; Uey U --- Ue, into e;.
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FIGURE 2. Denting

For j = 2, since P is contained in e3Ue,U- - -Ue,, and k 4 (P) is homotopic, relative
to the endpoints, into ']/6\2, we have that P is an edge-loop. If P is homotopically
nontrivial in €3 U, U- - -U€,, then by Lemma[3.§ & A/(P) is homotoplcally nontrivial
in %) - However, by con&dermg the retraction H D) o — fQ, we obtain that a loop

in f2 cannot be homotopic in 5 4 toa homotoplcally nontrivial loop in ng f4U U fn,
which is a contradiction. 0J

4. SOME SUB-ARRANGEMENTS OF THE H3-ARRANGEMENT

Let A be the Coxeter diagram of type Hs, which is the linear graph with consec-
utive vertices abc and mg, = 3, My = 5. Let A be the reflection arrangement in R3
associated with Wy. Denoting the quotient map from the Artin complex A = Ay
to the Coxeter complex € = €, by 7, we say that a vertex x of A has face type C,
where C' is the face of ¥ dual to w(z).

We start with describing a procedure of converting an n-cycle in A to a concate-
nation of n words in A, (cf. [Hua24b| Def 6.14]). These n words are well-defined up
to an appropriate notion of equivalence.

Construction 4.1. Let w = z;---x, be a cycle in A of type §;---3§,. For each
i € Z/nZ, consider a triangle containing z;x;41 and corresponding g; € Ax. Then
9i = giw; for w; € A;, and wy---w, = 1. A different choice of such triangles
would lead to a word u; - - - u,, with u; = qi__llwiqz- for some ¢; € Ag\(s,,5,,,}- In this
case we say that the words u; - - - u,, and wy - - - w, are equivalent.

Given w, we construct a homotoplcally tr1v1a1 edge-loop P = P;--- P, in S as
follows. Let 3 be the universal cover of S = EA, with standard subcomplexes T;
corresponding to x;. Let R be edge-paths in 7; from ¢;_; to g; representing w;. We
define P; to be the image of }sz in &. We have P, C 6,;, where C; is the face type
of z;.

Conversely, consider a homotopically trivial edge-loop P = P, --- P, in ﬁ with
the P; contained in hosts C;. Then we can construct a cycle in A as follows. For any
lift P of P to Z each P is contained in a standard subcomplex that is an elevation
of CZ corresponding to a vertex x; of A. Then w = x1-- -z, is a cycle of A.

Definition 4.2. We refer to Figure [2| for the following discussion. Let w and P be
as in Construction [I.1 Suppose that @1 # 29 # 23 are of types a, ¢, a or ¢, a, ¢, and
P, is also contained in Bwith BC Y a square. Then there is a vertex y € AY of
face type B that is a neighbour of x1, x5, z3. Let C be the face of ¥ intersecting B
along the edge opposite to B N Cy. Then there is a vertex z € A® of face type C
that is a neighbour of y and consequently of xq,z3 by Remark 2.1 Replacing xo
by z in w is called denting x5 to C.
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4.1. Sub-arrangement of type I.

Definition 4.3. Consider consecutive vertices 6y, 6s, 605 of € of types a, l;,& in a
hyperplane of A. Let H C A be the collection of hyperplanes passing through at
least one of the #;, see Figure , left. The central arrangement #H in R? is called
the sub-arrangement of type I. Let H € H be the hyperplane passing through 6,
represented as the boundary circle in Figure [3], left. Consider the deconing H' = Hy,
which is a hyperplane arrangement in R?, see Figure , right.

L\

-

FIGURE 3. Sub-arrangement of type I

Let X = ¥4 and X = f},q/ Denote the four vertical hyperplanes of H' by
hi, ho, hs, hy, from left to right. Let X; be the union of all the closed faces of X that
intersect h;. For ¢ =1,2,3, let Y X N XZ+1 We define subcomplexes X;; of X;
for 7 = 1,2 as follows. For 1= 1,3, let X;; be the subcomplex of X; coloured white
in Figure (the hexagon), and let X2 be the subcomplex of X; coloured gray (the
union of three squares). For i = 2,4, let X;; be the subcomplex of X; coloured gray
(the square on the top), and let X, be the subcomplex of X; coloured white.

We now define a simple complex of groups U, (see [BH99, 11.12]) with fundamen-
tal group 7y ()A( 1 U )A(Q) as in Figure , whose underlying complex Ujs is the union of
two triangles. The vertex groups and the edge groups are the fundamental groups
of the subcomplexes of X as labelled in Figure , and the remaining local groups are
trivial. The morphisms between the local groups are induced by the inclusions of
the associated subcomplexes, which are mJectlve by Lemma [3.8] By |[Hua24al §6.1],
Z/{lg is developable with 7T1U12 =T (Xl U Xg)

Definition 4.4. Let Uy be the development of U2 (cf. [BH99, 11.12]). Equivalently,
the vertices of Uu (of face type X”) correspond to the elevations of Xzy to the uni-
versal cover of Xl U Xg, which we also call standard subcomplexes of face type X,]
By [Hua24a, Lem 6.3], the intersection of a pair of standard subcomplexes and in
fact of any collection of standard subcomplexes) is either empty or connected. Ver-
tices of Uyy are neighbours if their corresponding subcomplexes intersect. Vertices
of Uy form a triangle, if their corresponding subcomplexes have non-empty common
intersection (which is then a single vertex).

Below, we consider the inclusion X = iq{/ C iq.[ introduced in Section .

Lemma 4.5 (JHua24al Lem 6.6]). The inclusion X, U Xy C Sy is 1 -injective.
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h1 hg h3 h4

FI1GURE 4. Dual complex

m (X11) 71 (X110 Xoy) 71 (Xa1)
{1}
R £ 1 (Xa1|N Xa2)
(X1 N X12)
{1}
1 (X12) (K12 N Xa) m1(Xa2)
FIGURE 5.

There is a natural action Wl()?l U )?2) ~ Uy, with quotient U;o. We equip Ui
with the piecewise Euclidean metric of the unit square. It pulls back to a piecewise
Euclidean metric on Uys,.

Lemma 4.6 (|Hua24a, Lem 6.4]). Uy is CAT(0).
4.2. Converting paths in )?1 U )?2 to paths in Ujs.

Definition 4.7. Let 7 = {)?11,)?12,)?21,)?22} Let P be a homotopically trivial
edge-loop in X 1 UXZ that decomposes as a concatenation of edge paths P; contained
in hosts T; € T. Let P be a lift of P to the universal cover of X1 UX2 Then each P
is contained in a standard subcomplex of face type 7; corresponding to a vertex z;
of Uys. For each i, we have that x;.; is equal to, or a neighbour of x;. Thus
w = x1x9 -+~ is a cycle in Uyy corresponding to P (or 15) Note that w depends on
the decomposition of P, the choice of the hosts and (least importantly) the choice
of the lift of P. In practice, we will be looking for a minimal decomposition.

Definition 4.8. Let P be an edge-path in the universal cover of )AQ U )A(Q. We say

that P starts (resp. ends) with a triangle o C Uy, if P starts (resp. ends) with the
vertex corresponding to o.
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Under the same notation as in Definition [4.7] since non-empty intersections of
standard subcomplexes were connected, we have the following.

Lemma 4.9. Suppose that yy---yx is a locally embedded edge-path of face type
T+ Tig in k(x;, Uyg) from x;1 to xi41. Then é is homotopic in its elevation
of T;, relative to ils endpoints, to a concatenation of locally embedded edge-paths
f’ﬂ . ]Bik, with Jgij projecting into T; N T;;. Moreover,

(1) if2 < j < k—1, then ]”5”, 1s nontrivial in the sense that its endpoints are
distinct,

(2) zfﬁz starts with the triangle x;x; 1y, and ends with the triangle x;yx_1%;11,
then él and ék are trivial.

Note that an analogous result holds for Uy, X 1 U )/(\'2 replaced by A, S

Definition 4.10. Let &: 5 — EH be as in Section Let 7% be the induced m
between the universal covers. We view X as a subcomplex EH as in Section
Let E be an elevatlon of X U XQ to the universal cover of EH, which is the umversal
cover of X1 U X2 by Lemma . Consider the subcomplex ¥* C ¥ (depending
on H) that is the union of 2-cells C' with x(C') a 2-cell of X; U X,. Let A* be the
subcomplex of A spanned by the vertices of face type in ¥* whose corresponding
standard subcomplexes map under k into E. Then k induces a simplicial map
k*: A* — Ujy. For a vertex z of A* we denote " = k*(x). Whenever the
dependence on H is relevant, we write A}, Ky instead of A* k

We say a that a 2-cell C' of ¥* and its image x(C') in X; U X, are non-collapsed
if K(C) = X171, X2, or Xos. In particular, //%@ is a homeomorphism. A vertex of A*
(resp. Ujy) is non-collapsed if its face type is non-collapsed. Let A" (resp. U}S) be
the subcomplex of A* (resp. Uj2) spanned on non-collapsed vertices.

Lemma 4.11. Let z € A* be non-collapsed of face type C. If K(C) = X11 or Xoy,
then the map k(z, A*) — lk(z%,Uss) induced by k* is an isomorphism. Further-
more, if k(C) = X, then the map lk(z, A™) — lk(z™ UY) induced by x* is an
1somorphism.

Proof. By the the description of edges and triangles in A and U5 in Remark
and Definition all the relevant neighbours of z, 2" correspond to lines in the
isomorphic standard subcomplexes corresponding to z,z*. Two such neighbours
span an edge of the link exactly when these lines intersect, which is invariant under
the isomorphism. O

4.3. Sub-arrangement of type II.

Definition 4.12. Let A be as at the beginning of the Section [l Consider consecu-
tive vertices 1, . .., 04 of € of types a, ¢, b, ¢ in a hyperplane of A. Let K C A be the
collection of hyperplanes passing through at least one of the ;. See Figure [6] left.
The central arrangement K in R3 is called the sub-arrangement of type II. Let H € K
be the hyperplane passing through 6; represented as the boundary circle in Figure [6]
left. We consider the deconing K’ = K, which is a hyperplane arrangement in R?,
see Figure [6] right.

Let X = Yxs and X = f],cl. We view i;g as a subcomplex of i,g, as in Section .
Denote the four vertical hyperplanes of K’ by hy, hg, hs, hy (from left to right in
Figure [7[I)). Let X; be the union of all the closed faces of X that intersect h;. For
2 < i < 4, X; is formed of three 2-cells, denoted from top to bottom by X;i, X2
and X;3. The following lemma follows from Lemma (3.8 and [Hua24aj, Lem 6.8].
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FIGURE 6. Sub-arrangement of type II

Lemma 4.13. Inclusions )A(g U )?3 C i,c, )A(g U )A(4 C f];c, and )A(Q U 23 U)A(4 - i;g are
m1-injective.

hy ha hs ha

7T1(>A(21) Ut ()?31) 771(X41)
€6 8
€2 5
F'
T ()/222 1 (X32) M1 (X42) €3 d3
€9
(] d4
1 (223) 71'1(>A(33) 771(>A(43)
(I1) (IIT)

FI1GURE 7. Dual complex

Let Wasy4 be the Coxeter group of type Bz, and let Ayzs be its reflection arrange-
ment. Namely, Az, has the following hyperplanes: z; = 0 for 1 < i < 3, and
zitx;=0for 1 <i#j<3. Let X34 and 2234 be the associated dual polyhedron
and the Salvetti complex. Let Aj;, be the deconing of Assy with respect to x; = 0.
Then we have isomorphisms of combinatorial complexes

ZA’234 gXQUX3UX4 and iA’234 g)?QUSZgU)/Z;l.

Let Vs34 be the simple complex of groups with the underlying complex Vs34 de-
scribed in Figure (H). Note that mVazq = 711§A] A, Hence the local groups em-
bed in Vs34, and so Vs34 is developable. Its development is called the Falk com-
plex Vagzy. Let Vo3 be the gray subcomplex of Vs34 in Figure (II). Let Va3 be the
simple complei of groups with the underlying complex Va3 induced from Vs34. Then
m(Vaz) = m(Xe U X3). Let Vy3 be the development of Vo3. We analogously de-
fine Vgé{ _ . - - - .

Let K34 (resp. Ks3) be the universal cover of XoUX3UXy (resp. XoUX3). Vertices
of Vy34 are in bijective correspondence with the elevations of )A(ij in [?234, for 2 <
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i < 4,1 < j <3, called standard subcomplezxes of face type )A(Zj The face type of
the corresponding vertex of Va3, is also )A(” We can describe edges and triangles
of Vg4 (and of Va3 and V3y) using these standard subcomplexes in the same way as in
Definition 4.4l We equip Va3 with the piecewise Euclidean metric of a rectangle with
sides of lengths 1 and 2. It pulls back to a piecewise Euclidean metric on Vy3. We

define an analogous piecewise Euclidean metric on V34. We will use the vocabulary
from Definitions [4.7] and [£.§] in the context of Vi34 as well.

Definition 4.14. Consider the subcomplex ¥* C ¥ (depending on K) that is the
union of 2-cells C' with x(C) a 2-cell of Xo U X3 U Xy. Using k: S — Sk, we can
define a subcomplex A* C A arising from X*, and a simplicial map £*: A* — Va3
in a similar way as in Definition [£.10] We say a that a 2-cell C' of ¥* and its image
k(C) in Xy U X3 U Xy are non-collapsed if k(C') = Xo1, X31, X41, X32, or X33 — these
are the faces for which k|¢ is a homeomorphism. A vertex of A* (resp. Vag4) is
non-collapsed if its face type is non-collapsed.

The following has the same proof as Lemma [4.11]

Lemma 4.15. Let © € A* be non-collapsed of face type C. If k(C) # X3, then
the map lk(x, A*) — 1k(2®, Vosy) induced by x* is an isomorphism. If k(C) = Xas,
then thzs map is an zsomorphzsm onto the subcomplex spanned by the vertices of face
types ng, X32, and X42

5. FILLING CYCLES IN Vo34

Let A be the Coxeter diagram of type Bs, which is the linear graph with consec-
utive vertices s15253 and mg,s, = 3, Ms,s, = 4, and total order s; < s9 < s3. We
shortly write A = 234. Let Vasy, Vo34, X, )/Z, and )/Zij be as in Section

The goal of this section is to establish the properties of certain 8-cycles and 10-
cycles in Vy34, namely Propositions [5.10] [5.11], and [5.12] We will start with lemmas
on vertex links in Section which will be used to study the cycles in Section [5.2]

5.1. Vertex links in Va3, Let Y = Xy U X3 UX,. We label the edges of Y (and ?)
as in Figure (IH). Identifying 31,, with the Cayley graph of Was,, for each edge e
of Y, the two edges of € C Y C Y34 are oriented in opposite directions.

Lemma 5.1. Let w be a locally embedded cycle in the link of a vertex of type S3
(resp. $1) in Vazq. Then w contains at least two vertices of face type Xzo (resp. of
type So but not of face type Xszz).

Proof. Suppose that w lies in the link of a vertex of face type Xoo. We appl
Lemma to w to produce a locally embedded edge-loop P in X;;. By Lemma

applied to P, the cycle w has at least two vertices of face type in {Xa1,Xs3}. Other
cases are analogous. O

Lemma 5.2. Let x be a vertex of Vozy of face type )/222. Let w be a locally embedded
n-cycle in 1k(x,Vazy). Then n > 8. Moreover, the equality holds if and only if w
corresponds, in the sense of Lemma[{.9, up to a cyclic permutation of vertices, to
an edge-loop in X2 of form e¥Feseseses Festes eyt or e2Feytes e e Feseses. An

analogous statement holds for x of face type X4o, with e; replaced by d;.

in )A(QQ, and then we apply Lemma to this edge loop to deduce that w has at least
two vertices whose face types belong to {X21,X23} at least two vertices with face

Proof. As before, we apply Lemma to w to produce a locally embedded edge-loop
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type )A(gl7 at least two vertices with face type )A(g,Q, and at least two vertices with face
type X33 Hence n=>38. When n =38, up to a cyclic permutation, the only p0881b1e
face type of w is X21X31X32X33X23X33X32X31 Thus the corresponding edge- loop in X22
is of form e2" ezetesezesesel, where k; and  are non-zero integers. Since Xas is the
cover of the presentation complex of a dihedral Artin group corresponding to the

pure Artin group, it remains to apply [Cri05, Lem 39]. O
We record the following corollary, which will be used in the later sections.
Corollary 5.3. Vo3 (and Vs4) are CAT(0).

Proof. Since Va3 is the development of a complex of groups, it is simply connected.
It remains to that show that each lk(z, Vy3) is CAT(1), i.e. each embedded cycle in
lk(x, Va3) has length > 27. This is clear if x has face type )?21, )?32, or )A(gg, as its link
is a bipartite graph with edge length 7. The case where x has face type )/222 follows

from Lemma . It remains to consider z of face type )?31 (or )A(gg). By Lemma
and Lemma (3.9, any embedded cycle in 1k(z, V31) has at least two vertices of face

type Xo1, and at least two vertices of face type X3o. Any such cycle has > 8 edges
(of length %), as desired. O

The following lemma has the proof analogous to Lemma

Lemma 5.4. Let x be a vertex of Vagy of face type )A(gl Let w be a locally embedded n-

cycle in 1k(x,Vagq). Thenn > 6. Ifn =6, then w corresponds up to a cyclic permu—

tation of vertices, to an edge loop in X1 of form eFeserdy e tey !, edkes et dy P eres,

eFerdyeg Fdy et or edFestdy teg o dyer. An analogous statement holds for x of face
type Xss.

Lemma 5.5. Let w be a locally embedded cycle in the link of a vertex of type §1. If
w contains a subpath of type 528382, where none of the type S5 vertices are of face
type Xsa, then |w| > 12.

Proof. We can assume that w lies in the link of a vertex of face type )A(Qg, and
contains a subpath of face type )?21)?31)?21 By Lemma and Lemma [3.9 w has
at least two vertices of face type X33 So if |w| < 12, then it is a 10- cycle of face
type X31X21X31X21X31X32X33X32X33X32 o1 Xg1 Xo1Xa1X21 X31 X350 X 3 Xa3 X332 N

In the first case, by Lemma |4.9| we obtain a locally embedded edge-loop in Xao
of form P, 2’“c%me%kzezegeZegeZe:je;, where k:l,m ko and * are non-zero inte-
gers. By con&dermg Il - X22 — e (see Definition , we obtain k; + ky = 0. By
Lemma e%legme?@ is homotopic in X22 to (ey'es'e] 263 Les1)kie2m (egeseleses )kt
Indeed, since ki + ks = 0, by Lemma [3.10[1), the terms from Lemma 3.10{(2)
involving A will cancel. Since P, is homotopically trivial in )?22, and the in-
clusion ey Ues Uey — )?22 is mi-injective (Lemma we obtain that P, =
(e3teztees? () )"”1 (egegeiegeg)kl and Py = 626361';6?;616;6; are homotopic in the
graph I'934 = €3 Ues U ey. Given an edge-path P in '3y, its reduced representative
is the unique locally embedded edge-path in I'y34 homotopic to P in I'y34. However,
the reduced representative of P; is distinct from P, which is already reduced, which
is a contradiction. R

In the second case, by Lemma we obtain a locally embedded edge-loop in Xy
of form P, = e2M e%me%]” esetesedts ejcgcz, where k1, m, ks and * are non-zero integers.
By considering Il : X22 — €1, we obtain k; + ks + k3 = 0. By Lemma m, P, is
homotopic in )?22 to

1 -1 _-2 ki 2m/ —1 _—-1_—-2 -1 ko * _*x % 1 -1
(62 €3 €4 €3 62 ) €a (62 €3 €4 €3 €y ) e26364(‘34 €3 €9 €3 e4

-2 k3 x _* %
) €4€3C9.
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This edge-loop is homotopically trivial in )?22, hence it is homotopically trivial
in I'934. Thus the reduced representative of

eieses(ey ey er es ey ) ey ey ey e tey ey ) P esese]
is (eqezeseseq)™, which contradicts m # 0. O

Lemma 5.6. Let D — Vo34 be a minimal disc diagram with an edge xy of type §1)A(32
lying in triangles xyz,xyz" of D. Then x,y,z, 2" cannot be simultaneously interior
vertices of D with degrees 8,4,6,6.

Pmof For triangles 41, 0 of Vo34 sharing an edge 7, and corresponding vertices 1, o
of Koz, let P(d1, (52) denote the image in 2234 of the embedded edge-path from z
to x5 in the line of K234 corresponding to 7. We assume without loss of generality
that = has face type ng We argue by contradiction and refer to Flgure . Without
loss of generality, we can assume that 2’ has face type X33 Then Lemma [5.2| implies
that z has face type X31 Moreover, either P(dp,d1) = ey, P(d1,02) = e3, and
P(62,683) = ey; or P(0y,01) = e, ", P(61,52) =e;', and P(dy,03) = e; . We only
discuss the former case, since the latter is similar. Applying Lemma to the 6-
cycles in the link of z and 2’ implies that P(dy,d2) = ez and P(d1,05) = eg. On the
other hand, since )A(gg is a product of two oriented circles, and the degree of y in D
is 4, P(04,02) = e7 implies P(J5,d1) = eg, which is a contradiction. O

5.2. Filling special cycles in Vi3,. We induce the partial order on the vertex
set V9,, from AY,, via the inclusion Vazy C Agzs. The map m: Agsy — € sends Vazy
to Vasy.

Lemma 5.7. VY, is bowtie free.

Proof. Given distinct z1, 2o, y1, 92 € V834 with z; < y; for 1 < 4,57 < 2, there is
z € AY, such that z1, 29 < 2 < y;, 99, by Theorem [2.90 Since 7(z) is a neighbour
or equal to each of w(xy),m(xs), m(y1), 7(y2) € Vayy, we have w(z) € V33,. Hence
z € VY,,, as desired. O

AAAAAA

AAAAAA

AAAAAA

Proof. For the first assertion, by the upward flag property in Theorem there is
z € AY, of type 83 that is a common upper bound for zy,x3, and x5. If z # g,
then by the bowtie free property in Theorem applied to xyzx576, We obtain that
x1 is a neighbour of x5, contradicting the angle assumption at xg. Thus z = x4. By
Lemma applied to x3r4x516 and to x1x9x326, We obtain that xs is a neighbour
of x5, and there is w € V3, of type 3o that is neighbour of each of zy, s, z3, 76.
Then the first assertion follows. The furthermore assertion is proved similarly. [

AAAAAA

face type of x3 18 distinct fmm that of x1 and x5. Then
(1) o = x4, or
(2) xo and x4 are connected in lk(x3, Vass) by a locally embedded path of length 2
with middle vertex of face type )?32, or
(8) There is a vertex z of Vagy such that the cycle obtained from w by replacing g
with z bounds a reduced disc diagram in Figure [9 on the right, with the
interior vertices of face type )A(gg.
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Proof. Suppose zo # 4. By the upward flag property in Theorem 2.8 there is
a vertex z of Agzy of type S5 that is a neighbour of all 1, x3, 5. Since 7(z) is a
neighbour of 7(zy) and 7(x3), it has face type X31 or X33, and so it belongs fo Vs
Consequently, we have z € V,,. If z = x5 or x4, then we have (2) by Lemma .
Otherwise, still by Lemma 5.7, we have the disc diagram in Figure [J on the left. If
the subdiagram on the right is not reduced, then the two interior vertices are equal
and so we have (2). Otherwise, we have (3). O

Tg X7 g

x5 T
51
T3 §3 '§3
S3 51 33
Is .’E4
(II) (II1) 31
FIGURE 8.
Z2 X9
X1 X3 1 X9 xs3
T6 L4 T4
X5 x5
FIGURE 9.

The following propositions will be proved simultaneously.

AAAAAAAA

Suppose that

(1) w has angle > 3% at zg and s,

(2) w has angle © at x7, and

(3) w has angle > % at x1 and xs.
Then w is embedded, and it bounds a minimal disc diagram D — Vo34 such that D
embeds as a subdiagram of Figure @(Iﬂ) with xsrer7r31 Mapping to the indicated
path.

AAAAAAAAAA

Then the following properties cannot hold simultaneously:
(1) w has angle > % at x1 and x7,
(2) w has angle w at x3,x4, x5, and xg, and
(3) w has angle > %’T at xo, Tg, g and Tyg.
Proposition 5.12. Let w = ()}, be a locally embedded cycle in Vo34 of type

AAAAAAAAAA
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face type )?32. Suppose that w has angle  at x2,x3, x4 and xs. Then w has angle 5
at 1.

To prove Propositions[5.10 [5.11], and [5.12], we will consider minimal disc diagrams
D — Vy3, with boundary w. First note that w is embedded by Lemma [5.8] Thus
D is homeomorphic to a disc.

Definition 5.13. A splitting system of a minimal disc diagram D — V34 is the
preimage under D — Va3, of all straight line segments in the triangles zyz of Vazy of
type §15283 joining the midpoint of xz with the midpoint of xy, for y of face type Xsa,
or with the midpoint of yz, for ¥ not of face type X3». Equivalently, we can define
the splitting system in the following way. Consider the complex V53, illustrated in
Figure [L0(I), where the vertices of type §; are labelled i and the vertices of face
type )A(gg are circled. Then the splitting system of D — Vs34 is the preimage of
the dashed lines under the composition D — Vo34 — V534. Note that the splitting
system is a union of arcs, starting and ending on 9D, and (possibly) circles.

The union of all the edges of D disjoint from the splitting is the core graph of
D — Vy34. In other words, the core graph of D — Va3, is the preimage of the
thickened lines in Figure (I) under the composition D — Vo34 — Vosy.

2 3 2
: : 3 2 3
| | 1
§ AMEI©)] SR 1
| |
| | 3
| |
2 3 2
(I) (I1) (II1)
FIGURE 10.

Remark 5.14. By Lemma [5.1] each vertex of the core graph lying in intD has
degree > 2 in the core graph. In other words, all leaves of the core graph lie in 9D.

Lemma 5.15. (i) The splitting system contains no circles.

(i) The core graph is a forest.

(iii) Let x; be a vertex of 0D of type Sy with distinct neighbours x;_1,x;11 both of
type 51 or 83. Then there is no arc in the splitting system joining the midpoints
of x;_1x; and x;T;\q.

(iv) Let z; be a vertex of 0D of type $1 or 3. If there is an arc (B in the splitting
system joining the midpoints of x;_1x; and x;x;11, then the intersection of the
core graph with the connected component R of D\ 5 containing z; consists only
of x;.

(v) Let x;_1x;xiv1 be a path of 0D of type 33X3283. If there is an arc B in the
splitting system joining the midpoints of x;_ox;_1 and x; 12,12, then the inter-
section of the core graph with the connected component of D\ B containing x;
conz'stsAonly of vi1xixi1. Similarly, if x;_o--- 10 is a path of D of type
53X3053X3083, and there is an arc (8 in the splitting system joining the mid-
points of x;_sx;_o and x; oT;, 3, then the intersection of the core graph with the
connected component of D\ B containing x; consists only of x; o+ x;i1s.
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(vi) If a connected component Q of the complement in D of the splitting system
contains exactly two vertices of 0D and both of them are of type Sz, then the
intersection of the core graph with () is an arc ending at these vertices.

Proof. To prove (i) and (ii), consider an innermost cycle § in either the splitting
system or the core graph. Note that the open region R C D bounded 3 contains a
point of the core graph or the splitting system. Since all connected components of
the splitting system in R are circles, by the innermost assumption we have that
lies in the splitting system, and each connected component of the core graph in R
is a tree. This contradicts Remark [5.14] N

For (iii), assume without loss of generality that z; has type S but not Xss and
x;_1,%;11 are of type S3. If 5 were such an arc, consider the connected component R
of D\ 8 containing x;. By (ii), each connected component of the core graph in R is a
tree. By Remark [5.14] this connected component equals x;. Hence x; does not have
a neighbour of type §;, which is impossible for x; _; # ;1. The proofs of (iv),(v),
and (vi) are analogous. O

Lemma [5.15i) gives a bound on the number of the connected components of the
splitting system, since each of them is an arc starting and ending in dD. In Propo-
sitions [5.10], [6.11], and [5.12] the number of points in the intersection of the splitting
system with w is < 10. Up to a homeomorphism of D, each splitting system cor-
responds to a perfect non-crossing matching of these points. We illustrate the ones

we consider cases A and F, depending on whether the vertex z7 has type Xs2 (then
it is circled) or not. Similarly, in Proposition we distinguish cases B, C, D, G,H,
and I, depending on which vertices of w are of face type )A(32 (they are circled). We
will now gradually analyse all these 42 diagrams, excluding most of them.

Proof of Propositions|5.10, |5.11, and|5.12. In Proposition [5.11] assume by contra-
diction that all (1)-(3) hold. In Proposition [5.12} assume that w has angle > 2T
at r;. Consider a minimal disc diagram D — V34 with boundary w. We will
reach a contradiction for all the diagrams illustrated in Figures [I1] and [12] except
for diagrams A6, F3, and F4.

In diagram C3, the core graph in the shaded region cannot have a leaf at xg
(or at 19). Otherwise, considering the triangle yz7xs of D, by assumption (3) of
Proposition , the vertex y would not be of face type )A(gg. Consequently, the edge
xgy would intersect a splitting curve that also intersects the edge z7y, and so the
edge x7y would intersect two splitting curves, which is a contradiction. Thus, by
Lemma [5.15(ii) the core graph in the shaded region is of the form indicated by the
thickened line in Figure

In most of the diagrams, we indicated an edge (or edges) x;x with x # z;_1, ;11
of type $1, which exists by the assumption on the angles. In diagrams D1, D3, E1,
E2, E4, G2, and G3, there are at least two such edges and we denote by x4z the first
one in the order around z, indicated in Figure [I1] and Figure 12} Let x4y be the
second such edge. Note that  and y lie on the same side of the arc of the splitting
system intersecting the edge z4zs (which is clear for diagrams E1, E4, and G3).
Otherwise, for diagrams D1, D3, E2, and G2, considering the arc of the splitting
system intersecting x4y, we would obtain y = xy, contradicting Lemma

If x € 0D, then we can appeal to Lemma and Lemma to reach the
conclusion of Proposition [5.10, or a contradiction with one of the assumptions on
the angles. Thus from now on we assume x € intD. This excludes diagrams F1
and 11, where xg cannot have an interior neighbour x of type §;. By Lemma [5.5]
the degree of x is at least 12. In other words, = has at least 6 neighbours of type 3s.




353-COMBINATORIAL CURVATURE AND THE 3-DIMENSIONAL K(w,1) CONJECTURE 23

3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3
N
1 1 1 1 1 1
3 2 3 3 2 2
B1 B2 B3
3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3
1®1 | | 1@1
3 2 3 2 3 3 2
B5 B6 B7
3 2 3 2 3 3 2 3 2 3 3 2 3 2 3
1@1 | | 1@1
g 5 0] )
C1 C2 C3

c4 (0}
3 @ 3 2 3 3 @ 3 2 3 3 @® 3 2 3
T
1 1 1 x Ly v 1
3 2 3 3 ?)
D1 D2 D3
3@ 3 2 3 3. @ 3 2 3 3 @ 3 2 3
1 1 1 Iy 1
3 2 3 2 5] ) 3
D4 D5 D6
FIGURE 11.

By Lemma m(iv,v), since any edge between x and a vertex of type 33 inter-
sects an arc of the splitting system, in diagrams A1, B1, C1, D1, D2, E1, E2, G1,
G2, and H1, the vertex x can have at most 5 neighbours of type $§3, which is a
contradiction.

In diagram E3, we consider the first two edges wxsx’, z3x” of type $35; in the
order around x4 indicated in Figure We claim that the vertex z” equals to xg.
Otherwise, x” lies in the light-shaded region. Since all the vertices in the light-shaded
region are neighbours of zg, the vertex x has 4 neighbours, which contradicts the
n > 8 part of Lemma 5.2} and justifies the claim. Since z’ has at least 8 neighbours,

B8
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s 7 Tg 3 2 3 3 2 3

FIGURE 12.

it has at least 4 neighbours of type 33, all of which, except for xg, lie in the shaded
region. Consequently, ' has a neighbour z of type §3 in the interior of the shaded
region. Since the two neighbours of z in the core graph are neighbours of both x”
and 7/, the vertex z has 4 neighbours, contradicting the n > 6 part of Lemma [5.4]
In diagrams A2, A3, D3, E4 (resp. B2, B3, D4), the vertex x has at least 4 (resp.
at least 3) consecutive type 33 neighbours z; in one of the shaded regions, labelled
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according to their order around z. By Lemma [5.15|vi), only the first and the last
of z; might lie in dD. Thus, except for the first and the last one, any z; has at most
two type §; neighbours (one of which is x), and so z; has 4 neighbours, contradicting
Lemma[5.4] See Figure [LO[II) for the A2 case. Similarly, in diagrams C2 (resp. A4,
C3, G3, H2), the vertex = has at least 4 (resp. at least 5) consecutive type $3
neighbours in the shaded region, one of which contradicts Lemma [5.4] Note that
in diagram C3 such a type S5 neighbour cannot be simultaneously a neighbour of
both x; and z7, by the shape of the connected component of the core graph we
established earlier.

In diagrams A5, B4, B7, C4, D5, E5, (resp. B5, B6) the vertex z has at least 5
(resp. at least 4) consecutive type §3 neighbours z; in the shaded region. Except for
the first and the last one, and the second or next-to-last one in diagrams C4, D5,
E5, and B7, all z; lie in the interior of the shaded region, and so there are at least
two such consecutive z;. By Lemma [5.4] each such z; has at least 6 neighbours, so it
has at least two type $; neighbours in the light-shaded region. Thus we can find 2’
of type 5; in the light-shaded region that is a common neighbour of two such z;. See
Figure [LO[III) for the A5 case. Then 2’ has at most 3 neighbours of type $3 (two of
which are among z;), implying that 2’ has at most 6 neighbours, which contradicts
Lemma [5.2

In diagrams C5, D6, and E6, the vertex x has at least 5 consecutive type 33
neighbours z; in the shaded region. Except for the first and the last one, each z; is
interior and by the n > 6 part of Lemmalp.4]has at least two type §; neighbours in the
light-shaded region. We can assume that they all have exactly two such neighbours.
Indeed, if z; had 3 consecutive type $; neighbours in the light-shaded region, then
the middle one would have at most 6 neighbours (one in the shaded region, two in the
light-shaded region, and 3 in the thickened part of dD), contradicting Lemma .
Let 2’ # = be a common neighbour of type §; of two such z;. Then 2’ has degree 8,
which contradicts Lemma [5.6]

Consider now diagram A6. We claim that x; has at most one interior neighbour
of type $3. Otherwise, if we had such consecutive z, 2/, by Lemma |5.4| each of them
would have at least two type $; neighbours in the light-shaded region. If one of
them, say z, had degree > 6, then it would have at least 3 type $; neighbours in the
light-shaded region. Except for the first and last one, any such neighbour z’ would
have degree > 12 by Lemma [5.5l Then one if its type 53 neighbours in the shaded
region would have degree 4, contradicting Lemma [5.4. We can thus assume that
the degrees of z and 2’ are equal to 6. Let 2’ be the common neighbour of type §;
of z,2" in the light-shaded region. Then z’ has no common neighbours of type §3
with x; except for z,z. By Lemma 5.6, we have that 2’ has at least 3 common
neighbours of type s3 with x5. This contradicts Lemma for the middle one of
these neighbours and justifies the claim. Analogously, x5 has at most one interior
neighbour of type s3. This implies that the length of the core graph component in
the light shaded region is < 5 and so it implies the conclusion of Proposition [5.10

In diagram B8, the vertex = has at least 5 consecutive type 53 neighbours z; in
the shaded region. Except for the first and the last one, each z; is interior and by
Lemma has at least two type $; neighbours in the light-shaded region. We can
assume that they all have exactly two such neighbours since otherwise by Lemma|5.5
one of these neighbours would have degree > 12 and it would have a neighbour of
type 83 outside the shaded region violating Lemma [5.4 Let 2/ # x be a common
neighbour of type §; of two such z;. By Lemma , the vertex 2’ has degree > 8
and so it contains at least 3 type S5 neighbours outside the shaded region. This
contradicts Lemma for the middle one of these neighbours.
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In diagrams 12, F2, F3, and F4, since the angle at xg is > %T’T, there is neighbour x’
of xg, of type §1, in the indicated region. In diagram F2 we have that z’ is also a
neighbour of x5 and so we obtain a contradiction as in diagram H2. In diagrams
12, F3, and F4, by Lemma [5.2] the vertex 2/ has > 4 neighbours of type 83. In
diagram F3, these can be only xo, x4, x4, and xg, which, by Lemma [5.7] implies the
conclusion of Proposition [5.10} In diagram 12, by Lemma both xg and xyq are
neighbours of z/. Since the same holds for the interior neighbours of type $; of x
and xg, we have that both of these neighbours equal 2’. But then x; has at most
one interior vertex of type §;, contradiction. In diagram F4, 2’ has at most two
neighbours z; in the shaded region, since otherwise one of them would have only
4 neighbours, contradicting Lemma [5.4. Thus, by Lemma [5.2] =’ must be also a
neighbour of xg and xg. In particular, 2’ is the only interior vertex of type $; in its
region. Consequently, if we have z; # xs, then, by Lemma [5.4] z; is a neighbour of
x1 and z3. Analogously, if we have z5 # x4, then z; is a neighour of x3 and z5. By
Lemma [5.7] this implies the conclusion of Proposition [5.10] O

Corollary 5.16. Proposition remains valid without assumption (1).

Proof. Suppose ¢ = xg. If x5 = x9, then, by Lemma [5.8, we have zo = 19
or x4 = x19. By Lemma [5.7 this contradicts assumptions (2) or (3). Thus we
can assume rz # rg. If x9 = w19, then, by Lemmas and this contradicts
assumption (2). Thus we can assume xo # x19. Let 24, xy be type @ neighbours
of x3,29. The cycle wg = wgr1021 0205047576 satisfies assumptions (2) and (3) of
Proposition . For assumption (1), if wg has angle 7 at x4, then this contradicts
assumption (2) for w. If wg has angle 7 at g, then by Lemma applied to
ToT10T1 L2234, We obtain that zf is a neighbour of x3, contradicting (2) for w as
well. Thus by Proposition [5.10[ we have that wg bounds a minimal disc diagram that
is a subdiagram of Figure (IH). By Lemma , the vertex x5 lies in the image of
that disc diagram. Thus there is a neighbour of type a of x3 and x5, which again
contradicts (2) for w. O

6. CRITICAL 8-CYCLES

Let A be the linear graph gbc with mg, = 3, Mpe = 5, as in Section [d A critical
8-cycle in A has type acacaché (or, shortly, (ac)be).

Definition 6.1. An embedded critical 8-cycle (x;) is admissible if x7 is a neighbour
of

(1) 1,5, or
(2) xIs3.

Note that in Case (2), the vertex x3 is a neighbour of both zg and xg by Re-
mark 211

Lemma 6.2. Let w be an embedded critical 8-cycle. Under any of the following
conditions, w is admissible.

(1) The vertex x3 is a neighbour of xg (or xg).

(2) There is a vertex x of type a that is a neighbour of xs, x4, and x7.

(3) Replacing in w the vertex xo by zo results in a critical cycle wy that is not
embedded or is admissible.

(4) There is a vertex x of type a that is a neighbour of x4 and xg (or of
and ).

(5) There is a vertex z of type ¢ and a vertex x of type a such that z a neighbour
of x3 and x, and x is a neighbour of x7.
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(6) Replacing in w the vertex x1 by x results in a critical cycle wy that is not
embedded or is admissible.

(7) Replacing in w the verter x3 by x results in a critical cycle wy that is not
embedded or is admissible.

Proof. For , note that x3, x5, r7 are pairwise upper bounded. By Theorem ,
there is z € A® of type ¢ that is their common upper bound. Applying the bowtie
freeness from Theorem to x3zryrg, we obtain that x3 is a neighbour of z7 or
2z = xg. In the latter case, xg is a neighbour of x5. Applying the bowtie freeness to
T5TeX7Tg, We obtain that x5 is a neighbour of x7, as desired.

For , we can assume r #* x1,T3,rs5. By Remark , x is a neighbour of
both zg and xg. Applying the bowtie freeness to xixoxxs, we obtain their common
neighbour y;. Analogously, we obtain a common neighbour ¥, of z, 24, x5, x4, and a
common neighbour y of x5, x3, 24, 2. Then we have an 8-cycle xgyixoyrsysrsx7 in
k(z, A). Since lk(z, A) has girth > 10, this 8-cycle is not locally embedded at one
of y1, xs, 7, 6, y2. Since w is embedded, this 8-cycle is not locally embedded at xg
or xg, which implies that w is admissible.

For (3), if wy is not embedded, then since w is embedded, the only possibility
is that z5 equals xg,xs, or z4. In the first two cases, w is admissible by . If
29 = x4, then, since x1, x5, x7 are pairwise upper bounded, they have a common
upper bound z of type ¢. If z # x4, then by the bowtie freeness applied to xsxgr72
we obtain that x5 and x; are neighbours. If z = x4, then z # zg, and analogously x;
and x; are neighbours. If wy is admissible, then so is w since they share the vertices
T1,23, X5, T7-

For (4)), since x, x5, x7 are pairwise upper bounded, they have a common upper
bound z of type ¢. We can assume that x5 and x7 are not neighbours, and so applying
the bowtie freeness to zxsxery, we obtain z = xg, i.e. x is a neighbour of zg. Applying
the bowtie freeness to xgxr7r3z, we obtain that x; is a neighbour of z. Since x1, z3, x
are pairwise upper bounded, they have a common upper bound 25 of type ¢. Since x
is a neighbour of 25, x4, 7, the critical cycle obtained from w by replacing x, with 29
is either not embedded or is admissible by . Thus we are done by .

For (9)), since x3, x5, x are pairwise upper bounded, they have a common upper
bound z4 of type ¢. The critical cycle obtained from w by replacing x, with 2, is
either not embedded or is admissible by . Thus we are done by .

For @, if wy is not embedded, then either x = x3, in which case w is admissible
by , or x = x5, in which case x5 is a neighbour of z7; by applying the bowtie
freeness to rsrgrrrs. Now assume that wy is embedded. Then x; is a neighbour
of one of x3,x5,z. In the last case, x is a neighbour of x4, and so w is admissible
by .

For (7)), if wp is not embedded, then, say, * = x1, and so w is admissible by .
If wy is admissible and satisfies Definition [6.1)(1), then so does w. If wy satisfies
Definition [6.1](2), then w is admissible by (). O

In the remaining part of this section, let w = xy---xg be an embedded critical
8-cycle. Let w;, C;, P; be as in Construction [4.1]
The goal of this section is to prove:

Proposition 6.3. Each embedded critical 8-cycle is admissible.

Proposition follows from Propositions [6.4] [6.5 and [6.6] which are proved in
Subsections [6.1], [6.2], and [6.3]

6.1. Case of one decagon.
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Proposition 6.4. Let w be an embedded critical 8-cycle with only one decagon
among the C;. Then w is admissible.

Since C; = C3 = Cs, we have that C; intersects Cy for all even i. We will also
assume that C'; intersects C. Indeed, otherwise we have Cg = (g, and there is a
hyperplane dual to an edge of C7 and disjoint from all the remaining C;. Thus, by
Lemma E, we have Ilg (F;) C C7 N Cg for i # 7. Since g (P) is homotopically

trivial in C'7, this implies that P; is homotopic in 67 to a path inside 67 N 66. Thus
xrg = g, contradicting the assumption that w is embedded.

Case 1: Cy = Cy = Cy = Cg. Let B # C'; be the other square intersecting C; and Cj.
Let H be the type I sub-arrangement of A with k#(C}) = X, k3,(C2) = X731, and

ky(C7) = Xo1. Let w™ = k3,/(w). Since w is locally embedded, and C; are non-

collapsed, w? is locally embedded by Lemma [4.11] In particular, the angle of w™

at 22 equals 7. If the angle of w™ at x}f or zff equals Z, then z¥ is a neighbour of

x¥ or xit. By Lemma [4.11, x7 is a neighbour of x5 or z1, as desired. Thus we can

assume that the angles of w™ at zff or ¥t are > 2.

H
€3
’L‘%{ ’L‘Z{ ” o3 | /H "
2s A
7{/ y” Tg){ \ o H 02 H H 1H H
] x} x] y x y zt
o1
RN TEEAY R TN TR
(1) (I1)

FIGURE 13.

Since Uy is CAT(0) (Lemma , w™ bounds one of the diagrams in Figure .

Suppose first that y* has face type X5;. Then, by Lemma we can lift y* to
y € Ik(z1, A)? that is a neighbour of x4, 5. Furthermore, we can lift x% (in case (I))
or 7 (in case (I1)) to = € lk(y, A)° that is a neighbour of x5 and zg. Thus we can
replace in w the vertex x; by x to form another critical 8-cycle wy. Note that wy
is not embedded or is admissible, since x and z; are neighbours by Lemma [4.11]
Thus by Lemma @, w is admissible. Hence we can assume that y* has face
type )/(\'12. Thus, by Lemma , the vertices z; and x7 are connected in lk(zs, A%))
by a locally embedded path of length three with an interior vertex of face type B.

Let J be the type I sub-arrangement of A with k7(Cy) = Xo, k7(Cy) = Xy,
and k7(B) = Xy;. Since kK7 maps 67 m-injectively into )?12, we have %7 £ .
Thus we can again assume that w? bounds a minimal disc diagram in Figure
with H replaced by J. As before, we can assume that y7 has face type Xi2. Thus
by Lemma , the vertices z; and x7 are connected in lk(zg, A%) by a locally
embedded path of length three with an interior vertex of face type C';. Since B # C',
this contradicts the fact that the girth of lk(zs, AY) = lk(xs, Aj)) is 8.

P

Case 2: There are exactly two distinct hexagons among the C;. Denote these hexa-
gons by Dy and D,. To start with, we consider the case where D; and Dy do not
intersect a common square. Then Cg = Cs. Assume without loss of generality
Cs = D;. Let B be the square such that B N C; and Dy N Cy are opposite edges
of C;. Note that B intersects D;. Let H be the type I sub-arrangement of A with
ry(Ch) = Xoo, k3(D1) = X11, and ky(B) = Xy;. Note that the vertices of w of
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face type Dy do not belong to A},. However, ky(D2) is an edge of Xsy, and thus
Fn(P) C X, UX,. Thus declaring that 74 (F;) is hosted by Xa, whenever i € {2,4}
satisﬁes C; = D,, we obtain w’ in U12 as in Definition 4.7 u If Cy = Dy, then
it = 2} and if Cy = Dy, then 2}t = x¥. Since at least one of C’z, Cy equals Dy, we

have |27, z}| < 21/2. On the other hand, if w™ has angle > 2* at both z} and 2%,
since by Lernrna it also has angle m at 22, and Uy, is CAT( ), the endpoints

"H’H’H H

of the path zfzlxral :1:1 are at distance > 4, which is a contradiction. Thus w
has angle T at one of f', zf. As before we can deduce that x7 is a neighbour of s
or I, as des1red

FIGURE 14.

It remains to assume that D; and D, intersect a common square B’, see Fig-
ure . Assume without loss of generality C; € {B’, B}. Let K be the type II
sub-arrangement of A with ki (D1) = Xs1, kxe(B’) = Xsg, and /{,C(C’l) = Xyo. Let
wh = Kj(w) C Vsa. As before, we can assume that the angles at zf, 2§ are > 21,
Since V34 is CAT(0) (Corollary -, we obtain that w® bounds, up to a symmetry,
one of the minimal disc diagrams in Figure [L3] with H replaced by K, or Figure [15]

If w is not admissible, consider such w with the smallest area of the disc diagram.

&)
’/
T K
L K K K K
T3 Ty ) X3 x?

Ty b?’( -x’é E) 7 T
() (1)
FIGURE 15.

We claim that &5 does not have a single interior neighbour y*. Indeed, otherwise
by Lemma we can lift y* to y € lk(xs, A)°, and we can lift the neighbour of y*
opposite to zh to z» € lk(y, A)Y. The critical cycle obtained from w by replacing
with z, has appropriate diagram with smaller area and so it is not embedded or it
is admissible. Thus w is admissible by Lemma . This justifies the claim and
excludes Figures (I) and (I) In Figure (II), by Lemma , we have, up to a
syminetry,

() CQ Cg Dl,C'z B/ C4 Cﬁ DQ, or

(11) 06 Og D1,07 B CQ 04
In Figure [I5[II) we must have case (i).

Let H be the type I sub-arrangement of A with kg, (C1) = Xoo, k3 (D2) = X131, and
ry(B") = Xs1. Note that, to achieve that, we need to reflect Figure {4 with respect
to, say, the line hy, and then apply an orientation preserving isometry carrying it

appropriately to Figure |14, In case (i), let w™ = rj,(w) C Uys. Note that 27 = 2}

and so 27 is a neighbour of 2%, and 2 has type b (since it has face type X12).
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Furthermore, the 6-cycle zitzltaiaitattzlt is locally embedded at x¥, ¥, and xf

by Lemma Since Uy is CAT(0), there is a common neighbour y* of 27 and x{
in lk(z%,Uyp) (otherwise xizltz} is a geodesic and this 6-cycle cannot ‘close up’
in Up). See Figure [16] for all the possible minimal disc diagrams bounded by this

6-cycle.

it
H o H o
7 = xg z? 5 T7 = xg
H _ o H
rk T1 » o H zl T =T
H x 3 H
5 6 T L2
H o) H
L5 Ty T3 Ty Ty Ty Ty
FIGURE 16.

If 4™ is of face type )?21, then by Lemmawe can lift it to a common neighbour
y € lk(xs, A) of 24 and xg. If ¥ is a neighbour of z¥, then by Lemma T3 is
a neighbour of x4, and so w is admissible by Lemma . Otherwise, zit is a
neighbour of z7*, and so we can lift 2} to a common neighbour x € lk(y, A) of x4
and zg. Since ]¢ is a neighbour of 22, by Lemmal[4.11] we have that  is a neighbour
of 7. Hence the cycle obtained from w by replacing x5 with x is not embedded or
is admissible, and so w is admissible by Lemma [6.2{(G).

If 4™ is of face type Xio, then, by Lemma

(1) z3 and x5 are connected in lk(z4, A) by a locally embedded path of face type
C1B'Cy or C1B'C1B'C, and

(2) z4 and x4 are connected in lk(x5, A) by a locally embedded nontrivial path
all of whose interior vertices have face types B, Dy, or B’.

In Figure [L3(II), 3 and x5 are connected in lk(z4, A) by a locally embedded
path of face type C;B'CyB"C}, which contradicts (1) or Lemma [3.9] To conclude
discussing case (i), we consider Figure [L5(II). Let f; = ri(e;). Then &g (P5) is
homotopic in )?42 into ﬁ. On the other hand, by (2), after possibly replacing the w;
by equivalent words, we canAchoose Ps to be an edge-loop in e U ey U e3 that is
homotopically nontrivial in C. This contradicts Lemma

In case (ii), note that ky(B) is an edge of Xi5. Thus declaring that Ry (P;) is
hosted by X1z, we obtain w* in Uy, as in Definition Note that xff = 23 = z}t.
The 6-cycle ztxitaltaitzlial is locally embedded at x3, x¥, and z}t. As before,
since Uy, is CAT(0), there is a common neighbour y* of x3 and z% in lk(z3, Ujs).
Moreover, this 6-cycle has angle 7 at x}t, in which case x¥, ¥ are neighbours, or
angle 7 at o}, in which case 27, 2} are neighbours.

If 4™ is of face type )/521, then by Lemmawe can lift it to a common neighbour
y € Ik(z5, A) of 24 and x6. The link of y* contains neighbours x3f, 22t or x3t, x¥. By
Lemma [£.T1] xo, x5 are neighbours or xy, x4 are neighbours, and so w is admissible
by Lemma .

If y* is of face type )?12, then x3 and x5 are connected in lk(x4, A) by a locally
embedded path of face type C1B'Cy or C1B'C1B’C. On the other hand, in Fig-
ure (II), x3 and x5 are connected in lk(x4, A) by a locally embedded path of face
type C1B"C,B'Cy, which contradicts Lemma |3.9 as before.

Case 3: There are at least three distinct hexagons among the C;. Hexagons intersect-
ing (] are consecutive if they intersect a common square. We claim that either
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(i) among Csy, Cy, Cg, Cy there is C' that equals C; for a unique 7, and such that for
C",C" consecutive with C', there is at most one j with C; € {C”, C"} or there
are two such j, and they equal 6 and 8, or

(ii) up to a symmetry, Cg, Cs are as in Figure [I7(I) and {C5, C4} = {Cs, C}.

Cs

€es T T

O y~c

FIGURE 17.

To justify the claim, start with any C' that equals C; for a unique 4. If both C’, C”
equal to some Cj, then (i) is satisfied with C' replaced by C’ or C”. If, say, C” is
distinct from all C;, but C' is not as required in (i), then without loss of generality
C" = Cg and C" = Cy or Cy. If the remaining C}, is consecutive with C”, this brings
us to (ii). Otherwise, we have (i) with C replaced by Cj. This justifies the claim.

If (i) holds, first note that if {Cs, Cs} C {C”,C"}, then Cs = Cs since these faces
are equal or consecutive. Furthermore, P; is not homotopic in C = C to a path in C’l,
since w is embedded. Consequently, by considering II5(P) = H4(Fy)---I5(Fy),

which is homotopically trivial in C , we deduce, via Lemma , that there exists C;
consecutive with C'. Moreover, we obtain P; = e¢*, where e C C'is the edge contained
in the square B intersecting C' and C;. If ¢ = 6 or 8, then x7 is a neighbour of x5
or x1, as desired. Otherwise, if, say, ¢ = 2, then the critical cycle obtained from w
by denting x5 to C; (see Definition is not embedded or is admissible by Case 2.
Consequently, w is admissible by Lemma [6.2{(3).

If (ii) holds, then by considering II5(P), after possibly replacing the w; by equiv-
alent words, we can choose P; = 6;6;6; for C; = C. Let K be the type II sub-
arrangement of A with kx(Cs) = X1, k(D) = Xaa, kxc(C1) = Xyo. Since ric(ey) is
a vertex, we have R (F;) C )A(41 Declaring that Ki(P;) is hosted by 241, we ob-
tain WX in Va4 as in Definition [1.77 As before, we can assume that Wk has angle

> 3% at both z§ and 2f§. If Cy = C, then x’zc has face type X4. Since 2§ has

face type )?33, we have that w® has angle > ?jf at 2. Since V34 is CAT(0), the
endpoints of x5 Eabalalaltal are at distance > 4. This contradicts the fact that the
path 2525225 has length 2v/2 + 1. Thus we have Cy = Cg. Since 2§ and 2§ have
distinct face types7 wk is locally embedded at 2. Since Vs is CAT( ), we obtain

that w® bounds the minimal disc diagram in Figure (II). Since % and 2§ have

face types )A(31 and )A(33, the vertex y* has face type X3». By Lemma , we can
lift 4* to y € lk(zo, A)° and 2§ to 2z € Ik(y, A)° of face type Cg. Thus the critical
cycle obtained from w by replacing xs by z satisfies (i), and so it is not embedded
or it is admissible. Consequently, w is admissible by Lemma .

6.2. Case of two decagons.
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Proposition 6.5. Let w be an embedded critical 8-cycle with exactly two decagons
among the C;. Then w is admissible.

D D
3 €1 By B, 5
€1
B5 D1 6
d1 ) 5
Dg Ay ed B les Ay D+
2 er/ “2 \¢3
Dy €12
14
D, 13 Dg
FIGURE 18.

Denote these decagons Ay, As. There is a square B intersecting A; and As, see
Figure[I8 Note that any C; intersects A; or Ay. This is immediate for all C; except
for C7, where otherwise we can obtain xg = xg by a similar argument as at the
beginning of Section [6.1]

Case 1: All C; belong, up to a symmetry, to {A;, As, D1, D, By, B, B3}. Let
be the collection of all embedded critical 8-cycles with all their C; belonging to
the above set, and satisfying an extra condition (x):

o if Cg DQ, then 01 7é 03, and
o if C@ DQ, then Cg 7é 05.

Note that condition (x), and hence the class €2, is invariant under the involution Z
on the set of critical 8-cycles sending xy - - - xg to x5x4 - - - v12x37726, Which still has
type acacache.

It suffices to show that the critical cycles in 2 are admissible. Indeed, if w is
a critical cycle with, say, C; = C3 (we cannot have simultaneously C3 = C5) and
Cs = Dy, then C; = B. Thus we can apply a symmetry of ¥ interchanging D,
with Do, which fixes B, to send w to an element of (2.

Let K be the type II sub-arrangement of A with ric(D1) = X1, kc(B) = Xso,
ki (Az) = Xy42. Then W = /i,c( ) C Vy34. Denote f; = rx(e;). As before, we can
assume that the angles at 2§ & are > 3” . If there is w € 2 that is not admissible,
consider such w with w® bounding a mlnlmal disc diagram in Va4 of the smallest
possible area. Proposition [5.10] and Lemmas [5.8) and [5.7] imply that, up to the
involution Z, w* bounds one of the minimal dlSC diagrams in Figures . with H
replaced by IC) | or

We claim that acQ’C does not have a single interior neighbour y*. To justify the
claim, we first verify that such y* would have face type dlstlnct from X23 and X43

For contradiction, suppose that such y* has face type X23 or X43 In Figure (I 1),
by Lemma applied with = 2§, the two vertices labelled 3/ X would have face
type X32, contradlctlng Lemma [5 . apphed Wlth z=2" In Figures|13 . and (1 .
the vertex y* is a neighbour of %, zF and z§. Thus C; = C5 = Ay, and xg has face
type Ds. This contradicts condition ().

This confirms that the face type of y* is distinct from )A(gg and ?43. By Lemma
we can lift y* to y € lk(xq, A)°, and we can lift the neighbour of y* opposite to x%
to 2o € lk(y, A)°. The critical cycle obtained from w by replacing x5 with 2o has
appropriate diagram with smaller area, and still satisfies condition (x), and so it
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is not embedded or it is admissible. Thus w is admissible by Lemma [6.2)(3). This
justifies the claim and excludes Figures [L3|I), [15[I), and [L9|(L,II).

Up to a symmetry, we can assume Ay, = C; for exactly one i. By considering
ng(P) for any choice of the P; we have P; C esUeyUes or P, C ey Ues Ueg, or we
are in a special case with C7; = B3, Cg = Cy = Dy, and Dy = Cy or Cy.

In this special case, we have that =5 or 2/, say 2§, has face type distinct from
that of x, xf, which excludes Figure (II) In Figure (III) by Lemma
(resp. ¥*) has face type X3 (resp. )A(41) Thus 25 and 2/ have the same face type

as T8 ok Wthh 1s a contradlctlon Consequently, we have Flgure (II) Again,

by Lemma X has face type X43 and so % has face type X42, which implies
C3 = A, and consequently Cy = Cs = Ay. After possibly replacing the w; by
equivalent words, we can assume that P starts at o; and ends at o9, and PJ starts
at 09 and ends at o3 (see Definition . Since y* has face type )A(gg, by Lemma
we have PN = f# and Py} = f;fif, with * non-zero, where f; = r(e;). Since
17 (Pf) is homotopically trivial, we obtain that Ilg (P;) is homotopically trivial.
Since ¥ is non-collapsed, we have P, = eheiel, with * non-zero. Thus Iz, (P, P)
is homotopically nontrivial. Then II5 (P) = ejsel,€i3€],, where the first ej; and
last ej, come from Ilp (P1FP,) and II5 (Pr), which are homotopically nontrivial.

This contradicts Lemma applied to ej3Ues C ﬁa, and finishes the discussion of
the special case.
In Figure (III), by Lemma apphed with the edge 2Xy™ playing the role

of xy, we have that y’ is not of face type X32 Hence, by Lemma [5.2] the vert1ces
y*, 2F have the same face types (which are thus X41) and the Vertlces x’C 2'* have
the same face types. Thus, by Lemma 5.4 E the vertices %, 2§ have the same face
types (dlstmct from that of 2, 2/ ) implying 01 Cs, and consequently Cs = As.
Thus 2§ = 2§ has a single interior neighbour y*, which has face type X41 Since we
have covered already the special case, we have P3 CesUeyUes or Py C eyUesUeg.
Furthermore, PYX has the form J7 1§ I, where the first and the third term can be
removed after possibly replacing the w; by equivalent words. By Lemma [3.12] we
can lift y* to y € lk(z3,A)°. We also lift 2% to z € 1k(y, A)°, which still has face
type As. The critical cycle obtained from w by replacing x3 with x has appropriate
diagram with smaller area, and still satisfies condition (x), and so it is not embedded
or it is admissible. Thus w is admissible by Lemma E@

In Figure (H) suppose first © = 3. If x; has face type Bs, then, by Lemma -
Y X has face type X43 Thus C5 has face type Do, wh1ch is the special case that we
have already covered. If z7 has face type By, then Y X has face type X23, and so

X has face type ng, which is a contradiction. If z7 has face type B, then y* has
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face type )A(Ql or )A(23, and y”c ,® have face types )A(32,)A(22. By the same reasoning
as in the previous paragraph, we can lift y'~ to y' € lk(xs, A)°. We also lift 2%
to z € lk(y, A)°, which has face type A;. The critical cycle obtained from w by
replacing x3 with x is not embedded or is admissible by Proposition 6.3} Thus w is
admissible by Lemma .

Second, suppose in Figure (II) that we have i # 3, say ¢ = 1. If ¢ has face
type )A(gg, then we lift 4, 2%, and we proceed as in the last case with y and v/
interchanged. If y’C has face type distinct from )A(gg, then, by Lemma y"* has
face type X41 or X43, thus 27, 2§ have the same face type, which is a contradlctlon

It remains to consider Figure [IF[II). Since w is embedded, by Lemma we
have ¢+ = 3. Furthermore, if C; = B, then the critical cycle obtained from w by
denting x3 to A; is not embedded or is admissible by Proposition Thus w is
admissible by Lemma .

Thus we can assume C; = Bs, where all even C; equal D;. Moreover, we can
choose P3 = e, with P starting at §; and ending at d,. Let H be the hyperplane in A
dual to eg, and let K C ¥ be the union of the faceE on the side of H containing eg.
We will justify that we can choose all P; inside K. Indeed except j = 3, all Cj
intersect H. Starting with j = 4, and applymg Lemma P; is homotopic in CJ,

relative to the endpoints, to Pj; Pj, with P;; C K and Pjg C C’ NC; i+1. Wereplace P;
by Pji and Pj1 by PjaPji1. We repeat the same procedure for ] =5,6,7,8, 1. Smce

115, (P) is homotopically trivial, ending this procedure with j = 1 yields P, C K
K

Then PJ starts at d, and ends at a triangle 03 of V234 containing the edge 3:4 Ty

Since zff = 2§, we have that PF is homotoplc in ng to fg. Since P; C K we

conclude that PX is homotopically trivial in ng and so it both starts and ends

at 03. Then Péc starts at 03 and ends at a triangle d4 containing the edge oKk

Note that d, = d9, since otherwise P’CPGIC is a path in X31 with nontrwlal image under

[T+ contradicting Py, P C K. Thus we can assume PX = P! ,and so Py = P, !
I8 4

by Lemma |4.15] u Analogously, Py = P; ', and similarly P, = P;'. Considering
IT; (P), and noticing that I3 (F;) are homotopically trivial loops in A, fori # 1,5,

we obtain P, = P5’1. It follows that w; commutes with wywswy.

Let P be the parabolic closure of w; (i.e. the smallest parabolic subgroup of A,
containing w;, which exists by [CGGMW19|). Note that P = A, since otherwise
we would have w; = gb*¢g~! or gc*g~! for some g € Ay.. Hence there would exist
j € {1,7,8,9,10} with Ilg (P1) homotopically nontrivial. However, j # 8 since
P, C K. Furthermore, since I5(P) = kik3kiks is homotopically trivial in D (see
Figure , hence in EI U Eg by Lemma and the x over ky are non-zero, we have
that the remaining * are zero, and so j # 10. The remaining j are excluded since
wk is not locally embedded at a2

Since wowzwy commutes with wy, it normalises P = Ap.. By [Par97, Thm 5.2 (5)],
the edge-loop P, P3P, is homotopic in S to an edge-loop of the form Q™ (Q1Q2)" Q3
defined as follows. Let ps be the antipodal vertex to the basepoint p; of P, in X.
Let A} C ¥ be the opposite face to Ay, and let p3 be the projection of p; onto Aj.
We define (); to be the minimal positive path from p; to p3, Q2 to be the minimal
positive path from ps; to p;, and @ to be the concatenation of a minimal positive
path from p; to po and a minimal positive path from p, to p;. We allow any Q3 C A;.
Since g, (PyPsPy) = Tlg, (P ') is homotopically nontrivial, we have n; + ny # 0.
On the other hand, for an edge e whose dual hyperplane does not intersect A, D;
or Bs, we have that [Iz(P,PsPy) is trivial, implying ny + ne = 0, contradiction.



353-COMBINATORIAL CURVATURE AND THE 3-DIMENSIONAL K(w,1) CONJECTURE 35

FIGURE 20.

Suppose now that the condition of Case 1 is not satisfied. We assume
without loss of generality C5 = A;.

Case 2: C] = (5. Then all of the C; intersect A;. Suppose that one of the C;, say Cg,
equals Dg. If we also have Cs = Dg, then by considering II AQ(P), we can choose
P; = e}. By Proposition[6.4] the critical cycle obtained from w by denting 3 to A, is
not embedded or is admissible. Thus w is admissible by Lemma @) If Cs # Ds,
then by considering I (P), we obtain that z7 is a neighbour of z5. Thus we can
assume that none of the C; equals Dsg.

Up to a symmetry, it remains to assume Cy = D3. Suppose first Cs = D;. By
considering I15, (P), we can choose Pz C ejpUey;. Let K be the sub-arrangement of
A as in Case 1. All the vertices of w lie in Ak, except for x5. However, ri(ey) is a

vertex, so we have Ki(FPs) C Xy1. Thus declaring that R (Ps) is hosted by Xop, we
obtain w® in Va3, as in Definition Note that z§ = 2§, and so 25 and z§ are
neighbours.

By considering Il (P), we obtain that Pj is contained in e3 U ey U €5, which will
allow us in a moment to apply Lemma to P;. We apply Lemma to the
6-cycle ¥ - - ¥k, If we have Lemma , i.e. 7§ = 2/, then, by Lemma [3.12]
we obtain xo = x4, which is a contradiction. If we have Lemma (2), ie. 1§ # 2
have a common neighbour y* in lk(z¥, Va34), then, as in Case 1, by Lemma m,
the vertex y* can be lifted to a neighbour y of x5, 24 in lk(xs, A) of face type B.
Let x be a neighbour of y of face type A;. The critical cycle obtained from w by

replacing xs with z is not embedded or is admissible by Proposition Thus w is

admissible by Lemma [6.2((7]).

If we have Lemma [5.9(3), then let ¢/ * be the interior vertex of the disc diagram
in (3) that is a neighbour of z§. By Lemma we can lift ¥’* to a neighbour 3/
of 1, x5 in lk(wy, A) of face type B. Let z be a lift of z* to a neighbour of x,, z3
in lk(y’, A). Then the critical cycle obtained from w by replacing x5 with z is not
embedded or is admissible, since it satisfies Lemma ). Hence w is admissible
by Lemma .

Second, suppose Cg = Ds. Let H be the type I sub-arrangement of A with
ry(A1) = Xoo, ky(D3) = Xi1, and ky(Bs) = Xo1. Note that again we need to
reflect Figure [4| before comparing it with Figure Then all z; belong to A}, (note
that k(A3) is a square of X15), except for the ones of face type D,. However, declaring
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that such %y (P;) are hosted by Xsy, we obtain w’ in Uy, as in Definition . Note
that x is a neighbour of z7* and zZf. Since U, is CAT(0), we have that w? has
angle T at 2% or z, and so w is admissible as before.

Case 3: C3 = C5. Then none of the C; equals D;. If one of the C; equals D5, then
i = 8 and, considering I15_(P), we deduce that 7 is a neighbour of z;. Thus we can
assume that none of the C; equals Dj or Dg. We can also assume C; # Dyg, since
otherwise i = 4, and, by considering II5_(P), we can choose Py = dj or dj, say dj.
Then, by Lemma , we can replace w by the critical cycle obtained by denting
T4 to D3.

Up to a symmetry, it remains to assume D3 € {Cy, Cs}. If Cy = D3 # Cp, then
5, (PsUPUPs) = e, or e7;. Thus, by considering Il (P), we can choose Py = e7;.
By denting x4 to Dy we obtain a critical cycle that is admissible either by Case 1 or
the case Cy = D3 # (4, which will be discussed in a moment. Thus w is admissible
by Lemma . If C¢ = D3 # Cy, then, by considering I3 (P), we can choose
Ps C ejpUer;. Let IE be the sub-arrangement of A as in Case 1. Declaring that
R (Ps) is hosted by Xy, we obtain w® in Va3 as in Definition As before, ¥
and z§ are neighbours. We apply Lemma to the 6-cycle afafaltalakalt, with
o playing the role of z3, and we finish as in Case 2.

If C4¢ = Cy = Dg, then let ‘H be the type I sub-arrangement of A as in Case 2.
Then all z; belong to A}, except possibly for z, if it has face type D,. However,
declaring then that &z (P) is hosted by Xsy, we obtain w? in Uj as in Definition @
Note that z is a neighbour of 2} = z}* = ¥, and hence of z}. Since Uy, is CAT(0),
we have that the 4-cycle x3fx}tzltx¥ has a common neighbour y’. If " has face
type X1, then by Lemma [4.11] we obtain that x3 and x4 are neighbours, and so w is
admissible by Lemma f y™ has face type X2, then by Lemma x4 can
be dented to Dy, reducing to the case Cy # D3 by Lemma .

6.3. Case of three decagons.

Proposition 6.6. Let w be an embedded critical 8-cycle with three decagons among
the C;. Then w is admissible.

FIGURE 21.

Up to a symmetry, we have Figure RI(I) or (II). In (II), we have Cy € {Cs, D1}
and Cy € {Cs, D2}. By considering Iz (P), we can choose P, = e*. The critical
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cycle obtained from w by denting z; to C3 is not embedded or is admissible by
Proposition . Thus w is admissible by Lemma @ Hence in the remainder of
the subsection, we assume (I).

Case 1: One of (g, Cg belongs to { Dy, Ds}. Then we have either Cs = D, and Cg =
D, or Cs = D3 and Cg = D. However, in the latter case, reflecting along the
hyperplane of ¥ intersecting C's and D, and applying the involution Z from Case 1,
brings us to the former one. Thus we can assume Cs = Dy and Cg = D. First,
we assume Cy = D. By considering Iz (P), we can choose P5 = egezej. We can

assume that the last * is non-zero, since otherwise we can choose P5 = eg and by
Lemma @ reduce to Proposition 6.5 by denting 5 to Cs. Then Il (P5) = dj is
nontrivial. Since Il (P) = djd;d;d; is homotopically trivial in Dy, by Lemma
we obtain that the % over dy are zero. In other words, Il;,,(P,P3) and Il (Fg) are
homotopically trivial. By considering I, (P), we can assume P3 C €3 Ue; Ues.
Let H be the type I sub-arrangement of A with k3, (C1) = Xoo, ky(D2) = X1, and
Ky (By) = Xo1. Here again we reflect Figure I Let P = KH(P) Note that ry(e3)
is a vertex. Since Cy = D, declaring that P is hosted by X o for i = 3,...,7, and
for © = 2 when 02 = D, we obtain a 4- or 3-cycle w’ in Uy as in Definition .
By Lemma s locally embedded at xz{ Since Uyp is CAT(0), we obtain
that w’ has angle T at z}f. Thus zi and z}* are neighbours and so x; and x; are
neighbours. If Cy = D3, then, by considering II5_ (P), we can choose Py = e3. Thus,

by Lemma E. we can reduce to the case C'4 D by denting z4 to D.

In the remaining cases, we assume that none of Cj, Cs belongs to {Ds, Ds}.

Case 2: Uy = Cy = D, and at least one of Cg, Cs equals D.

Case 2.1: C7 = B. By considering Ilg (P), we can choose P3 = ejese;. Let K be
the type II sub-arrangement of A with k(D7) = Xa1, ki (B) = Xa2, kic(C1) = Xaa.
Then /@;C(el) and ki (e3) are vertices. Declaring that Pt is hosted by )/233 we obtain
a cycle w? in V234 as in Deﬁnition with xQ = x?f = x4 Note that wh is locally
embedded at z}t, 22t and z} Thus wh is locally embedded at one of 27, 2, say 7.

If w? is not locally einbedded at zlt or 2}, then by Lemma 5.7 applied to 2] HyllaHalt
we have that x3t is a neighbour of zZ and so ; is a neighbour of z7. If w™ is locally
embedded at x% and z}f, then by Lemma [5.8 applied to z]tz¥zrtzltx* 2 we obtain

that ¢ is a neighbour of z}* or 2 and we finish as before.

Case 2.2: C'; = By or B;. By the boldface assumption at the end of Case 1, we have
Cs = Cs = D. By the argument similar to the one at the beginning of Case 1, we
can assume C7 = By. By considering Iz (P), we can choose P, = egegej,. We can
assume that the % are non-zero, since otherwise we can reduce to Proposition
by denting z; to C3 or Cs. Consider the path n = xgx1121221322 in Ik(x1, A) of face
type DBDDB; D corresponding to ejeje;,. Let K be the type II sub-arrangement
of A with k(D) = X31, kie(Bo) = Xaa, kixc(C3) = X42 Then the cycle wy obtained
from w by replacing zgzxo with 7 lies in Ap. Let wh = H,C (wo)-

We first consider the case where w} has angle 7 at xs By considering I15 (P)
we obtain Pj C €, Ué Ues. Thus by Lemma wk is locally embedded at k.
Analogously wy is locally embedded at 2§ and so it is locally embedded. By Propo-
sition @ With oKk xglcxﬁx’fz - playing the role of T1TpT3T4Ts - - - (note that 4
has face type X32, but 2% and 273 do not have face type ng) wy has angle 7 at Tk
and so x5 and x; are neighbours.

Second, assume that wyy has angle Z at z¥, and so there is a common neighbour z
of #& and 2§ in Ik(zf,Vasy). By Lemma [4.15, we can lift 2 to a a common

K
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neighbour = of z7 and z1; in lk(zg, A). Since z7zgr1; has face type BoDB, we have
that = has face type C5. Let W' = z31425062219201322. If W' is not embedded, then
either x = x5, in which case x5 and x; are neighbours, or x5 = x4, in which case x;
is a neighbour of both x4 and x5 and w is admissible by Lemma 1' Or T19 = Ty,
in which case x5 is a neighbour of 3 and w is admissible by Lemma . If ' is
embedded, then by Proposition it is admissible, and so x13 is a neighbour of x3
(other possibilities are excluded since the faces By and Cs are disjoint). The critical
cycle obtained from w by replacing x, with x5 is not embedded or is admissible
since it fits the case of P = egegej, with one of the * zero. Thus w is admissible by

Lemma .

Case 3: Cy = Cy = D, and none of Cg, Cy equals D. If Cg = D5 and Cs = Dy, then
by considering 15 (P) we obtain that z7 is is a neighbour of 5. The case Cs = D,
and Cg = Dy is analogous. It remains to assume Cy = Cy = Dy. If C; = Bs,
then by considering 1z (P) we can choose P5 = egeze;. Let H be the type I sub-
arrangement of A with rky(Cy) = XQQ,F;H(DI) = Xi1,ky(Bs3) = X21. Declaring
that RH are hosted by )/(\'12 for i = 2,...,5, we obtain a cycle w? in Uy as in
Definition 4.7 with z}f = 2¥ = 2]t = x5 By Lemma zHaltrl is a geodesic.
Since Uy is CAT(0), w™ has angle 7 at xs and so x7; and x1 are neighbours as usual.
The case C; = B, is analogous.

We now assume C7 = B. By considering Iz (P), we can assume Ps; = Ps; Psy P53
with P51 = egeiey, Psa = ej, and Ps3 = e;. We assume that Ps and FPs3 are
nontrivial, since otherwise we can proceed as in the previous paragraph. Declaring
that P’ are hosted by X12 for « = 2,3,4,51,53, and P2 is hosted by XH, we

7

obtain a cycle w™ in Uy, as in Deﬁnltlon Wlth it = x?,}" = ]t = x¥. Since
Pl is nontrivial, w’ has angle 7 at 5. Thus x}tzZfx¥ and xflxlall are geodesms
meeting at an angle > 7. Since Uy, is CAT(0), it follows that the angle of wh at

xé‘ is 7, and so w7 and x; are neighbours as usual.

Case 4: Cy = Dy or Cy = D3. If Cy = Dy, then Il 5 (PsUP;UFg) = €], or ef;. Thus,
by considering Il5, (P), we can choose P, = eJ,. By Lemma [6.2) g , by denting x5
to D we can reduce to the case where Cy = D. Analogously, = Dj, then by
denting x4 to D we can reduce to the case where Cy = D

7. CRITICAL 10-CYCLES
Let A be the linear graph abc with my, = 3, my,. = 5, as in Section [d A critical
10-cycle in A has type acbébcache (or, shortly, ac(bé)?ache).
Definition 7.1. An embedded critical 10 cycle (z;) is admissible if
(1) x; is a neighbour of x3 or w9, or z7 is a neighbour of x5 or xg, or
(2) there is a vertex of type a that is a neighbour of x3, x5, and x.
The goal of this section is to prove:

Proposition 7.2. Fach embedded critical 10-cycle is admissible.

Proposition [7.2] follows from Propositions [7.4] and [7.5] below, which are proved in
Subsections [7.1] and [7.2] In the remaining part of this section, let w = @y - - - a0 be
an embedded critical 10-cycle. Let w;, C;, P; be as in Construction [4.1]

Lemma 7.3. Let w be an embedded critical 10-cycle. Under any of the following
conditions w is admissible.

(1) There is a vertex x of type a that is a neighbour of x3 and xs.
(2) There is a vertex x of type a that is a neighbour of x3 and xq.
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(3) Replacing in w the vertex xy by x| results in a critical cycle wy that is not
embedded or is admissible.

(4) Replacing in w the vertex x4 or x19 results in a critical cycle wy that is not
embedded or is admissible.

Proof. In (1), by Remark x is a neighbour of x5 and zg. Let wg be the critical
8-cycle x1xoxr6r708T9219. By Proposition wyg is not embedded, or is admissible.
If wg is not embedded, then, since w is embedded, we have * = z; or x = 7,
which implies that w is admissible. If wg is embedded and satisfies Definition [6.1)(1),
then w satisfies Definition [7.1(1). If ws satisfies Definition [6.1](2), then w satisfies
Definition [7.1)(2).

In (2), by Remark 2.1} z is a neighbour of z; and zs. By Theorem [2.9] there is
a common upper bound z € A° of type ¢ of x, x5, x7. If 2 = x4, then applying the
bowtie freeness from Theorem to xx4x526, Wwe obtain that x is a neighbour of x5,
and so w satisfies Definition (2) If z # xg, then applying the bowtie freeness to
2r5Tex7, we obtain that x; is a neighbour of x5, and so w satisfies Definition (1)

In (3), if wp is not embedded, then | = z7. Applying the bowtie freeness from
Theorem to T7x3T9x19, We obtain that x; is a neighbour of xg. Thus we can
assume that wy is embedded. The admissibility of w follows immediately from the
admissibility of wy unless ) is a neighbour of (i) x3 or (ii) z.

In (i), let 24 be a neighbour of type @ of zy (and hence of zg and 19 by Remark[2.1).
Let wg be the critical 8-cycle xrxszgri02)247526. Note that wg is embedded, since
otherwise x7 = zf, which is a neighbour of zg, or xy = ], and so w is admissible
by (2) applied with = = 2. By Proposition , wg is admissible, and so x5 is a
neighbour of z7,z}, or zf. In the second case, w is admissible by (1) applied with
x = ). In the third case, w is admissible by (2) applied with x = z3,.

In (ii), let o} be a neighbour of type a of x3. We consider the critical 8-cycle
Wy = T7xsT Taxhx4T5%6, and we proceed analogously as in (i).

In (4), if wp is not embedded, then, by Lemma [5.7, w satisfies Definition [7.1[1).
If wy is admissible and satisfies Definition [7.1|(1) (resp. (2)), then w satisfies Defini-

tion [7.1J(1) (resp. (2)). O

7.1. Case of one decagon.

Proposition 7.4. Let w be an embedded critical 10-cycle with C; = C7. Then w is
admissible.

In the discussion below, we consider two kinds of symmetries. One kind are the
symmetries of . The second is the involution Z’ on the set of critical 10-cycles
sending x - - - x19 to 726 - - - x1210T9xs, Which still has type acbéebéache.

Note that C intersects Cl. Otherwise, up to a symmetry, C; and Cy are as in
Figure 22[I), and we have Il¢, (C;) C e for i # 4,9. If II,(Cy) is not contained
in ey, then, up to a symmetry, Cy is as in Flgure. ). Since I15 (P) is homotopically

* % ok

trivial in C4, by Lemma |3.5| we obtain that P, is homotopic in Cy to e} or ejese].
The former is 1mp0581ble7 since it implies 3 = x5. The latter implies that x3 and x5
have a common neighbour of type a, and so w is admissible by Lemma .

We now show that C3, C5, Cy intersect C. Otherwise, up to a symmetry, we can
assume that one of them equals B in Figure (H). If exactly one of them equals B,
then, by Lemma we have I15(P) = e, implying that w is not locally embedded at
one of 3, x5, r9. Thus we can assume that at least two of them equal B. Then, up to
a symmetry, we have C'3s = B and at least one of C5, Cy equals B. Up to a symmetry
of 3 interchanging B" with Dy, we can also assume {C5, Co} C {B, Dy, Do, D4}
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FIGURE 22.

First assume that Cy equals B or Dy. Let K be the type II sub-arrangement
of .A with 143]((02) = X31,KK(D0) = X32,/€]C(01) = X42. Since 05 7é Bl, we have
Kic(Cgs) = X1 or X33. By Lemma , we can suppose that x3 and x5 do not have
a common neighbour of type a. If w is not admissible, then, by Lemma Wk =
Kj(w) satisfies the assumptions (2) and (3) of Proposition [5.11] This contradicts
Corollary [5.16]

Second, assume C9 = Dy, and Cg = Cjg = D;. Let £ be the type II sub-
arrangement of A with kz(D;) = Xs1, k(Do) = Xaa, k2(C1) = Xygo. Note that, to
achieve that, we need to reflect Figure [7] with respect to, say, the line h3, and then
apply an orientation-preserving isometry carrying it appropriately to Figure (II).
Then k.(C3) is an edge. Declaring that PF are hosted by )A(33 for i =2,...,6, we
obtain a 6-cycle afafrkrsafaty in Vay as in Definition 1.7 Since V34 is CAT(0),
the angle at 2§ or % is 7, and so, by Lemma m, the angle at xg or x1¢ is 7. Thus
w is admissible.

Third, assume Cg = Ds. If Cjg # Ds, then, by considering H@S(P), we obtain that
the angle at rg is 7, and so w is admissible. If Cjo = D3, then let J be the type I
sub-arrangement of A with k7(C) = Xo, k7(D3) = X1, k7(D4) = Xo1. Note that
again we reflect Figure 4l Since k7(C5) = k7(Cy) is an edge of X7, declaring that
P are hosted by Xy, fori = 1,...,7, we obtain a 4-cycle x v xf 27, in Uy, as in
Definition @ Since Uy, is CAT(0), the angle at 2 is 7, and so, by Lemma m,
the angle at xg is 7 and w is again admissible.

Up to a symmetry, this exhausts all the possibilities, since in particular the case
Cg = D2, Cg = Dl, and ClO = D3 is sent to the case Cg = DQ,Cg = Dg, and
Cio = D; under the involution Z’. Thus we can assume that all the C; intersect C.

Let C be the family of hexagons appearing among the C;. Recall that two hexagons
intersecting C are consecutive if they intersect a common square. We can assume
that there is no hexagon C' that equals C; for a unique 7, and such that for C’, C"”
consecutive with C, there is at most one j with C; € {C’,C"} or there are two such
J1,J2, and {3, j1,j2} = {2,4,6}. Otherwise, we consider II5(P), and the argument
is similar to Case 3(i) of Proposition , except no denting is necessary here and
we possibly need Lemma when ¢ = 4.
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We claim that then C is contained in a sequence F}, F3, F5 of consecutive hexagons,
see Figure left. Indeed, if |C| = 5, then Cy, Cy, Cy are distinct and consecutive,
and we can take i = 4 above. If |C| = 4, then we can take C; to be one of the two
hexagons that have only one consecutive hexagon among the C;. If C consists of
three hexagons that are not consecutive, then two of them are consecutive. If this
consecutive pair equals {Cg, C1o}, then we can take i = 8 or 10. If this pair equals
{C5, Cy, Cg}, then we can take i = 2,4, or 6. This justifies the claim.

Case 1: Cy, Cy, Cy are distinct. Since {Cy, Cio} # {F1, F5}, using a symmetry of ¥
we can assume F7 # Cg, Cg and Fy # Cy. Using the involution Z’, we can assume
Fy = C5. Furthermore, one of Cg, Cy equals F3, since otherwise we could take
C; = Cy above. In particular, we have Cy # Fj.

Let IC be the type II sub-arrangement of A with

Kic(F1) = X1, ke (Fo) = Xag, ke (Ch) = Xyo.

Here we reflect Figure [7] before comparing it with Figure 23] left. We construct the
following cycle w® in V34, which is CAT(0). We declare that PX is hosted by X3 for
z; of face type Fs, and that PX (resp. PY) has the same host as P (resp. PLY). Then
& = 2f and 2§ = 2§, see Figure [23 right. By Lemma and Lemma m,

we can assume that the path z¥z52l 2l is a geodesic with angle > %’T at =¥, and

so |2%, 2¥| > 4. However, the length of the path x%2f 252X is < 2 4+ /2, which is
a contradiction.

Case 2: Oy, Cy, Cg are not distinct. Then we can assume that none of them equals F.
Let K be the type II sub-arrangement of A as in Case 1. Declaring that PX are

hosted by )?43 for C; = F5, by )?42 for C; = Fg, and by )?43 or )?33 for C; = Fy,
we obtain a cycle w* in Vi,. Suppose first Cs5 # Fy. Then by Lemma and
Lemma @, we can assume that the path afafalalal is a geodesic with an-
gles > 2 at o, 2§, which implies |2}, 25| > 6. However, the length of the path
oiak ol is <2+ 21/2, which is a contradiction. If Cs5 = F, then we obtain a
contradiction exactly as in Case 1.

U

FSTS

FIGURE 23.

7.2. Case of two decagons.

Proposition 7.5. Let w be an embedded critical 10-cycle with Cy # C7. Then w is
admissible.

There are two possible configurations for the pair Cp, C%, illustrated in Fig-
ure (I,H). Consider first Figure (I) If Cy # Do, and all Cy, Cy, Cs belong to
{Cs, Cro}, then, by considering Il5 (P), we obtain that P, = ej3, and so w is not
locally embedded at z;, which is a contradiction. Thus, if Cy # Ds, then one of
Cs, Cy, Cy is distinct from Cg, Cg. Using a symmetry, we can assume without loss
of generality Cy = Dy, Cy = Cyg, and Cs = Cs. By considering Iz (P), we obtain

* ok ok

that P; is homotopic in 51, relative to the endpoints, to ejejej. After possibly
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FIGURE 24.

replacing the w; by equivalent words, we can assume P; = e, and so we can dent
z1 to A. By considering Ilg (P), and arguing similarly, we can also dent z7 to A.
By Lemma and Proposition it follows that w is admissible. If Cy = Ds,
then Cy = Dy and Cs = Ds. From considering Il5 (P) it follows that we can choose
P, = e3. Thus there is a neighbour of type a of x5 and 25 and so w is admissible by
Lemma .

In the remaining part of the subsection, we will consider Figure 24II). Then Cy
and all even C; intersect Cy or C;. If C5 is disjoint from both Cp,C7, then, by
considering HGS(P), we obtain that w is not locally embedded at x3, except in one
case, where, up to a symmetry, we have Cy---Cyy = C1D3BgD3ByDC7;D5B3D;.
Note that Il5 (P) = djd;did; is homotopically trivial in D;. Since w is locally
embedded at x3, the % over d; are nonzero. By Lemma [3.8 we obtain that the *
over dy are zero. It follows that Uz, (P,) is a homotopically trivial loop in 67. Thus,
by considering Il (P), we can choose P; = ej. This allows us to dent z7 to A,
which, by Lemma , brings us to the case where all the C; intersect C' or C5.
An analogous discussion applies to C5. Thus we can assume that all the C; intersect

Cl or C7.

Case 1: One of the C; equals D3, Dy, D5, or Dg. This includes the case where C,
or Cs equals D; or Dg. We say that D; € {Ds, Dy, D5, D¢} is good, if there is
a unique ¢ with C; = D;.

Case 1.1: One of the Dj, say D3 = C}, is good. If ¢ = 4, then Cs = D; and Cy = D
or Dg. Furthermore, Il5 (Ps U Py U Prg) equals ej or e3. Considering Il5 (P), it
follows that we can choose P, = e3. Thus there is a neighbour of type a of z3 and x5
and so w is admissible by Lemma . If i = 2, then Cy = Dy and Cg = D1, Dy
or Ds, and again 5 (Ps U Py U Pig) equals e or e3. Considering I, (P), we can
choose P, to be trivial. Thus w has angle 7 at xs, and so w is admissible.

If © = 10, then Cg = By, and Cg = D;. Considering I35, (P), we can choose Py to
be trivial, which leads to angle 7 at x19, except the special cases where CoC3C,C5Cs =
D1BDsByDy or DgB,D4B1D5. In the second special case, by considering H@ (P),
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we can choose P; = e%, and denting z7 to C, by Lemma , reduce to Proposi-
tion [7.4]

In the first special case, let K be the type II sub-arrangement of A with rx(Dy) =
Xa1, kixc(B) = X3, ki (C1) = Xgo. Declaring that Py is hosted by X3, we obtain a
cycle w® in Va4, see Figure [25(1). Since 2}y = 2, we have that zf is a neighbour
of 2%, By Lemmas and we can assume that =5, 2%, 25 do not have a

common neighbour and the angles at %, 2§ are > 3T, By Lemma we have

4
K K 1K A K K _ KKK K KKK
xrg # xg. Let x5 be a type a neighbour of x5, and let wy = aagayry 'y vy rs vy .

Then w¥ satisfies the hypotheses of Proposition . Thus wg bounds a minimal
disc diagram D that is a subdiagram of Figure §(III). By Lemma [5.2] the link
Ik(24", Vygs) has girth > 8. Thus, since 23"~ in Figure (I) corresponds to xj
in Figure (HI), the vertex 2§ lies in the image of D. Considering the simplicial
structure of D, we obtain a neighbour of type a of z¥,z¥, and z¥, which is a
contradiction.

Tg = T71g

K
9 K
K H
] T T
K F H
RN v v v
7
K 2. K ¢ H ¥ H _
K K .K K x Ty =T Ty =x x Tt =X
Ty XT3 Ty Ty Tg (II) 5 7 9 10 8 5 7

x% Ty =Ty
FIGURE 25.

Now we assume that none of D3, Dy, D5, Dg are good, and in particular C; = Dy
is not good. Consider sequences © = (Cy, C3, Cy, C5, Cs), and Oy = (Cy, Cy, Cyp).
Note that D5 cannot occur twice in ©5. Hence D5 occurs at least once in both 04
and Oy, or D3 occurs twice in ©1 but does not occur in O,.

Case 1.2: D3 occurs at least once in both ©; and ©y. Then Cy = D;, and C1g =
Dj. If C5 = By, then, by considering Ilg (P), we can choose P; = e7. Denting 7
to C1, we reduce to Proposition by Lemma .

Otherwise, since Ds is not good, we have Cy = D3, Cy = D{,C5 = B or Bj,
and Cg = Dy or Dy. Let H be the type I sub-arrangement of A with ky(C) =
Xoo, ki (Ds) = Xu1,ku(Bs) = Xoi (we reflect Figure ). We declare that P is
hosted by Xy if Cs = Do, and P; is hosted by X, if C; € {B, B;, C7}.

If Cs # Dy, then we have ¥ = 27t = o}t = 2}t = 22 = 2} = 2}, By Lemma 5.7,
the cycle 2 fta}a}t has angle T at 2%, and so w is admissible by Lemma [4.11]

If Cs = Do, then we have 2z}t = 2}t = zI', and 2}t = 2}t = z}. We can assume
that w* has angle 2T at 23 and 2%}, as before. Since Uy, is CAT(0), we obtain that

w™ bounds a minimal disc diagram in Figure (H). If y* has type Xi2, then we

can choose PIH homotopic in Xs,, relative to the endpoints, to a path in Xso N )A(lg.
Thus we can assume P; C eg U es U ey. Consequently, HEQ(Pl) is trivial. By
considering Il (P), it follows that we can choose Fs to be trivial, which implies

that the angle at xg is § and so w is admissible as before. If y™ has face type )A(gl,
then we can dent z; to the decagon distinct from C intersecting Bs and reduce to
the configuration from Figure 24|1).

Case 1.3: D3 occurs at least twice in ©; but does not occur in ©y. Then Cy = Cy =
D3 and Cg = D;. We have {Cs, C1o} C {D1, D3}, since Dy, D5, Dg are not good. Let
H be the sub-arrangement as in Case 1.2. Then Ps, Py, P; are hosted by Xi5. We
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declare that P; with C; = Dy (resp. Ds) are hosted by Xio (resp. Xg), and Py has
the same host as Pyy. If Cy # Dy or Cyg # D1, then w’ is a 5-cycle x?‘x%‘x?mfzxg{
as in Figure (HI) with angle 7 at 2 and angle T at 2. Since Uy is CAT(0),
w™ has angle T at z¥, and we finish as before. If Cs = D, and Cyy = D;, then
it = 2}t = x¥ and so w? is a T-cycle affaxitaitalizltaltait where 2}t and x are
neighbours. If 3, z¥ are not neighbours, then, since Uy is CAT(0), the path w?
bounds the reduced disc diagram in Figure R5(IV). Thus @}, 2}, #}¢ have a com-
mon neighbour, and by Lemma so do x3,z5. Hence, by Lemma , w is

admissible.

Case 2: All even C; belong to { Dy, Dy}. Without loss of generality, we can assume
that neither C5 nor C5 equals By or By. Let £ be the type II sub-arrangement of A
with HK(D1> = X31,I€K<B) = X32,/§J}C(C7) = X42. If Og ¢ {Bl,BQ}, and w is not
admissible, then K. (w) contradicts Corollary

If Cy € {By, By}, then Cg = C}p, and we consider the 8-cycle wf obtained from
x£ ... 2£ by replacing ¥5 with its neighbour of type a. Using Proposition , we
obtain that w is admissible by the same argument as in the special case of Case 1.1.

8. 353 SQUARE COMPLEXES

We refer to Definition [I.5] for the notion of a 353-square complex.

Definition 8.1. A 353-square complex is stable if for any set S C A or D of pairwise
close vertices, there is a finite subset S’ C S, such that if a vertex v is close to or a
neighbour of the entire S’, then v is close (or equal) to or a neighbour of the entire S.

Definition 8.2. A 353-square complex is wide if any simplex of X® is contained in
a simplex o with [ N A| > 2, and |c° N D] > 2.

The goal of this section is to prove Theorem [I.3]

8.1. Disc diagrams.

Remark 8.3. From Definition it follows that if adya1ds, adiasds, and dadyas
are squares, then dya;dsas and daydsas are squares (see Figure (1)) Consequently,
if a minimal disc diagram D in X contains a cube corner, then it cannot contain
the additional two squares in Definition , since otherwise we could replace the
five squares by three squares.

V0

U1

Vo d

a> (1) 2) (3)

FIGURE 26.

Definition 8.4. Let D be a square disc diagram homeomorphic to a disc. We say
that D is n-bordered, for n > 0, if

e there are exactly n vertices of D not contained in any interior edge, and
e cach of the remaining vertices of D is contained in exactly one interior edge.
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See Figure (2) for an example of a 2-bordered disc diagram.
We say that D is an inter-osculation (see Figure 26{3)) if there are consecutive
vertices vy, vy, v € 0D, and another vertex v € 9D, such that

® vy, Uy, v are not contained in any interior edge, and

e v, is contained in at least one interior edge, and

e cach of the vertices of 0D \ {wvo, v1,v9, v} is contained in exactly one interior
edge.

A hyperplane in a square disc diagram is a maximal immersed 1-manifold obtained
by connecting the midpoints of opposite edges (called dual edges) in consecutive
squares, see for example [Sag95|, §2.4]. The carrier of an embedded hyperplane h is
the union of squares intersecting h.

Lemma 8.5. Let f: D — X be a minimal disc diagram in a 353-square complez.
We equip D' with the path metric such that each edge has length 1.

(i) D is not 1- or 2-bordered. If D is an inter-osculation, then it is a cube corner.

(ii) Hyperplanes in D are embedded, not homeomorphic to circles, and pairwise
intersect at most once.

(iii) A geodesic in D' intersects each hyperplane at most once.

(iv) If D = aB~, where a, B are geodesics in D' with first edges day, das, then
either d,ay,as lie in a square of D, or not in a square but in a cube corner
of D. In the latter case f(ay), f(az) are not close.

(v) In (iv), the vertex u opposite to d in the top square (resp. cube corner) lies on
a geodesic in D' with the same endpoints as c.

v U =g
ey
Ry
(a) (b) (c) (d)

FIGURE 27.

Proof. For part , to reach a contradiction, let D — X be a minimal disc diagram
with the smallest area that is

e 1-bordered, or
e 2-bordered, or
e is an inter-osculation but not a cube corner.

Let v be the vertex of 9D from Definition [8.4] in the third case, or a vertex not
contained in an interior edge, in the first two cases. Let T" C D be the square
containing v, and let f C 71" be an edge not containing v. Let S C D be the second
square containing f, and let e be the second edge in S containing the vertex of T’
opposite to v (see Figure[27|(a)). By Definition[L.5|(L)), we have that e is not contained
in T'. Consider the hyperplane h of D dual to e. Note that h cannot self-intersect,
since we would obtain a smaller area 1-bordered diagram. Let p be the intersection
point of A and 9D outside S. Note that when D is an inter-osculation, p is not the
midpoint of a thickened edge in Figure [26{3). If there would be a path in 9D from p
to fNOD whose all vertices are contained in the interior edges of D, then we would
obtain a smaller area 2-bordered diagram. Thus there is a path in D from p to
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fNOD whose all vertices except for v are contained in the interior edges of D. This
gives us an inter-osculation with vg = v,v; = f N 90D, and vy the other vertex of
S NoD. By the minimality assumption on D, this inter-osculation is a cube corner
and so e lies in a square sharing an edge with T". See Figure 27(b). Note that this
cube corner is minimal, since it is a subdiagram of a minimal diagram.

Let S’ be the remaining square of D sharing an edge with S, and let €’ be its edge
intersecting e but not contained in S. By Definition , and Remark , the
degree of the vertex v; = eNe’ is distinct from 3 and 4. Let h' be the hyperplane of D
dual to €. As before, A’ does not self-intersect, and we obtain an inter-osculation
with vy, v1,v9 as in Figure (c) By the minimality assumption on D this inter-
osculation is a cube corner and so D contains the subdiagram in Figure 27](d).
Analogically, interchanging the left and the right side of the diagram, we obtain
that the degree at v, equals 3. This contradicts Definition [L.5|[4]).

Hyperplanes not satisfying part give rise to disc diagrams excluded by part .

For part , note that the 1-skeleta of hyperplane carriers are isometrically
embedded in D'. Indeed, if vertices of the carrier were closer in D' than in the
1-skeleton of the carrier, then they would be separated in the carrier by two hyper-
planes contained in the same hyperpane of D, which would contradict part . Thus
a path intersecting twice a hyperplane can be shortened by replacing its subpath by
a path in the carrier.

In part , if d, a1, as do not lie in a square, then, by part , the hyperplanes
dual to daq,das need to intersect elsewhere. Thus they form an inter-osculation,
which by part (i) is a cube corner. Consequently, a; and ay are not close by Defini-
tion and Corollary below.

Part (v) follows from part (iii), since if the geodesic from u to the last vertex of
«a and § was intersected by any hyperplane h of the top square or cube corner, then
h would intersect twice «a or 3. 0]

Corollary 8.6. Let X be a 353-square complex. Then all 4-cycles in X are squares.

Proof. Let a be a 4-cycle in X and D — X a minimal disc diagram bounded by a.
By Lemma , D has only 2 hyperplanes, which moreover intersect at most once.
Thus D consists of a single square. O

Corollary 8.7. Let X be a 353-square complex and let ay,as, az be pairwise close.
Then there exists d that is a neighbour of all a;.

Proof. Assume by contradiction that ai,as, a3 do not have a common neighbour.
Then we have an embedded 6-cycle in X passing through aq, as, a3. By Lemma ,
its minimal disc diagram D — X has 3 hyperplanes and 3 squares, and so it is a cube
corner. Moreover, a; are not contained in the interior edges of D. By Lemma ,
a1, as are not close, which is a contradiction. [l

8.2. Structure of downward links. We fix from now on a ‘base’ vertex w of a
353-square complex X. Let S* = S*(w) denote the set of vertices of X at distance k
from w in X', and let B* be the subgraph of X! induced on the union of S' over
0 <1 < k. We also suppose that X is stable. Given d € S*, we define p(d) as the
set of all neighbours of d in S*~!.

Lemma 8.8. Let A C p(d) be a set of pairwise close vertices. Then there ezists
d' € S*=2 that is a neighbour of all the elements of A.

Proof. Assume first that A is finite, that is, A = {a;}",. For n = 1, there is
nothing prove. For n = 2, choose geodesics «, 8 from d to the base vertex w passing
through aq, as, and let D — X be a minimal disc diagram with boundary a3~!. By
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Lemma (iv), we have that d, ay,as lie in a square of D, whose remaining vertex
belongs to S¥~2 by Lemma [8.5{v).

Suppose now n = 3. By n = 2 case, there are dy, ds, d3 € S*~2 that are neighbours
of both a; distinct from a; (resp. as, az). Suppose without loss of generality that all d;
are distinct. Consider a minimal disc diagram D bounded by geodesics from as to w
via d; and d3. By Lemma [8.5(iv,v), we have one of the following options. Suppose
first that there is a square containing di, as,ds and a vertex a € S¥=3. Then, by
Definition , the cube corner with vertices d, a;, d;, is not minimal, and so for
some ¢ there is an edge a;d;, as desired. Second, suppose that there are two squares
containing as (and some dy) in D. By Lemma (v), we have dy € S*2. By
Definition , we have either again an edge a;d;, or dy is a neighbour of both a;
and a3 and so dj is the required d'.

If n > 4, arguing by induction, there are again distinct dy,ds,ds € S*~? that
are neighbours of all a; except for a; (resp. as,a3). In particular, we have a square
diasdsas and so di,ds are close. By n = 2 case, there is a vertex a € S¥=2 that is
a neighbour of both dy,ds. As in the first case of the previous paragraph, applying
Definition , we deduce that for some 7 there is an edge a;d;.

The case of infinite A follows from the stability of X. O

Note that the following result would be trivial if we had assumed that X is wide.

Corollary 8.9. Let A C A be a set of pairwise close vertices. Then there exists d
that is a neighbour of all the elements of A.

Proof. By the stability of X, we can assume A = {a;}!" ,, and we proceed by the
induction on n. For the induction step, assume that we have already a common
neighbour d of all a; distinct from a;. If d is not a neighbour of a;, then it belongs
to S3(a;). We then apply Lemma [8.8 with w = a; and k = 3. O

In view of Corollary 8.9, in Lemma [8.§] instead of assuming that there exists d
with a; € p(d), we can just assume a; € S*~1. Indeed, if d is a common neighbour
of a; from Corollary then d either belongs to Si_o, as required in Lemma [8.8| or
d belongs to S*, implying a; € p(d).

Lemma 8.10. Suppose that ai,as € p(d) are not close, but are both close to a
neighbour a of d.
(i) Then a € p(d) (i.e. a € S¥1).
(i) If ay,ay are both close to another neighbour a' of d, then a and a' are close.
(iii) If di,dy € S*=2 are neighbours of a' and ay, ay, respectively, then dy and dy are
close.

Proof. By Lemma|8.5(iv,v), there is a minimal cube corner C' with boundary vertices
dya,daydsas, where dy € S*72. Since a; and a are close and a and a, are close, they
belong to the remaining squares needed to apply Definition . This shows that
a is a neighbour of d; (and dy) and so a € S¥~1, proving (i). For (ii), we analogously
obtain that a’ is a neighbour of d; and dy. Thus ad;d’d; is a square and so a and o
are close.

For (iii), If dy, dy are not close, then, by Lemma (iv,v), there is a minimal cube
corner C with boundary vertices a~d a’dsa™d’ with a= € S¥=3. By Definition ,
we have that d € S* is a neighbour of a~, which is a contradiction. O

Lemma 8.11. Let G be a simplicial graph
(1) of diameter 2,
(2) without induced embedded 4-cycles, and
(8) whose all induced embedded 5-cycles have a common neighbour.
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Let Ay, Ay be the vertex sets of finite complete subgraphs of G. Then there is a
vertex a of G that is a neighbour of or equal to all of the elements of Ay U As.

Proof. First note that we can assume that each element a; € A; is not a neighbour
of some element al, € A,, since otherwise we can take a = a;. Second, note that we
can assume that a; is not a neighbour of each element a, € Ay. Indeed, otherwise
we replace Ay by As\{as}, and we find by induction a neighbour a of all the elements
of A; U Ay \ {az}. Applying assumption (2) to ajasaba with @, as above, we obtain
that a is a neighbour of a,, as desired.

If |[A;| = |As| = 1, then the lemma follows from assumption (1). Assume now
Ay = {a1} and Ay = {a3, as}. By assumption (1), a; and a3 have a neighbour ag, and
a; and a4 have a neighbour a;. We can assume that ay and a4 are not neighbours,
since otherwise we can take a = as. Analogously, we can assume that az and as
are not neighbours, since otherwise we can take a = as. Then as and as are not
neighbours by assumption (2). Thus a;asaszasas is an induced embedded 5-cycle and
it remains to apply assumption (3).

We now suppose A; = {a;} and 3 < m = |Ay|, and we argue by induction on m.
By induction, there is a vertex a (resp. a’) that is a neighbour of or equal to all the
elements of A; U A; except possibly for as (resp. a)) in As. Applying assumption (2)
to aajad’ay for some af € As \ {as,ab}, we obtain that a and a' are neighbours.
Applying assumption (2) to aa’asal,, we obtain that a is a neighbour of ay or o’ is a
neighbour of aj.

Finally, assume 2 < |A;|, |A2|. Choose ay # a) € Ay, as # a)y € As. By induction,
there is a vertex a! (resp. a’*, a?, a’?) that is a neighbour of or equal to all the elements
of AjUA; except possibly for a; (resp. a}, as, ab). By assumption (2), both a! and a!

are neighbours of both a?, a”?. Applying assumption (2) to a'a?a’*a” we obtain that,

say, a' is a neighbour of a’!. Applying again assumption (2) to a'a a,a), we obtain

that a = a' or a = o’ satisfies the lemma. O

Lemma 8.12. Let Ay, Ay C p(d) be sets of pairwise close vertices. Then there is
a € p(d) that is a close (or equal) to all the elements of Ay U Ay. In particular, two
mazximal sets of pairwise close vertices in p(d) have non-empty intersection.

Proof. Assume to start with that both A; and A, are finite. Let G be the sim-
plicial graph with vertex set p(d), and edges between close elements. It suffices
to verify that G satisfies the assumptions of Lemma Assumption (1) follows
from Lemma [8.5(iv,v). Assumption (2) follows from Lemma [8.10(ii). To verify
assumption (3), let a; ---as be an induced embedded 5-cycle. By Lemma , for
i =1,...,5 there are d; € S*=2 that are neighbours of a; and a;_; (mod 5). By
Lemma [8.10[(iii), each d; is close to d;y1. Again by Lemma [8.8 this leads to the
existence of squares d;a;d;+1a;, with a € Sk=3. Note that the cube corners with
centres a; and boundaries a;_1da;y1d;+1a,d; are minimal. By Definition 7 there
is a € p(d) that is close to all a;, as desired.

The cases of infinite |A;| or |As| follow from the stability of X. O

8.3. Contractibility.
Lemma 8.13. Let L be a simplicial complex containing a simplex M satisfying the
following properties.

(i) Every mazimal simplex o in L intersects M.
(ii) For every set V' of vertices in L pairwise connected by edges and such that
V' \ M spans a simplex, we have that V' spans a simplez.

Then L is contractible.



353-COMBINATORIAL CURVATURE AND THE 3-DIMENSIONAL K(m,1) CONJECTURE 49

Proof. Assume to start with that L is finite. Let L’ be the barycentric subdivision
of L. We equip the vertex set of L' with the poset structure coming from the
inclusion between the simplices of L. Let K be the subcomplex of L’ spanned
on the barycentres of all the simplices of L intersecting M. Let M’ C K be the
barycentric subdivision of M.

First, we justify that K is contractible. Indeed, assign to each vertex x of K
corresponding to a simplex o of L, the barycentre F(z) of o N M. For z < 2/, we
have F'(x) < F(2'). In particular, we have that F' extends to a simplicial map from K
to M’', which is homotopically trivial. Finally, since F(x) < z, by [Seg83, Prop 2.1],
we have that I’ is homotopic to the identity map on K. Consequently, the identity
map on K is homotopically trivial.

Second, we justify that L is contractible. For that, let L” be the barycentric
subdivision of L’. Let v be a vertex of L”, which is a chain zq < z; < --- <z, of
vertices of L’. We consider two maps F}, F5 assigning to each such v a vertex of L'.
Let Fi(v) = zg. For F3, let 7; be the simplex of L corresponding to z;. Let m, be
the set of all the vertices of M that are neighbours of, or equal to, all the vertices
of 7,. By (i), we have that 7, is non-empty and by (ii) we have that 7,, U m, spans
a simplex. We consider its subsimplex spanned on 7y U 7,,, the barycentre of which
we denote Fy(v). Note that for v C o', we have Fj(v) > Fi(v') and Fy(v) > Fy(v'),
and so F; extend to simplicial maps from L” to L’. In fact, we have that F} is
homotopic to the identity map on L” (see [Prz09, Prop 4.2]). Furthermore, since
Fi(v) C Fy(v), by [Seg83, Prop 2.1], we have that F} and F3 are homotopic. Finally,
the image of F; is contained in the subcomplex corresponding to K. Since K is
contractible, we obtain that the identity map on L” is homotopically trivial.

If L is infinite, then each finite subcomplex of L is contained in a finite subcomplex
L’ C L satisfying the assumptions of the lemma. This implies that all the homotopy
groups of L vanish, and so L is contractible by Whitehead theorem. U

Remark 8.14. Suppose that L and M satisfy conditions (i) and (ii) from Lemma|8.13]
Then any induced subcomplex of L containing M also satisfies (i) and (ii) with the
same M.

Proof of Theorem[1.3. Inside the thickening X® we consider the full subcomplexes
Span B* spanned on the graphs B* (see the beginning of Section . Suppose
without loss of generality S* C D. To start with, suppose that S* is finite. We call
a simplex 7 of Span B* peelable if |ANT| =1 and 7 is not contained in a simplex of
Span B* with another element of A. Note that if 7 is peelable, and 7 is contained
in a simplex p of Span B¥, then p is peelable.

Since X is wide, there are no peelable simplices in X®. This implies that peelable 7
in Span B* satisfies TND C S* (since a common neighbour of 7ND must be missing
from B*, hence belongs to S**1).

For 7 peelable, let 7/ = 7 ND. We claim that if 7{ = 75, then 77 = 7. Indeed,
suppose 71 = 7y U{a1}, 7 = 7{ U{az}. If |7{| > 2, then a1, ay are close, and so 7y is
contained in Span B* in the simplex 73 U{as}, contradicting peelability. If 7| = {d},
then we have d € S* a;,a; € S*~!. Thus |p(d)| > 2, and so by Lemma [8.5]iv,v)
there is a square in Span B* containing a;d, which is a contradiction.

We denote by P* the subcomplex of Span B* obtained from removing the peelable
open simplices 7 and their ‘free’ open faces 7/. Note that by the claim above, we
have that P* is obtained from performing successive collapses on Span B* (starting
with 7 of the maximal dimension), so they are homotopy equivalent.

Let now d € P*N Sk. We will describe the link L of d in P*. Let A, be the
maximal subsets of p(d) of pairwise close elements, over A € A. Since d € P*,
we have |A,| > 2 for each A € A. For each A € A, let Dy C S*2 be the set of
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common neighbours of Ay, which is non-empty by Lemma Since |A,| > 2,
any dy,d\ € D, are close. Furthermore, by Lemma and Lemma [8.10(iii), any
dy € Dy,d, € D, are close. Since |A,| > 2, we have that all dy € D) are also close
to d. Thus the union of Dy over A € A spans a simplex M in the link L of d in P*.
We will now show that L and M satisfy the conditions of Lemma [8.13]

By Lemma [8.13 this will imply that P* deformation retracts to its subcomplex
obtained from removing the open star of d. Repeating this procedure with d replaced
by other elements of P* N S* which can be done by Remark shows that P*
deformation retracts to Span B*~1.

Condition (ii) of Lemma follows from the fact that Span B is flag, and no
peelable simplices have a vertex in M, since M is contained in S*~2. For condi-
tion (i), since d U o is a maximal simplex of P, it contains at least one a € A by
Lemma and Corollary . Since P* does not contain peelable simplices, in fact
we have 0° = AU D, where |A] > 2. We have A C p(d), and so we can pick A
satisfying A C A,. Then any dy € D, is close to all the elements of D, and so by
the maximality of ¢ we have d) € o. Thus M N o contains dy, as desired.

If S* is infinite, then each finite subcomplex of Span B* is contained in the span
of Span B¥~! and a finite subset of S*. Hence, by the above discussion, we can
homotope this subcomplex into Span B¥~!. This implies that all the homotopy
groups of Span B* vanish, and so Span B* is contractible by the Whitehead theorem.

O

9. 353 SIMPLICIAL COMPLEXES

Let A be a simplicial Complex of type S ={a, b ¢, d} see Sectlonﬂ We equip S

with the total order & < b < é < d which induces a relation < on the vertex set
of A as in Definition 2.3] We denote by A the set of vertices of type a etc.

Definition 9.1. A is a 353-simplicial complex if it is simply connected and satisfies
the following properties.

(1) The relation < on A is a partial order.

(2) Each lk(d, A)? (resp. lk(a, A)?) is bowtie free and upward (resp. downward)
flag.

(3) Each cycle ajciascoasesbey (resp. dybidabadsbschy) in some 1k(d, A) (resp.
lk(a, A)) is not embedded or not induced.

(4) If v = c1bycoagcsbseybycsas is an induced embedded cycle in some lk(d, A),
then there is a neighbour a € lk(d, A) of all the vertices of v in B. An
analogous condition holds for A, B interchanged with D, C.

A is wide if each vertex in BUC has at least two neighbours in .4 and two neighbours
in D.

We will provide the main example of a 353-simplicial complex in Theorem [9.12]
Our goal for the moment is to prove the following.

Theorem 9.2. Let A be a 353-simplicial complex. Let X' C Al be the subgraph
induced on AUD. Let X be the square complex with 1-skeleton X' and squares that
are the 4-cycles v having a common neighbour in A, called an apex of v. Then X
s a 353-square complez.

9.1. Links. We need a series of preparatory observations on the link I' = 1k(d, A).
By reversing the order < we have the obvious analogues of all the results in this

subsection for lk(a, A). From Definition [0.1][1]2), we obtain:
Remark 9.3. Let v be an induced embedded n-cycle in T'.
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(i) If n = 4, then v = ajciazco and there is a common neighbour b of all
as, €1, @z, Ca.
(ii) If n = 6, then v has three vertices in A and they have a common neighbour.

Corollary 9.4. There is no cycle v = ujcibcausc in I' with uycibcous embedded and
induced.

Proof. Since ujcibcaus is embedded and induced, we have that v is embedded. By
Remark 9.3((ii), we have that « is not induced. Thus ¢ is a neighbour of b, which
contradicts Remark [9.3(1). O

Corollary 9.5. Let v = ajcibcsascsacy be a cycle in T with aycibesas embedded and
induced. Then b is a neighbour of a.

Proof. By Definition , we have that ~ is not embedded or not induced.

Suppose first that 7 is not embedded. Since a;cibcoas was embedded and induced,
we have ¢3 # ¢1, and by Corollary [9.4] we have a # a1, as and ¢3 # ¢4. Thus without
loss of generality we can assume c3 = ¢o. If ¢; = ¢4, then the corollary follows from
Remark (1) applied to the cycle cibesa. If ¢ # ¢4, then we argue in the same way
as in the proof of Lemma 5.8 using Definition [9.1](1]}2).

Suppose now that -y is embedded but not induced. If a is a neighbour of ¢; (or ¢;),
then we argue as above. Note that c3 is not a neighbour of b, since this would
contradict Remark (1) applied to the cycle begascs. Finally, if c3 is a neighbour
of ay, then this contradicts Corollary Up to replacing c3 by ¢4, this exhausts all
the possibilities. O

Corollary 9.6. Let v = c1bycoascsbscybycsas be a cycle in I with the paths of length 4
centred at each b; embedded and induced. Then there is a that is a neighbour of all b;.

Proof. Suppose by contradiction that such a does not exist. Then by Definition ,
we have that ~ is not embedded or not induced.

Suppose first that « is not embedded. If ¢; = ¢3,¢c0 = ¢5, or by = by (or by),
then this contradicts Corollary 0.4 If ¢4 = ¢; or ¢3 = ¢5, then this contradicts
the assumption that bzcsbscsas is embedded and induced. We obtain an analogous
contradiction for ¢y = ¢4. If ¢ = c3, then let a; be a neighbour of b; for i = 1, 3.
If agcybycsas is embedded and induced, then, applying Corollary to the cycle
azcsbscsasciaco, we obtain that aq is a neighbour of b,. Hence a; is a neighbour
of ¢4 by Definition [9.1(1). By Definition [9.1(2) applied to a;csbsce, we obtain that
ay is a neighbour of b3, and so we can take a = ay. If azcsbscsas is not embedded,
then az = as, contradicting the hypothesis that bycsbscsas is induced. If azcsbyicsas
is embedded but not induced, then as is a neighbour of by or c5, which implies that
as is a neighbour of both by and ¢5 by Definition [9.1[(1,2). By Corollary applied
to the 6-cycle azcabiciascs, we obtain that azcobycias is not induced. Since cobycias
is embedded and induced, the only possibility is that az is a neighbour of b; or ¢y,
which implies that as is a neighbour of both b; and ¢; as before. Hence we can take
a = agz. The case of ¢; = ¢5 is analogous.

Second, suppose that v is embedded but not induced. By Corollary we have
that ay is not a neighbour of ¢; and b3 is not a neighbour of ¢;. If b3 is a neighbour
of ¢y or by is a neighbour of cs, then Remark [9.3(i) implies ¢; = ¢3, which is a
contradiction. If b; is a neighbour of ¢4, but not of c3, then the path asc3bscsby is
embedded and induced, and so this contradicts Corollary [9.4] applied to ascsbzcabico.
Up to symmetries, this exhausts all the possibilities. O

9.2. Proof of Theorem [9.2l
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Remark 9.7. Let ada’d” be an embedded cycle in A with common neighbour v.
Suppose that a,d and ¢’ have a common neighbour b. Then b is a neighbour of d’'.
Indeed, we apply Remark [9.3[(i) to the link of d, and the 4-cycle aba'v. If v € B,
then b = v, which is a neighbour of d’. If v € C, then b is a neighbour of v. Since v
is a neighbour of d’, we have b < v < d’, and so b < d’ by Definition [9.I(T]).

Proof. First note that since A is a simplicial complex of type {a,b, ¢, d}, it follows
from Definition that X is connected. We now justify that X is simply con-
nected. Let a be a cycle in X!, and view it as a cycle in Al. Let D — A be a
minimal disc diagram bounded by a. We first justify that we can assume that there
is no edge bc in D. Suppose that there were such an edge, in triangles vybc, v, bc.
By Definition , the link of bc is complete bipartite, which is connected, and so
it contains a path vgv; - - - v,. We can then replace in D the above two triangles by
the union of the triangles v;v;11b, v;v;11¢ over 0 < i < n. Repeating this procedure
removes each edge bc from D. Then the set of the 2-cells of D can be partitioned into
subsets consisting of the 2-cells belonging to each of the stars around the vertices in
B and C. Each link of such a vertex x in D has vertices in AUD. Since in X' there
is an edge between any such a and d, we can replace the open star of x in D by a
square or a union of squares with apex z. Consequently, D — A can be replaced
by a disc diagram in X.

It remains to verify parts (1)-(4) of Definition [L.5| For part (L)), consider squares
ada'dy, ada'dy. First assume that they have apices by, by. Then applying Remark (1)
to the link of d and the 4-cycle aba’by, we see that by = by, as desired. Second, sup-
pose that they have apices c¢1, c;. Then, by Remark [9.3(1), there is a neighbour b of
all a, cy,d’, ca, which then is a neighbour of all a, d;, a’, d,. Third, suppose that they
have apices ¢y, bs. Then, by Remark (i), we have that ¢; and by are neighbours
and so by is a neighbour of all a, d;, d’, ds.

For the remaining parts, consider a minimal cube corner C' with centre a, bound-
ary dyasdsaidsas and square apices vy, v, v3. Then djvzdovidsvs is a cycle in the
link of a. Thus, by Definition , there is b that is a common neighbour of all d;
and a.

We claim that for each j # ¢ the apex v; is neither a neighbour of d; nor of a;.
Indeed, if, say, v is a neighbour of dy, then by Definition as is a neighbour
of dy. Hence asdyad; and asdyads are squares of X (with apex wvy). By part (1),
asdsasdy and asdsaqds are squares of X, contradicting the minimality of C. If, say,
v is a neighbour of a3, then aydsasd;, adsasd; are squares of X (with apex vq). By
considering the sequence adzasdy, adsasdy, adsasds, adyayds, azdsayds and repeatedly
applying part (1), we obtain that all these 4-cycles are squares. This contradicts
again the minimality of C, and justifies the claim. In particular, all v; are distinct.

Then we can assume that v; belong to C, since if, say, v; = ¥, then it would
have to be distinct from b, and so, by Remark [9.3(i) applied to the link of a, there
would be ¢ that is a neighbour of b, ds, V', d3, and a. Then ¢ would be also an apex
of adya;ds by Remark with the roles of A, D interchanged. We will thus write
¢; instead of v;. By Remark (i), we have that ¢; is a neighbour of b. Note that
since ¢; is not a neighbour of a;, for j # 4, we have by Definition that b is not
a neighbour of a;. Consequently, the path a;cibcoas is an induced embedded path
in the link of ds.

For part , let v be an apex of a;daod’. Let ¢, cy be apices of adaydy, adasds
guaranteed by the above paragraph (note that the labelling of the D vertices of C
changed). Since ajcibeaas is an induced embedded path in the link of d, this con-
tradicts Corollary applied to a;cibcsagv.
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dl ai d5

FIGURE 28.

For part , and vy, v5 the apices of the two last squares, we similarly obtain in the
link of d a cycle v = ajc1beaazvaa’vs, see Figure28|(a). After possibly replacing the v,
by the elements of C, by Corollary we obtain that b is a neighbour of a’. Thus
dy, dy are neighbours of a’ by Definition , as desired. The required 4-cycles are
squares with apices b.

In part , we label the boundary 10-cycle of E by dyay - - - dsas. We similarly ob-
tain the indicated 10-cycle ¢1bicaascsbseabscsas, see Figure (b) By Corollary ,
b1, b3, by have a common neighbour @’ in the link of d. By Definition a is a
neighbour of all the ¢;, see Figure[28|c). Again by Definition[9.1|(I]), @’ is a neighbour
of all the d;, see Figure[28(d). Fori = 1,3, 4, the 4-cycles a’d;a;d; 41 are squares, since
they have common neighbours ¢, where ¢, is a common neighbour of a;, b;, d;, d; 11 in
Figure (b) As for the 4-cycle a’dsasqds, it has either a common neighbour ¢, in the
case where ¢y = c3, or, in the case where ¢y # c3, a common neighbour by, where b,
is a common neighbour of @', ¢y, as, ¢3 in the link of d, guaranteed by Remark [9.3(1).
Analogously, the 4-cycle a’'dsasd; is a square. Part (5) is proved analogously. O

9.3. Stability and contractibility.

Lemma 9.8. Let A be a wide 353-simplicial complex. Then the relation < on A°
is a partial order that is bowtie free. Furthermore, P = AUBUC is bowtie free and
upward flag. Moreover, if in K C P each pair has an upper bound in P, then K has
the join in P.

Proof. By Corollary and Theorem each embedded 4-cycle ada’d in A has
a common neighbour in B UC. Thus the first assertion of the lemma follows from
[Hua24a, Lem 8.1]. In particular, P is also bowtie free.

Now we show that P is upward flag. Let uy, us, us € P be pairwise upper bounded.
We can assume that none of them are neighbours. For each i, let a; be a neighbour
of or equal to u;. Since A is wide, we have that a; are pairwise close in X, and so,
by Corollary [8.7], there is a common neighbour d of ay, as, as.

We claim that each u; is also a neighbour of d. To justify the claim for, say, u; = by,
let by, us < ¢y and by, us < c3. Applying the bowtie freeness of A° to da,c;a;, for
i = 2,3, we obtain that either ¢; is a neighbour of d or da;c;a; have a common
neighbour b;. In each case, d, co, c3 are pairwise lower bounded in lk(a;, A)°, hence
they have a common lower bound & by Definition . Considering the cycle
cobrcsb’, we obtain by = ¥/, justifying the claim.

Since A is bowtie free, uy,us, u3 are pairwise upper bounded in 1k(d, A)°. By
Definition , they have a common upper bound in 1k(d, A)?, as desired.

The last assertion of the lemma follows from Lemmal[2.5|and [Hae24, Lem 6.2]. O

Lemma 9.9. Let A be a wide 353-simplicial complex and let X be its 353-square
complex constructed in Theorem [9.3
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(1) X is stable.
(2) The vertices of each simplex of X® have a common neighbour b or ¢ in A.
In particular, X s wide.

Proof. For (1), assume without loss of generality S = A C A and |A| = co. Then
A is pairwise upper bounded in P. By Lemma [9.8] A has a join u € BUC in P.
Hence u is also the join of A in A°.

Suppose first u = b € B. Choose a; # ay from A and let S" = {aj,a2}. If
a is close to each element of S’, then a,a,as are pairwise upper bounded in P,
hence they have a join ' € P. If v/ € B, then applying the bowtie freeness of
Lemmato aibasu’ we obtain v’ = b. Then a is a neighbour of b, and so a is close
to each element of A since b has at least two neighbours in D. If v’/ = ¢ € C, then
applying the bowtie freeness to a;basc” we obtain that b is a neighbour of ¢’. Then,
by Definition , each element of A is a neighbour of ¢. Thus a is close to each
element of A. If d is a neighbour of each element of S’, then applying the bowtie
freeness to aybasd, we obtain that b is a neighbour of d, and by Definition d
is a neighbour of each element of A.

Second, suppose u = ¢ € C. Assume first that the join of each three element
subset of A belongs to B. Then for each A;, Ay C A with |A;] = |42 = 3 and
|A; N Ayl = 2, the joins of Aj, Ay are equal. Consequently, v € B, which is a
contradiction. Finally, suppose that there is S” C A with |S’| = 3 and join ¢’ € C.
Since ¢ < ¢, we have ¢ = ¢. If d is a neighbour of each element of S’, then ¢ < d,
and so d is a neighbour of each element of A. If a is close to each element of S, then
Lemma implies that S’ U {a} has a join «' € P. Since ¢ < v/, we have v’ = ¢
and so a is a neighbour of ¢. Hence a is close to each element of A.

Part (2) is proved similarly. O

A 353-simplicial complex A is non-degenerate if for each edge be there is d €
Ik(b, A)° that is not a neighbour of ¢, and there is a € lk(c, A)? that is not a
neighbour of b.

Proposition 9.10. Let A be a wide non-degenerate 353-simplicial complex. Then
X% 4s homotopy equivalent to A.

Proof. For each u € BUC, let ¢(u) be the simplex of X® spanned by all the
neighbours of u in AU D. Note that ¢(u) is a maximal simplex in X¥. Indeed,
otherwise by Lemma [0.9(2) we would have ¢(u) C ¢(u/). Then u and ' would
be neighbours contradicting the non-degeneracy for the edge ww'. Similarly, the
function u — ¢(u) is a bijection from B UC to the family of the maximal simplices
of A.

We claim that for any subset U C BUC, the intersection [1),.,; St(u, A) is empty
or contractible. Indeed, if v € (), c;; St(u, A)?, then v is a lower bound or an upper
bound for U, say the latter. By Lemma [2.5] and Lemma [9.8 U has a join M,
which belongs to (1, St(u, A). Furthermore, any vertex of (7, St(u, A) is < M,
justifying the claim.

Thus for any U C BUC, (,cp St(u, A) # 0 if and only if (.., ¢(u) # 0. Since A
is covered by the closed stars of the vertices in B U C, and X¥ is covered by its
maximal simplices, it remains to invoke the Nerve Theorem [Bor48|, see also the
version in [Bj603, Thm 6]. O

By Lemma[9.9] Theorems[9.2]and [I.3] and Proposition[0.10, we have the following.

Corollary 9.11. Let A be a non-degenerate wide 353-simplicial complex. Then A
s contractible.
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9.4. 353 Artin complex.

Theorem 9.12. Let A = abed be the Cozeter diagram that is the linear graph with
May = Meq = 3 and my. = 5. Then the Artin compler A = A is a wide non-
degenerate 353-simplicial complex.

As usual, we denote by A the set of vertices of type a, etc.

Proof. The simple connectedness of A follows from |[CMV20, Lem 4]. By Re-
mark 2.1 we have Definition [9.1(1). By [CMV20, Lem 6], we can identify each
lk(a, A),lk(d, A), with the Artin complex for the Coxeter subdiagram bcd or abe.
Hence Definition [9.1)2) follows from Theorem Definition [9.1)(3) follows from
Proposition , and Definition (4) follows from Proposition . Thus A is a
353-simplicial complex.

Each vertex in B U C has infinitely many neighbours in A and in D, and so A is
wide. R

Let 2 € A® be a vertex of type b. Then, by Remark , lIk(x,A) is a join K * Ko
where K is the full subcomplex spanned by the vertices of type a, and K is the
full subcomplex spanned by the vertices of type ¢ and d. By [CMV20, Lem 6], we
have Ky = Ay, where A’ C A is the edge c¢d. By considering the simplicial map =
from the Artin complex A,/ to the Coxeter complex €4/, which is a circle formed of
6 edges, we obtain that for each vertex z of type ¢ in K5, there is a vertex of type d
in K5 that is not a neighbour of z. This confirms the first part of the definition of
the non-degeneracy of A. The second part is analogous. 0

10. RELATIVE ARTIN COMPLEXES AND RELATED BACKGROUND
10.1. Relative Artin complexes.

Definition 10.1 ([Hua24b]). Let A’ C A be an induced subdiagram. The (A, A’)-
relative Artin complex A s is the induced subcomplex of the Artin complex Ay
spanned by vertices of type § with s a vertex of A’.

Lemma 10.2 ([Hua24b, Lem 6.2] and [CMV20, Lem 4]). If |[A'| > 3, then Ax s is
simply connected (in particular, it is connected).

Note that Aj s is a simplicial complex of type S (see Section with S =

{g}seA“

Definition 10.3. An induced subdiagram A’ of A is admissible if for any vertex x
of A’, if the vertices x1, x5 of A’ are in distinct connected components of A’ \ {z},
then they are in distinct connected components of A \ {z}.

Lemma 10.4 ([Hua24b, Lem 6.6]). Suppose that A" = s;---s, is an admissible
linear subgraph of a Coxeter diagram A. Let A" be the (A, A')-relative Artin complex,
with the relation < on its vertex set induced from s; < --- < 8, or s, < .-+ < S1.
Then (A", <) is a weakly graded poset.

Definition 10.5. Let A’ be as in Lemma |[10.4] We say that A’ is bowtie free (resp.,
flag, or weakly flag) if (A'°, <) is bowtie free, (resp. flag, or weakly flag). Note that
these definitions do not depend on the choice of one or the other total order on A’.

Lemma 10.6 ([Hua24b, Lem 6.4(1)]). Let v € A" = A, p be a vertex of type §.
Then there is a type-preserving isomorphism between lk(v, A") and A\ (s}, An\{s} -

We have the following consequence.

Lemma 10.7. Let A’ C A be an induced subdiagram.
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(1) Let s be a vertex of N'. If Ap\ (s}, a0\ (s} @5 contractible, then Ap n deformation
retracts onto Ap an (s -

(2) More generally, let T' be a subset of the vertex set of A'. If Ax\r anr is con-
tractible for each non-empty subset R of T', then Ap p deformation retracts
onto Ay anr-

Proof. Part (1) is [Hua24b, Lem 7.1] in view of Lemma [10.6l We prove part (2)
by induction on |T'|. For s € T, by the inductive assumption, A, x deformation
retracts onto Ax an7ugsy- It remains to prove that Ay an7ugsy deformation retracts
onto Ay anp. This will follow from part (1) once we verify that Ap\ge,ang is
contractible. This follows from the assumption that Ap\ (), an (s} is contractible,
since by the inductive assumption it deformation retracts to Ax\ (s}, an\7- O

10.2. Properties of some relative Artin complexes.

Lemma 10.8 ([Hua24b|, Lem 6.16]). Suppose that A is an arbitrary Cozeter dia-
gram. Let w = x1---x4 be an embedded 4-cycle in Ap of type §1---84. Suppose
S1 # 83. Then there exists a vertex x%y € Ap of type 51 that is a common neighbour
of xa, 3, and x4.

Corollary 10.9. Suppose that A is an arbitrary Cozeter diagram with an edge s1s9
such that Ay s,s, has girth > 6. Let w be an embedded 4-cycle in A with an edge
of type §155. Then w not induced.

Proof. Let w = xy - - - x4 with z; of type §;. Since w is embedded, the girth hypothesis
implies that we cannot have simultaneously s; = s3 and sy = s4. Assume first s; # s3
and sy = s4. By Lemma there is a vertex x4 of Ay of type §; that is a common
neighbour of x5, x5 and 4. Then zy29252, is a 4-cycle in Ay 45,. Since xo # x4, we
must have z; = zf, implying that x; is a neighbour of x5 and so w is not induced.
The case s; = s3 and sy # s4 is analogous.

Now assume s; # s3 and sy # s4. Let % of type §; be chosen as before. If
122wy is not embedded, then we deduce that z; is a neighbour of x5 as before.
If 21292452, is embedded, then x5 is a neighbour of x4 by the case of s; = s3 and

S9 7é S4. O

Theorem 10.10 ([Hua24b, Thm 8.1]). Let A be irreducible spherical, and let A" C A
be a linear subdiagram. Then A s is bowtie free.

10.3. Haettel contractibility criteria. Let S = {si,...,s,} be a totally ordered
set. Let X be a simplicial complex of type S with the induced relation on its
vertex set, as defined in Section for vertices z,2’ € X" we write & < 2’ if

x,z’ are neighbours and Type(x) < Type(z’). The following is a consequence of
[Hae22b, §4.3, Thm B] and [Hae24, Thm 1.15].

Theorem 10.11. Let X be a simplicial complex of type S. Assume that
(1) X is simply connected,
(2) the relation < on X° is a partial order,
(3) for each x € X°, the collection of vertices > x is bowtie free and upward flag,
and
(4) for each x € X°, the collection of vertices < x is bowtie free and downward
flag.
Then X s contractible.

Proposition 10.12 ([Hua24a, Lem 5.1]). Suppose that X satisfies the assumptions
of Theorem [10.11. Then (X, <) is bowtie free and flag.
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Now we discuss a variation of Theorem [10.11]

Definition 10.13. Let S be cyclically ordered with s; < s < --- < s, < s;1. For
each vertex x of X of type s;, we consider the relation <, on lk(z, X)? as follows.
The cyclic order induces an order on S\ {s;} by declaring s;;1 < -+ < s, < 1 <
- < 8;_1. For vertices y,z € lk(z, X)?, define y <, z if y, 2z are neighbours and
Type(y) < Type(z) in S\ {s}.
We say that X is an A,,-like complex if
(1) X is simply connected,
(2) for each x € XY, the relation <, on lk(x, X)° is a partial order, and
(3) for each x € XY, the relation <, on lk(z, X)° is bowtie free.

For example, the Coxeter complex of type Zn is an gn-like complex.
The following is a consequence of [Hae22b| §4.2, Thm A]. It also follows from

[Bes06, Thm 3.3 and §8] and |[Bes99|, since A,,-like complexes are Bestvina complexes
for a certain Garside groupoid.

Theorem 10.14. Each gn—like complex is contractible.

Lemma 10.15. Let X be an A,-like complex. Then any induced 4-cycle in X' has
a common neighbour. In particular, X has no embedded cycles of type §1525185.

Proof. The first assertion is [Hua24bl Lem 4.8]. For the second assertion, if a cycle
had type $15825152 and common neighbour z, then it would be a bowtie in the link
of z. 0

11. BESTVINA CONVEXITY IN A,-LIKE COMPLEXES
11.1. Garside complexes.

Definition 11.1 ([HH24, Def 4.6]). Let X be a simply connected flag simplicial
complex. Suppose that we have a binary relation < on X0 (not necessarily a partial
order) such that vertices z,y are neighbours exactly when < y or y < z. Fur-
thermore, suppose that the transitive closure of < is a partial order that is weakly
graded with rank function r. We write x <y when z < y or x = .
Assume that we have an automorphism ¢ of (X°, <) such that

e rop=_tor, for a translation t: Z — Z, and

o z < yifand only if y < p(z), for all z,y € X, and

e the interval [z,¢(z)] = {z € X° | 2 < z and z < p(x)} is a lattice for all

z € X° (in particular, the relation < restricted to [z, o(z)] is transitive).

We then call X a Garside flag complez.

Let X be an A,-like complex of type S, with cyclic order s; < s < -+ < 5, < 7.
Consider the type function 7 : X° — Z/nZ defined by 7(z) =i for = of type s;. We

deﬁne a following simplicial complex structure on X = X x R. The vertex set X°
of X is

{(2,i) € X" x Z | 7(x) =i},
The vertices (x,i) and (2/,j) are neighbours if x and 2’ are equal or neighbours
in X, and |i — j| < n. Let X be the flag simplicial complex with that 1-skeleton.
Note that any maximal simplex of X has vertices

(i, kn+1), (zie, kn+i+ 1), ..., (zp, kn+n), (x1,kn+n+1),..., (v, kn+n+1),

where k € Z, 1 < i < n, and x1, s, ..., x, are vertices of a maximal simplex of X
with 7(z;) = i.



58 J. HUANG AND P. PRZYTYCKI

Note that the _map X0 - X© sendlng (x,1) to = extends to a Slmpllclal _map,
denoted by m : X — X. Define r: X° — Z by r(z,i) = i, and ¢: X° — X° by
o(x,i) = (x,i 4+ n).

We define a binary relation < on X° by requiring (x,1) < (y, ) exactly when these
two vertices are neighbours in X and i < j. Note that the transitive closure <; of <
on X is a partial order. The following shows that X is a Garside flag complex with
the automorphism ¢.

Lemma 11.2. For each (z,i) € X, the interval [(z,4), (z,i + n)] is a lattice.
Below, the partial order <, on lk(x, X)° was introduced in Definition [10.13

Proof. Note that the poset [(z,%), (x,7 + n)| is isomorphic with the poset obtained
from (Ik(z, X)° <,) by adding the smallest and the greatest element. This poset is
a lattice by Lemma [2.5] d

By [HH24, Thm 1.3], given € X°, the poset {w € X° | w >, x} is a lattice,
and so we can discuss the meet A in that poset. By [HH24, Thm 4.7], a Garside
flag complex X is an instance of a homogeneous categorical Garside structure. We
decided not to give here the definition, since we will be only using [HH24, Prop 4.2] on
the Deligne normal form (term introduced in [CMWO04]), which is more convenient
for us to state directly in the terms of X:

Theorem 11.3. For each z,y € )A(O, there is a unique edge-path x1---x;---x, from
xr1 = to x, =y such that

o v, < xi1 # p(x;) for 1 <i<l, and

o ;=i ANp(xiq) for 1 <i<lin [z, ¢(x;)], and

° 1 = cpi(i_l)(xl) forl < i <mn, with all signs positive or all signs negative.

Note that, as all the notions in this section, the Deligne normal form depends on
the cyclic order on the set of the types of X°.

11.2. Bestvina-convexity.

Definition 11.4. Given an edge-path P =1 - -2, In X, an admissible lift of P is
an edge-path P = Ty 2y 10 X such that w(xz) =z, for 1 <1< n,and z; < Z;41,
for1 <i<n-—1. Note that for each edge-path P in X, once a lift 1 of x; has been
chosen, there is a unique admissible lift of P starting at ;. Different admissible
lifts of P differ by the translation by ¢* for some k € Z.

Let a,b € X°. Following |[Bes99, CMWO04], we say that an edge-path P from a
to b is a geodesic, (or B-geodesic) if some (hence all) admissible lift of P to X has
Deligne normal form with n = (.

Lemma 11.5. For any a,b € X°, there is a unique B-geodesic in X from a to b.

Proof. Let @ and b be lifts of a and b, respectively, i.e. 7(a) = a and 7(b) = b. Let
P=a---x;---x, be the path in X from a to b that has Deligne normal form. Then
m(x;) = W(xn) b, and so 7(xy1)---7m(x;) is a B-geodesic from a to b, which proves
the existence.

Suppose that there are two B-geodesics P; and P, from a to b. Let 131 and ]32 be
admissible lifts of P, and P, starting at the same point. Then the endpoints I;Z of 131
differ by ¢* for some k € Z. Since ﬁl has Deligne normal form, we have that the
concatention of P with byo(by) - - - ¢*(by) also has Deligne normal form. But since
the Deligne normal form is unique (Theorem , the latter path equals P2, and
so k=0 and P1 PQ, hence P, = P. O
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Lemma 11.6. Let P = xy---x, be an edge-path in X. Then P is a B-geodesic if
and only if for each 2 < i < n—1, the vertices x;_1 and x;+1 do not have a common
lower bound in (1k(x;, X)°, <,,).

Proof. Let P =3, -+, be an admissible lift of P. By the definition of the Deligne
normal form, P is a B-geodesic if and only if Z; = Z;41 A p(2;_1) for 1 < i < n. This
means exactly that Z;,; and ¢(%;_;) have meet Z; in the interval [Z;, p(Z;)]. Under
the isomorphism of [Z;, ¢(#;)] with the augmented (lk(z;, X)°, <,.) from the proof
of Lemma this means that x;_; and z;,; have only a trivial lower bound, as
desired. O

Definition 11.7. Let X be an Zn—like complex as before, of type S with given
cyclic order. Let Y C X be a full subcomplex that is also a simplicial complex of
type S with the induced type function from X. We say that Y is locally B-convex
if for each vertex y € Y and any vertices yi, y2 of 1k(y, Y), if the meet y; Ay, in the
poset (Ik(y, X)?, <,) exists, then y; A yo € lk(y, Y)°.

The property of being locally B-convex depends on the choice of the cyclic order on
the set of types of X0, Reversing the cyclic order gives a different A,-like complex
structure on X, with simplicially isomorphic X , but with different collection of
locally B-convex subcomplexes.

Proposition 11.8. Let X be an A, -like complex, and let Y C X be a connected lo-
cally B-convex subcomplex. Then'Y is simply connected, and for any pair of vertices
y1,y2 € YV, the B-geodesic in X from y; to vy, is contained in'Y .

Proof. Let Y be the universal cover of Y. We first show that Y is an A,,-like complex.
We induce the type function and the cyclic order on the types from X. It suffices to
show for each y € Y, the restriction of the relation <, to the vertex set of lk(y,Y)
satisfies conditions (2) and (3) of Definition [10.13] Condition (2) holds since Y is a
full subcomplex of X. To check Condition (3), let z1y122y2 be a bowtie in lk(y, Y).
Since yl,yg have a lower bound in lk(y, X)°, they have a meet z € lk(y, X)° by
Lemma 2.5 Then z; < z <y, for i,j € {1,2}. By the local B-convexity, we have
z € lk(y, Y) as desired.

Let 6: Y — Y be the covering map. We claim that if Pis a B- geodesic in Y
from 7, to 7o, then P = Q(P) is the B-geodesic in X from y; = 0(71) to y2 = 0(7s).

Let us assume the claim for the moment and finish the proof of the proposition.
We first Justlfy that Y is simply connected and Y Y. Otherwise, we have distinct
lifts 9,7 € Y of a vertex y € Y. By Lemma | there is a B-geodesic P from 0
to 7' in Y. By the claim, (P ) is a nontrivial B geodesm in X from y to y. This
contradicts the uniqueness of the B-geodesic in Lemma [11.5l Thus Y is simply
connected. The remaining assertion of the proposition follows from the claim and
the uniqueness of B-geodesics in X.

It remains to prove the claim. Let g;_1, ¥;, Yir1 be three consecutive vertices in P
with v;_1,¥;, ¥i+1 their images under 6. Since Pis a B- geodesic in Y Lemma m
implies that ¢;_; and ;11 do not have a common lower bound in 1k(g;, ) Since
k(g;,Y) = lk(y;, Y), we have that y;_; and y;,1 do not have a common lower bound
in Ik(y;, Y)?. By the local B-convexity of Y, y;_; and y;1; do not have a common
lower bound in lk(y;, X)°. Hence P is a B-geodesic in X by Lemma [I1.6} and the
claim follows. U

Corollary 11.9. Let X be an zzlvn—like complex. Let Y1 and Yy be connected locally
B-convex subcomplexes of X. If Y1 NYy # (), then Y1 NY5 is connected.
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Proof. Let y and 1’ be vertices in Y} NY5, and let P be a B-geodesic in X from y
to y'. By Proposition we have that P is contained in Y; N Y5. O

12. 3-DIMENSIONAL ARTIN GROUPS

Definition 12.1. We say that a Coxeter diagram A satisfies the girth condition if
for each edge st of A, the graph A, 4 has girth > 6.

The goal of this section is to prove the following.

Theorem 12.2. Let Ay be an Artin group of dimension < 3. Then A satisfies the
girth condition. If A is non-spherical, then its Artin complex A is contractible.

A vertex of a graph is isolated if it has no neighbours. An n-cycle is the graph
with vertices si,...,s, and edges siS2,...,8,_15,,S,51. Thus what we called an
‘embedded n-cycle’ in a graph A is a subgraph isomorphic to an n-cycle. Given a
simplicial graph A, let A¢ denote the complement graph, i.e. the graph with the same
vertex set as A and st an edge exactly when there is no edge st in A. Note that if A,
is 3-dimensional with Coxeter diagram A, then A° has no embedded 4-cycles (though
the converse might not be true). So Theorem follows from the following.

Theorem 12.3. Let Ax be an Artin group such that A has no embedded 4-cycles.
Then A satisfies the girth condition. If A is non-spherical, then its Artin complex A
1s contractible.

Corollary 12.4. Let Ax be an Artin group such that A° has no embedded 4-cycles.
Then Ay satisfies the K(m,1) conjecture. In particular, each Artin group of dimen-
sion < 3 satisfies the K(m,1) conjecture.

Proof. This follows from Theorems and [1.7] by induction on the number of the
vertices of A (recall that all spherical Artin groups satisfy the K (7, 1) conjecture
[Del72]). O

It remains to prove Theorem [12.3. As a preparation, we establish the following
graph-theoretic result. Below Kj; denotes the complete bipartite graph with the
parts of size k and [, and K, ; denotes Kj; with one edge removed.

Lemma 12.5. Let A be a simplicial graph with at least 5 vertices, no isolated ver-
tices, no embedded 3-cycles, and such that A has no embedded 4-cycles. Then A
equals the 5-cycle, Ky3, Ky3, K33, or Ky3.

Proof. Assume first that A is not bipartite. Let 7 be the shortest odd embedded
cycle in A. If v has length > 7, then 7¢ contains an embedded 4-cycle, which is
a contradiction. Consequently, v is an induced 5-cycle. We will prove A = ~.
Assume for contradiction that A has a vertex s outside . Since A has no embedded
3-cycles, s is a neighbour of at most two (non-adjacent) vertices of . Then the
remaining vertices of v together with s form an embedded 4-cycle in A€, which is a
contradiction.

Second, assume that A is bipartite with parts V,W. Since A° has no embedded
4-cycles, we have |V|,|W| < 3. It remains to prove that there is at most one edge
in A¢ from V to W. Suppose that there are two such edges viwq,vows. Then
they must intersect, since otherwise v;w,wov, would be an embedded 4-cycle in A°.
Suppose without loss of generality w; = wy. Then V' = {vy, v, v3}, since otherwise
wy would be isolated in A. But then vjwjvsvs is an embedded 4-cycle in A€, a
contradiction. U

We will verify Theorem [12.3] gradually, starting from the simplest A. We set
A = Ay
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Remark 12.6. By [AS83, Lem 6], if A is an edge labelled by m, then A, has girth
> 2m. In particular, A satisfies the girth condition.

Thus if A is a 3-cycle, then by Lemma [10.6] all vertex links of A have girth > 6.
Since A is simply connected (Lemma , it satisfies the definition of a systolic
complex [JS06, page 9]. In particular, A is contractible |[JS06, Thm 4.1(1)] and all
Ap, & have girth > 6 [JS06, Prop 1.4].

If A is a length 2 linear graph, then A is bowtie free by |Cha04, Lem 4.1] (or
Theorem, when both labels are equal to 3, and [Hua24a), Lem 11.5] otherwise.
In particular, A satisfies the girth condition. The contractibility of A for non-
spherical A follows from |[CD95b, Thm B].

If A is a 4-cycle, then by Remark [2.1] the relation <, on each vertex link of A
described in Definition is a partial order. By the previous paragraph, <, is
bowtie free. Thus, by Lemma , A is an /Tg—like complex. By Theorem , A
is contractible. By Lemma [10.15] we have that A satisfies the girth condition.

Remark 12.7. Let A be a length 2 linear graph with labels m, n such that m,n > 4
or m > 6. Then equipping each triangle of A with the Euclidean metric of angles
45,0, O 5, 5, 3, respectively, A is a CAT(0) metric space. Indeed, by Remark
the vertex links of A have girth > 27. Thus by the Cartan-Hadamard theorem
[BH99, Thm 4.1(2)], we obtain that A is CAT(0).

Corollary 12.8. Let A = stp be a length 2 linear diagram with mg > 4. Then
Agip st has girth > 8.

Proof. If my, = 3 and mgy = 4 or 5, then the lemma follows from Theorems or[2.9
If my, > 4 or mg > 6, then, by Remark we have that Ay, is CAT(0), with
triangles of angles 7, 7,7 or &, 7, Z. Then the lemma follows from Lemma (iii)
or (ii). O
Lemma 12.9. Let A be a length 3 linear graph. Then A is bowtie free. In particular,
A satisfies the girth condition. If A is not spherical, then A is contractible.

Proof. If A is spherical, then the lemma follows from Theorem [10.10, so we can
assume that A is not spherical. If all proper induced subdiagrams of A are spher-
ical, then its consecutive edges have labels 353,434,435, or 535. In the 353 case,
the lemma follows from Theorem [0.12] Lemma [0.§ and Corollary [9.11] In the re-
maining cases, the lemma follows from Proposition and Theorem [10.11], whose
hypotheses are satisfied by Theorems [2.8 and [2.9]

Otherwise, A = stpr contains a non-spherical subdiagram, say A’ = stp. We have
either mg, my, > 4, or mg > 6,my, = 3, or mg = 3,my, > 6. Let A’ = A, pr. By
Lemma and Remark [12.6] we have that A deformation retracts onto A’, and
so A’ is simply connected.

Assume first mg,my, > 4. By Corollary [12.8] we have that Ay, 4, has girth
> 8. By Lemma [10.6] the complex Ay, is the link of a vertex of type 5§ in
A" = Ay stp- The vertex of type p in A’ has link Ay, o = Ay, which has girth > 8
by Remark [12.6] Consequently, equipping each triangle of A’ with the Euclidean
metric of angles 7,7, %, the complex A’ is a locally CAT(0) metric space. By
the Cartan-Hadamard theorem, we obtain that A’ is CAT(0), in particular A is
contractible.

By Lemma [2.12{1i), each induced 4-cycle in A’ has type $p$p and has a common
neighbour of type ¢. This shows that there are no bowties without vertices of type 7.

Let v be a vertex of type 7 and let C, = lk(v,A) C A’. We claim that C, is
convex in A’. By Lemma we have that C, is isomorphic to A/, which is
connected. Thus to justify the claim we only need to prove that C, is locally convex
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[BH99, Prop 4.14]. Suppose first that we have w € C, of type § with neighbours
uy,ug € C, connected in lk(w, A’) = Ay, ¢, by a path v of length d < 7, that is,
d < ?jf. Note that if one of uy,us has type p, then its neighbour on v is also a
neighbour of v, so we can assume that both us, us are of type t and v has only one
interior vertex u,, which has type p. By Remark and Corollary applied
to Ay, we have that us € C), as desired. If w has type t, then the local convexity
condition is empty. If w has type p, then C), contains all the neighbours of w by
Remark [2.1] and again there is nothing to prove. This justifies the claim.

Consider now a possible bowtie vujusus with only v of type 7 and uy > uq, us,
where 7 > p >t > §. If uy lies in the simplicial span of the CAT(0) convex hull of
uy,uz in A, then by the convexity of C, we obtain that v and uy are neighbours, as
desired. If uy lies outside the span of the convex hull of uy, us, then since St(ug, A')
is convex in A’; we obtain that the CAT(0) geodesic & = ujus lies in the boundary
of that star. Thus « consists of edges u;w and wus with w a neighbour of uy of
type t. Then w € C, and so v, us > w > uy, us, as desired.

Finally, consider a possible bowtie vyu;vou, with both v; of type 7. Since C,, are
convex, we have that C' = C,, N C,, is convex as well. In particular, C' is connected,
and we denote by wjus - - - up an edge-path from wu; to uy in C' with the least number
of edges. If some u; with 2 <4 < k has type p, then ¢ = 2, since otherwise the 4-
cycle viu;_ovou; in 1k(u;—q1, A) would contradict Corollary (because 1k(u;—1,A)
satisfies the girth condition by Remark . Analogously we have 1 = k — 1 and
so k = 3. Thus vy, vy > us > uqy,u; are as desired. If there is no u; of type p, there
must be u; of type t. Then we have i < 2 since otherwise the 4-cycle viu;_sv9u; in
Ik(u;—1, A) = Ay, which is not a bowtie by Remark would allow us to replace
u;_1 by a vertex of type p and to proceed as before. Analogously we have 1 > k — 1
and so k = 3 and again vy, vy > ug > uy, ug.

Consider now the second case, where mg > 6 and my, = 3. By Remark ,
the vertex links in A’ of the vertices of types § and p have girth 6 and 2m, >
12, respectively. Consequently, equipping each triangle with the Fuclidean metric
of angles 7,7, %, the complex A’ is a CAT(0) metric space as before. Again, by
Lemma m(i), there are no bowties without vertices of type 7. The proof of the
convexity of ', and that there are no bowties with vertices of type 7 is the same as
before.

Finally, the case mg = 3 and my, > 6 follows from |Hua24b, Cor 9.14 and
Lem 6.14]. O

Corollary 12.10. If A is a 5-cycle, then A is contractible, and A satisfies the girth
condition.

Proof. By Theorem and Lemma , it is enough to show that A is an A-
like complex. By Lemma [10.2] it suffices to prove that the vertex links of A satisfy
the partial order condition and are bowtie free. By Lemma [10.6] each such link is
isomorphic to Axs, where A’ is a linear diagram of length 3. Thus the partial order
condition follows from Remark 2.1l Bowtie freeness follows from Lemma 12,90 O

Definition 12.11. Consider a decomposition of the vertex set of A into a disjoint
union | |, S;. Let A* be the subdivision of A obtained by subdividing each simplex o
of type S; into a cone over do with apex at the barycentre of o, and by subdividing
each join x;0; of simplices of type §Z into the join of the subdivisions of §Z We
call A* the S-subdivision, where the collection S is obtained from {S;}; be removing
all the elements of size 1. For example, if S = {{s,t}}, then A* is obtained from A
by subdividing each edge of type §t, and each simplex containing it, into two. We
denote this, shortly, {s,t}-subdivision.
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Lemma 12.12. Let A = Ky3 and let L C A be a length 2 linear subdiagram.
Then Ay, 1, is bowtie free. In particular, A satisfies the girth condition. If A is not
spherical, then A is contractible.

Proof. The contractibility of A follows from [Hua24a, Thm 10.3] and [GP12b, Thm 3.1].
Suppose that « is a bowtie in Ay 1. Let L = stp and let s’ be the remaining ver-
tex of A. We define A* to be the {s,s'}-subdivision of A. Let m be the type
of the new vertices, and identify the types § and §. We order the types so that
§ =8 < m <t < p, which gives rise to a relation on the vertex set of A* by
Definition [2.3] By [Hua24al, Prop 11.34], we have that A* is bowtie free. Thus there
is a vertex z of A* that is a common neighbour of a. But x cannot have type m

since then o would have two equal vertices of type 5. Thus = belongs to A, 1, as
desired. O

By Lemma|12.12| and [Hua24b, Lem 6.14 and Prop 6.17], we have the following.

Corollary 12.13. Let A = K 3 with parts {s1, sa, s3} and {t}. Then each induced
cycle of type §15958189 or §1895183 in A has a common neighbour of type t

Lemma 12.14. If A = Kj; with k,1 > 2, then A is contractible and A satisfies the
girth condition.

Proof. Let {s1,...,sk},{t1,...,t} be the parts of A. To prove the girth condition for
the edge s1ty, consider the {{s2,...sx},{ts,...,t;}}-subdivision A* of A. Let m,m’
be the types of the barycentres of the simplices of types s - - - sg, t2 - - - t;. By [Hua24al,
Lem 11.10] (which relies on [Hua24c, Theorem 1.4]), the subcomplex A* . of A*

T s1timm
spanned on the vertices of types &;,%1,m, and m’ is an As-like complex. Thus, by
Lemma (10.15 the complex A* has no cycles of type §1t151t;. The contractibility
of A can be deduced from |[Hua24a, Lem 11.11]. O

Lemma 12.15. Let A = Ky 5 with parts {s1, s2,s3} and {t1,t2}. Then each induced
cycle of type §1825182 in A has common neighbours of type t; and ts.

Proof. Let A* be the {sy, s3}-subdivision of A. Let m be the type of the new
vertices. By [Hua24a, Lem 11.10], the subcomplex A* of A* spanned on the

s1timte
vertices of types 81,1, m, s, is an As-like complex. We fix any of the two cyclic
orders on sitymt, to be able to discuss meets and joins in the links.

Let v be a vertex of type 8, and let C, = lk(v, A*) C A}, .- We claim that
C, is B-convex in A, .. Note that C, is connected, since it is isomorphic to

Ik(v, A), which, by Lemma [10.6] is in turn isomorphic to A, s,. For the local
B-convexity, let w € C,,, and let uy,us € C, be neighbours of w. Assume that the
meet u of u; and us in Ik(w, A%, .,.)° exists and is distinct from uy, up. We need
to show u € C,, so we can assume that none of w, u;,us has type m. If u; or us
has type t;, and u is not of type m, then this follows immediately from applying
Corollary [10.9] to the 4-cycle vujuuy in lk(w, A), which satisfies the girth condition
by Lemmas [12.12 and [12.14] If u; or u, has type ¢;, and u is the midpoint of an
edge utu~ of A of type §,83, then applying as before Corollary to the 4-cycle
vuiuTuy, we obtain ut = v, and so w is a neighbour of v. It remains to assume
that u; and uy are of type s;. Again by Corollary [10.9) we can assume that u is
not of type t;, so it is the midpoint of an edge uTu~ in A of type $,53. Applying
Corollary to vujutug in Ik(w, A), we obtain that u™ = v as before or there is
a common neighbour of type #; of u;,us in lk(w, A), contradicting the assumption
that u = uy A uy in lk(w, A%, ., )°.

Let ujviukvy be a cycle of type §15828152 in A. By Corollary [11.9, we have that
C =0C, NC,, is connected. Let u; ---u; be an edge-path in C' from wu; to u; with
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the least number of edges. None of the u; can have type m, since v; # vy. Thus one
of the u; has type t; or t, and then by the girth condition in the links of w; 1, u;11,
(see Lemmas [12.12] and [12.14)) and Corollary [10.9] we have that u; is a neighbour
of u; and uy. Then the lemma follows from Corollary applied to the link
of ;. OJ

Proposition 12.16. If A = K, 3, then A is contractible and A satisfies the girth
condition.

Proof. Denote the parts to be {s, p}, {t1, t2, 7} with missing edge sr. Let A" = Ay x/
with A’ = stypt,. By Lemma and Remark we have that A deformation
retracts onto A’, and so the latter is simply connected. Note that A’ is an As-like
complex. In other words, the links Ay sipr t15ta = Dtystas Dtaptor, trptas A Agtipr stip
satisfy the partial order condition and are bowtie free. The partial order condition
follows from Remark 2.1 The bowtie freeness of the first link follows from Re-
mark For the middle one, this is Lemma [12.12] For the last one, this follows
from Lemma [12.9] By Theorem [10.14] we have that A’ is contractible, and so is A.
We fix any of the two cyclic orders on stypt, to be able to discuss meets and joins
in the links.

By Lemma [10.15] each induced 4-cycle in A’ is contained in the link of a vertex,
and so the girth condition for the edges in A’ follows from the girth condition in
Lemmas and [2.12]

It remains to consider a 4-cycle with vertices of types p and 7. First we justify
the following.

Claim. For v of type 7, the subcomplex C, = lk(v, A) C A’ is B-convez.

Note that C, is isomorphic to A, and so it is connected. For the local B-convexity,
let w € C,, and let uy, us € C, be neighbours of w. Assume that u = u; A uy exists
in lk(w, A’)? and is distinct from wuy, us. We need to show u € C,,. If w has type p,
then this is immediate, so without loss of generality we only need to consider the
cases where w has type ¢; and 5.

In the first case, the link of w is isomorphic to Ag,,,. If the 4-cycle ujuugv
contains an edge whose type lies on the path §top#, then wv is an edge by the girth
condition in Lemma and Corollary [I0.9] Otherwise, the type of the cycle is
spsr. Since the link of w is bowtie free by Lemma [12.9] we have that u is a neighbour
of v, or there is a common neighbour of type ¢, of all w,uy, u, us, v. But then it is
this vertex and not u that is the meet of uy, us, contradiction.

Now consider the case, where w has type 5. If the 4-cycle ujuusv contains an edge
whose type lies in the Coxeter diagram of titopr, then uv is an edge by the girth
condition in Lemma [I2.12] and Corollary [I0.9} Otherwise, without loss of generality,
the type of the cycle is t,t5t;7. By Corollary we have that u is a neighbour
of v, or there is a common neighbour of type p of all w, uq, v, us, u, which contradicts
the assumption that u is the meet of uq,us. This ends the proof of the claim.

Let viuyvoug be a cycle with both v; of type 7 and uy, ux of type p. By the B-
convexity of C,, and Corollary [I1.9] we have that C' = C,, N C,, is connected. Let
uus - - - up be an edge-path in C' from wu; to u; with the least number of edges. By
the girth condition in the link of uy (see Lemmas|12.9and |12.12)), and Corollary
applied to the 4-cycle uyvusvy, we obtain that u; is a neighbour of ug, contradiction.

O

Proposition 12.17. If A = K33, then A is contractible and A satisfies the girth
condition.
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Proof. Denote the parts of A by {s1, $2, 83}, {t1,t2,t3} with the missing edge ssts.
Consider the {t;,t,}-subdivision A* of A. Let m be the type of the new vertices.
We claim that the subcomplex A* of A* spanned on the vertices of types

s1t3sam
§1,t3, 89, and m is an ﬁg—like complex. The partial order condition follows from
Lemma [2.2, The bowtie freeness of the link of a vertex of type m in Aj, . .
follows from Remark [12.6] since such link is isomorphic to Ay, ,s,. To obtain the
bowtie freeness of the link lk(z, A} ;.. ) of a vertex z of type 5, (or 53), for all the

possible bowties except for the type tsmism, it suffices to use Proposition and
Corollary [10.9]

Consider now a possible bowtie vev'e’ of type t3mtsm, where e, e’ are midpoints
of edges uw, u'w' of type t1t,. Our goal is to find a vertex of type 8, in L = lk(z, A)
that is a neighbour of all z, u, w, v, w’,v,v". Let

/
A= 1k<z? AA,S182t183t2) = At332t133t2,32t133t27

which was studied in Proposition [12.16] Let C, = lk(v,A) N A’. By the Claim in
the proof of Proposition and Corollary [11.9] we have that C, N C,, C A’ is
connected. Let o be an edge-path in C, NC,, from uw to u'w’ with the least number
of edges.

If a is a single vertex, say u = u/, then by Lemma applied to lk(u, L), the
cycle vwv'w’ has a common neighbour of type S5 that is also a neighbour of z and
u =1/, as desired. If « is a single edge, say uw’, then analogously the cycle vwv'w’
has a common neighbour y of type S, that is also a neighbour of z and u. By
Corollary [10.9] applied to the cycle vyv'u’ in lk(w’, L), we obtain that y is also a
neighbour of u’, as desired. We can now assume that « has at least two edges.

If o contains a vertex of type S, then by Corollary it is a neighbour of
w, v, w,w', as desired. Otherwise, if « contains a subpath xyx’ with y of type 83,
then applying Corollary [12.13| to zvz'v" in lk(y, L), we can replace y by a vertex of
type s and we conclude as before. Otherwise, let zgx;29 be any subpath of a. By
Lemma applied to lk(z1, L), which is isomorphic to Ay,s,e,ss, for i = 1 or 2, we
have that there is a common neighbour of type §; of xgvrev’ and we conclude as
before.

To obtain the bowtie freeness of the link of a vertex of type t5, we apply Lem-
mas [12.14] [12.15] and Corollaries [12.13] and [10.9] This finishes the proof of the
claim.

Note that A*

sit3sam
in A* of the vertices of type t; and ¢,. These stars are isomorphic to the stars of
the vertices of type t; and 5 in A A, sitssatita, ad hence they are cones over links iso-
morphic to A" whose contracibility we established in the proof of Proposition [12.16]
Consequently, A} ;... ,, is a deformation retract of Aj s 1y,0,, and thus of A by
Lemma [I0.7] In particular, since A is simply connected, this completes the proof of

the claim that A7, . . is an As-like complex.

By Theorem [10.14] we have that A* is contractible, and so is A.

s1t3sam

The girth condition for the edges slt; 3zaéld Sotg follows from Lemma [T10.15] applied
to A} t,s,m- Using a symmetry of A, we also obtain the girth condition for the edges
t183 and t283.

Using a symmetry again, it remains to verify the girth condition for s;¢5. Let v be
a vertex of type 5 and let D, = lk(v, A*)N A, . We claim that D, is B-convex.

Note that D, is isomorphic to A¢ s tgspss, 151155, and so it is connected. For the
local B-convexity, all the cases follow from Corollary and the girth conditions
for smaller Coxeter diagrams, except for the case where w has type $; or §,, say §q,

with wjuuy of type tymis, where u = uy A up in lk(w, A%, . )°. Then, as in the

is obtained from Ajp s, 15s.t,, Dy removing the disjoint stars
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verification of the bowtie freeness in the second, third and fourth paragraph of the
proof, there is a vertex of type 35 in lk(w, A) that is a neighbour of u; and usy, which
contradicts the assumption that u is the meet of uq, us. This justifies the claim.
Consider an induced 4-cycle viujvou, with v; of type ty and wuy,uy of type $S1.
Since D,, are B-convex, by Corollary [I1.9]we have that D = D,, N D,, is connected.
Let @ = ujug - --ug be an edge-path from u; to ug in D with the least number of
edges. None of the u; has type m, since otherwise v; = v,. Since « is not a single
vertex, we obtain a contradiction by applying Proposition or Lemma to

lk(ug, A), and Corollary [10.9]
U

Proposition 12.18. Let C be a class of Coxeter diagrams closed under taking in-
duced subdiagrams. Suppose that we have C; C C such that each diagram in C — Cy
contains a triangle. Then

(1) if each diagram in Cy satisfies the girth condition, then each diagram in C
satisfies the girth condition, and

(2) if in addition for each nonspherical Ay € Cy the Artin complex Ay, is con-
tractible, then for each nonspherical A € C the Artin complex A, is con-
tractible. In particular, each diagram in C satisfies the K(mw, 1) conjecture.

Proof. We prove assertion (1) by induction on the number of the vertices of A € C.
We can assume that A contains a triangle stp. By the inductive hypothesis, the
vertex links of A’ = Ap 4, have girth > 6. We have that A’ is simply connected by
Lemma [10.2] and so it is systolic. In particular, Ap g, Ap 4, Ap,sp have girth > 6
[J S06, Prop 1.4], which verifies part of assertion (1) for A. Furthermore, equipping
each triangle with the Euclidean metric of an equilateral triangle, A’ is CAT(0).

Consider now an edge pg of A with g # s,t. We will justify that A, ,, has girth
> 6. Let v be a vertex of A of type ¢.

We claim that C, = lk(v,A) N A’ is convex in A’ with respect to the CAT(0)
metric. We have that C, is isomorphic to Ay\(g}, stp, Which is connected. Thus to
justify the claim we only need to prove that C, is locally convex [BH99, Prop 4.14].
Suppose that we have w € C, with neighbours uy,us € C, and u € A’ such that
uLu, ule are edges but u; and uy are not neighbours. Then vujuus is a 4-cycle in the
link of w, to which we can apply Corollary by the inductive hypothesis. Thus
u € C,, which justifies the claim.

Suppose for contradiction that vy u;vouy is a 4-cycle in Ay ,,, with both v; of type q.
Then uy, uy, € C,, NC,,, which is convex in A’. In particular, C,, NC,, is connected.
Consider an edge-path ujus - - - uy from uy to uy in C,, N C,, with the least number
of edges. Note that we have k > 3. The 4-cycle ujviusvs in the link of us violates
Corollary [10.9 by the inductive hypothesis.

Consider now an edge gr of A with ¢,r ¢ {s,t,p}. We will justify that Ay 4 has
girth > 6. Suppose for contradiction that vyu veus is a 4-cycle in Ay 4 with both v;
of type ¢ and both wu; of type 7. Consider disc diagrams D — A’ with boundary
cycle apayapa such that ag C Cy, 1 C O, a0 C Cy,, a3 C C,. Choose D of
minimal area, and among such D, choose D with minimal perimeter. Then the
boundary cycle of D is a concatenation of paths I; embedded in D that are the
domains of «;, and the intersections z; = I; N I;;; (mod 4) are single vertices by
the minimality assumption. We can assume that D is not a single vertex, since
then we would obtain a contradiction with the inductive hypothesis. In particular,
two consecutive I; cannot be trivial. Thus, up to a symmetry, we have one of the
following;:

e all x; are distinct, and so all I; are nontrivial,
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® ry = 11, T9,x3 are distinct, and so only [; is trivial,

® 1y = I # xy = x3, and so only [y, I3 are trivial.
The z; equal to x; for ¢ # j are called singular. We apply Theorem to D. Since
A’ is CAT(0), the curvature at each interior vertex of D is non-positive. Consider
now an interior vertex y of one of the I;, with a; C C,. If the curvature at y
was positive, then y would be contained in exactly one or two triangles of D. By
the convexity of C,, the images in A’ of these triangles would be contained in C,.
Consequently, we could alter «; be removing these triangles from D, which would
contradict the minimality of the area of D. Thus the curvature is non-positive also
at each interior vertex of I;. Consequently, the curvature can be positive only at

the z;, and it then equals g, o, or 7. Since their sum equals 27, there must be

(i) a non-sigular z; with curvature > 2%, or

(ii) a singular z; with curvature 7.
In case (i), x; is contained in only one triangle od D. Thus if, say, x; = x5, then we
have a 4-cycle in the link of x5 containing vsus. By the inductive hypothesis and
Corollary [10.9] this 4-cycle has a diagonal, which contradicts the minimality of D.
In case (ii), x; is not contained in any trangle od D. Thus if, say, z; = zo = x;, then
we have a 4-cycle in the link of x( containing v;u,vy and contradicting the minimal
perimeter assumption on D in view of Corollary [10.9 and the inductive hypothesis.
This finishes the proof of assertion (1).

For assertion (2), we first show by induction on the number of the vertices of
A € C that A, is contractible whenever A is not spherical. Indeed, we can assume
that A contains a triangle stp. Let A’ be as in the proof of assertion (1). We proved
that A’ is CAT(0), and so it is contractible. By Lemma [10.7, and the inductive
hypothesis, we have that A deformation retracts onto A’, and so A is contractible.
The last part of assertion (2) follows from Theorem O

Proof of Theorem[12.3. If A has multiple connected components, then the asso-
ciated Artin complex is a join of several smaller Artin complexes, one for each
connected component of A. Thus it suffices to consider the case where A is con-
nected. If |S] < 4, then the theorem follows from Remark [12.6] and Lemmas
and [12.12] Otherwise, if A is complete bipartite, then the theorem follows from
Lemma[12.14] Consequently, the theorem follows from Lemmal[12.5] Corollarym

Proposmons [12.16} [12.17] and [12.18]

By Theorem [I.7, we have the following consequences.

Corollary 12.19. Suppose that all non-spherical A without triangles satisfy the
girth condition and have contractible Ay. Then all Artin groups satisfy the K(m,1)
conjecture.

Theorem 12.20. Let C be a class of Coxeter diagrams closed under taking induced
subdiagrams. Suppose that each A € C not containing a triangle satisfies at least
one of the following conditions:
(1) Ap is spherical, or more generally A satisfies the assumption of |Hua24b
Thm 1.1],
(2) A does not contain embedded 4-cycles,
(8) A is locally reducible.

Then each Ay with A € C satisfies the K(m, 1) conjecture.
Proof. By Theorem[I.7] and Proposition [12.18] it suffices to show that each A in one

of the above classes satisfies the girth condition and, if it is not spherical, then Ay
is contractible. For class (2), this is Theorem [12.3] For class (1), this follows from
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[Hua24b, Prop 9.11 and 9.12]. For class (3), this follows from [Hua24bj, Cor 9.14]
(as stated, this result only treats the case where A is a locally reducible tree, but
the same argument works for any locally reducible diagram, and it also gives the
contractibility of Ay). O
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