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Abstract. We prove the K(π, 1) conjecture for Artin groups of dimension 3. As
an ingredient, we introduce a new form of combinatorial non-positive curvature.

1. Introduction

The K(π, 1) conjecture for Artin groups, due to Arnold, Brieskorn, Pham, and
Thom, predicts that each Artin group has a K(π, 1) space that is a complex man-
ifold described in the terms of the canonical linear representation of the associated
Coxeter group. See [Par14,GP12a,Del72,CD95a], for background and a summary
of progress on this conjecture before the 2010s, and [MS17, Juh18, PS21, Pao21,
DPS22,Juh23,Gol24,Hae24,Hae22a,HH23,Hua24b,Hua24a,GH25] for more recent
developments. In this article we prove the following.

Theorem 1.1. Let A be an Artin group of dimension ≤ 3. Then A satisfies the
K(π, 1) conjecture. In particular, A is torsion free.

The dimension of an Artin group A is the maximal cardinality of a subset S ′ of the
standard generating set of A such that the subgroup of A generated by S ′ is spherical.
It is conjectured that this quantity is equal to the cohomological dimension of A,
and by Theorem 1.1 this is true if one of these two quantities is ≤ 3. The dimension
≤ 2 case of Theorem 1.1 was established in 1995 [CD95b].
Using [JS23], we also deduce the centre conjecture.

Theorem 1.2. Let A be an Artin group of dimension ≤ 3. If A has no nontrivial
spherical factor, then it has trivial centre.

Theorem 1.1 is a special case of Theorem 12.20, where we establish the K(π, 1)
conjecture for many new Artin groups in each dimension, since the class of Artin
groups that we treat contains arbitrarily large irreducible spherical parabolic sub-
groups.

1.1. Combinatorial non-positive curvature. A key ingredient of the proof is a
contractibility criterion for a class of complexes satisfying a new form of combina-
torial non-positive curvature, called 353-square complexes.

Theorem 1.3. The thickening of a wide stable 353-square complex is contractible.

Let us define 353-square complexes and their thickenings (for the notions of wide
and stable, see Section 8). A square complex is a 2-dimensional combinatorial com-
plex X, where X1 is a bipartite simplicial graph, with vertex set partitioned into
sets A and D, and with attaching maps of the 2-cells distinct embedded cycles of
length 4 (a cycle in a graph is a closed edge-path, or, shortly, an edge-loop). We
often identify a 2-cell with its attaching map, and we call it a square. Not all em-
bedded cycles of length 4 are assumed to be squares. We refer to Section 2.3 for the
background on (minimal) disc diagrams in X.
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Vertices a, a′ ∈ A (or d, d′ ∈ D) are close if they belong to a common square.
The thickening X⊠ of a square complex X is the flag simplicial complex whose 1-
skeleton is obtained from X1 by adding edges between close vertices. We adopt the
convention that if we label a vertex of X by a, a′, a1 etc, then it belongs to A.

Definition 1.4. A cube corner C is a square complex isomorphic to the subcom-
plex of the boundary of a 3-dimensional cube formed of three squares containing
a common vertex, called the centre of C. A cube corner in X is a disc diagram
C → X. A cube corner in X is minimal if its boundary 6-cycle does not bound a
disc diagram in X with < 3 squares.

Definition 1.5. A 353-square complex is a simply connected square complex satis-
fying the following properties.
(1) If dad1a′ and dad2a′ are squares, then d1ad2a′ is a square (see Figure 1(1)).
(2) Let d be a vertex of a minimal cube corner C lying in exactly two squares

ada1d1, ada2d2 of C. Then there is no square d′a1da2 (see Figure 1(2)).
(3) Let d be a vertex of a minimal cube corner C lying in exactly two squares

ada1d1, ada2d2 of C. Suppose that there is a′ ̸= a with a1da′, a2da′ also lying in
squares (see Figure 1(3)). Then a′ is a neighbour of d1 and d2 and ada′d1, ada′d2
are squares.

(4) Let E,E ′ be as in Figure 1(4a), (4b). For any disc diagram f : E → X whose
restriction to each cube corner of E is minimal, there is a diagram f ′ : E ′ → X
with the same boundary as f , such that f ′(a′) is a neighbour of f(d).

(5) Previous properties hold if we interchange A and D.
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Figure 1.

Definition 1.5 is motivated by the structure of the icosahedral honeycomb of the
hyperbolic 3-space H3, with Schläfli symbol {3, 5, 3}. It is one of the four com-
pact, regular, space-filling honeycombs in H3, and it was the least understood one
from the perspective of combinatorial non-positive curvature (while the other three
honeycombs, viewed as cell complexes, are cell-Helly [HO21, Def 3.5]).
Given the icosahedral honeycomb of H3, viewed as a combinatorial complex Z, we
define the associated square complex X. Vertices in A correspond to the icosahedra
of Z, and vertices in D correspond to the vertices of Z. Vertices x ∈ A and y ∈ D are
neighbours if the icosahedron corresponding to x contains the vertex corresponding
to y. We span squares on all embedded 4-cycles of X1. Definition 1.5 is conceived
by listing local combinatorial features of X of non-positive curvature flavour. The
list of local properties in Definition 1.5 leads to a collection of global properties
in Lemma 8.5, which is an analogue of the Cartan–Hadamard theorem. These
complexes have quadratic Dehn function (Lemma 8.5(ii)), and their balls satisfy a
weak form of convexity [Can87] (Lemma 8.5(iv))). Finally, we have contractibility
as in Theorem 1.3.
Let Λ be the Coxeter diagram that is the linear graph formed of three edges with
consecutive labels 3, 5, 3, and let ∆ be the Artin complex (see Definition 1.6) of AΛ,
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which is a 3-dimensional simplicial complex. A major step towards Theorem 1.1 is
showing that ∆ is contractible. This is done via Theorem 1.3, see Definition 9.1 and
Corollary 9.11.
In [CD95b], Charney and Davis proposed to equip ∆ with a piecewise Euclidean
metric (the Moussong metric) and to show that ∆ is CAT(0), hence contractible.
Proving CAT(0) amounts to studying loops of length < 2π in the links of the vertices
of ∆. Each such loop gives an equation of the form w1w2 · · ·wn = 1 in the Artin
group AH3 of type H3, subject to the constraint that each wi lies in an appropriate
parabolic subgroup of AH3 . Thus proving that ∆ is CAT(0) relies on understanding
the ‘varieties’ of solutions to a finite (but large) set of such equations over AH3 .
There are no established theories in algebraic geometry to understand the solution
varieties of such equations, and the ambient group AH3 being exceptional further
obscures the picture. This is the main difficulty of the CAT(0) approach.
The CAT(0) approach inspired us to look for a ‘softer’ notion of non-positive
curvature, leading to Definition 1.5 and its simplicial companion, Definition 9.1.
Like in the CAT(0) approach, proving the contractility of ∆ reduces to studying a
collection of short loops in the link of each vertex. However, it is a much smaller
collection of loops, hence the number of the associated equations over G that we
need to solve is significantly reduced. Miraculously, we avoid solving some of the
most sophisticated equations needed in the CAT(0) approach. However, we do
not completely avoid the task of analysing the solution varieties of some of these
equations, which takes a substantial portion of the article.

1.2. Reading guide. Section 2 consists of preliminaries. The article is divided into
Part I ranging from Section 3 to Section 9, and Part II ranging from Section 10 to
Section 12. Part I takes up most of the article, and it concerns the Artin complex
of a single Artin group.

Definition 1.6. Let AΛ be an Artin group with Coxeter graph Λ and generating set
S. Its Artin complex ∆Λ [CD95b,GP12b,CMV20] is a simplicial complex defined
as follows. For each s ∈ S, let Aŝ be the standard parabolic subgroup generated by
ŝ = S \ {s}. The vertices of ∆Λ correspond to the left cosets of {Aŝ}s∈S. More-
over, vertices span a simplex if the corresponding cosets have non-empty common
intersection. A vertex of ∆Λ corresponding to a left coset of Aŝ has type ŝ.

Let Λ be the 353 Coxeter diagram from the previous subsection. The main goal of
Part I is to establish two properties of ∆Λ. First, ∆Λ is contractible, which implies
the K(π, 1) conjecture for AΛ. Second, each induced embedded 4-cycle in ∆Λ of type
ŝt̂ŝt̂ has a common neighbour in ∆Λ of type r̂, where r is a vertex of Λ separating
s and t. This second property is useful for proving the K(π, 1) conjecture for other
Artin groups.
Part I is performed in two steps. In Step 1, we show that the link of each vertex
of ∆Λ satisfies a list of properties (Sections 3-7). In Step 2, we introduce a more
general family of complexes, called 353-simplicial complexes, that are simply con-
nected and whose vertex links satisfy the same list of properties (Definition 9.1).
We prove, under two minor assumptions, that such a complex is contractible and
has the desired 4-cycle property mentioned in the previous paragraph (Sections 8
and 9).
Let us discuss Step 2 in more detail. In Section 8, we study 353-square complexes,
establishing properties of minimal disc diagrams bounded by certain cycles in these
complexes and proving the contractility of their thickenings (Theorem 1.3). In Sec-
tion 9, we introduce the notion of a 353-simplicial complex. For each 353-simplicial
complex ∆, we can construct an associated 353-square complex X whose thickening
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is homotopy equivalent to ∆ (under mild assumptions), implying the contractibility
of ∆ and the desired 4-cycle property.
Coming back to Step 1, it remains to show that ∆Λ is a 353-simplicial complex.
By definition, this reduces to proving that two kinds of critical cycles in ∆H3 are
admissible. Here ∆H3 denotes the Artin complex of the spherical Artin group AH3 ,
which is isomorphic to the vertex link of ∆Λ. Critical cycles in ∆H3 and the notion
of their admissibility are introduced at the beginning of Sections 6 and 7, and most
of Sections 3-7 is the proof of the admissibility of critical cycles.
In Section 3, we give the background on hyperplane arrangements and associated
complexes needed later. For each collection A of affine hyperplanes in Rn passing
through the origin, we consider the complex manifoldM(A⊗Cn) = Cn−

⋃
H∈A(H⊗

C). LetA be the collection of reflection hyperplanes for the canonical linear represen-
tation of the Coxeter group of type H3 acting on R3. Then π1M(A⊗Cn) is the pure
Artin group PAH3 of AH3 . It is difficult to analyse a cycle ω in ∆H3 directly. Instead,
we consider a subset A′ ⊂ A, which gives an inclusion M(A⊗ Cn) → M(A′ ⊗ Cn).
This induces a quotient map between groups PAH3 → π1M(A′ ⊗ Cn), and a sur-
jective simplicial map from ∆H3 to another complex ∆A′ (we use this notation only
in the Introduction). The cycle ω ⊂ ∆H3 is sent to a cycle ω

′ ⊂ ∆A′ . It turns out
that for suitable choices of A′, the complex ∆A′ contains large subcomplexes that
are ‘non-positively curved’. If the subcomplex is large enough to contain ω′, then we
can use the non-positive curvature to analyse ω′, and then lift the information back
to ω. This last step is nontrivial, since we are losing information in the quotient
map PAH3 → π1M(A′ ⊗ Cn).
In Section 4, we discuss the possible subsetA′. Actually, we choose two subsetsA1

and A2, so certain information that is lost as a consequence of one choice survives
for the other choice. For each Ai, we indicate what is the non-positively curved
subcomplex of ∆Ai

that we have found. This section is mostly a review of [Hua24a].
The material in Section 5 is new. The non-positively curved subcomplex of ∆A2

found in [Hua24a] is not large enough for our purpose. We show in Section 5
that there is a larger subcomplex of ∆A2 that satisfies a new form of non-positive
curvature, governed by what we have called a splitting system (Definition 5.13).
We use it to understand minimal disc diagrams in the subcomplex. Given these
ingredients, we treat critical 8-cycles in Section 6 and critical 10-cycles in Section 7.
We prove Theorem 1.1 in Part II of the paper (Sections 10-12). Our point of
departure is the following criterion by Godelle and Paris.

Theorem 1.7 ([Hua24b, Thm 2.2], which is a reformulation of [GP12b, Thm 3.1]).
Let Λ be non-spherical with ∆Λ contractible. If AΛ′ satisfies the K(π, 1) conjecture
for all subdiagrams Λ′ induced on all but one vertex of Λ, then AΛ satisfies the
K(π, 1) conjecture.

To show the contractibility of ∆Λ, we adopt the strategy from [Hua24b]. Roughly
speaking, we first show that ∆Λ deformation retracts to a suitable subcomplex,
which is the relative Artin complex (Definition 10.1). We then show that this sub-
complex is non-positively curved in an appropriate sense, and so it is contractible.
Section 10 summarises the properties of relative Artin complexes from [Hua24b] and
some additional contracitibility criteria from [Bes06,Hae24].
In Section 11, we introduce a geometric tool needed for executing our strategy,
the notion of convexity for a class of simplicial complexes that are closely related
to Garside categories [Bes99, CMW04, Bes06, Hae22b]. A convex subcomplex, as
defined here, can be detected locally—specifically, by examining the links of ver-
tices—using a purely combinatorial criterion (see Definition 11.7). This notion is
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inspired by the Bestvina normal form [Bes99]. Intriguingly, even for the tessellation
of E2 by equilateral triangles, our notion differs from the more classical ones.
In Section 12, we prove Theorem 1.1 by induction on the number of generators of
the Artin group. In the process, we obtain the following byproducts or enhancements
of Theorem 1.1, some of which (items 3 and 4) might have applications outside the
K(π, 1) conjecture.

(1) We show that the K(π, 1) conjecture holds not only for all the 3-dimensional
Artin groups, but also for many higher dimensional ones (Theorem 12.20).

(2) We derive a general result that reduces the K(π, 1) conjecture for arbitrary
Artin groups to properties of Artin groups whose Coxeter diagrams do not
contain triangles (Corollary 12.19).

(3) We show that the ‘girth condition’ holds for each 3-dimensional Artin group
(Theorem 12.2)

(4) For each 3-dimensional Artin group that is not spherical, we construct a
‘non-positively curved’ relative Artin complex on which the group acts.

2. Preliminaries

2.1. Artin complex. A Coxeter diagram Λ is a finite simplicial graph with vertex
set S = {si}i and labels mij = 3, 4, . . . ,∞ for each edge sisj. If sisj is not an
edge, we define mij = 2. The Artin group AΛ is the group with generator set S
and relations sisjsi · · · = sjsisj · · · with both sides alternating words of length mij,
whenever mij < ∞. The Coxeter groupWΛ is obtained from AΛ by adding relations
s2i = 1.
The pure Artin group PAΛ is the kernel of the obvious homomorphism AΛ → WΛ.
We say that AΛ (or Λ) is spherical, if WΛ is finite. Recall that any S ′ ⊂ S generates
a subgroup of AΛ isomorphic to AΛ′ , where Λ′ is the subdiagram of Λ induced on S ′.
Such a subgroup is called a standard parabolic subgroup.
We refer to Definition 1.6 for the notion of the Artin complex ∆Λ of the Artin
group AΛ. It follows from [GP12b, Prop 4.5] that ∆Λ is a flag complex. Note that
given g ∈ AΛ, the vertices corresponding to the collection of the left cosets {gAŝ}s∈S
span a top-dimensional simplex of ∆Λ. This gives a bijective correspondence be-
tween the elements of AΛ and the top-dimensional simplices of ∆Λ. The Coxeter
complex CΛ is defined analogously, where we replace Aŝ byWŝ < WΛ generated by ŝ.
A vertex of CΛ corresponding to a left coset of Wŝ has type ŝ. We have that CΛ is
the quotient of ∆Λ under the action of PAΛ.

Remark 2.1 ([Hua24b, Cor 6.5]). For i = 1, 2, 3, let xi ∈ ∆0
Λ be of type ŝi. Suppose

that s1 and s3 belong to distinct components of Λ \ {s2}. If x2 is a neighbour of
both x1 and x3, then x1 is a neighbour of x3.

We need the following generalisation of Remark 2.1. The type of a face of ∆Λ

is the intersection of the types of its vertices. Again, faces of type T̂ = S \ T are
in bijective correspondence with the left cosets of AΛ\T , where Λ \ T ⊂ Λ is the
subdiagram induced on T̂ . The type of a vertex v of the barycentric subdivision ∆′

Λ

of ∆Λ is the type of the face of ∆Λ with barycentre v. Given two vertices x, y of ∆′
Λ,

we write x ∼ y if they are contained a common simplex of ∆Λ. Then x ∼ y if and
only if the corresponding two left cosets intersect.

Lemma 2.2. Let x1, x2, x3 be vertices of ∆′
Λ of type Ŝ1, Ŝ2, Ŝ3, respectively. Suppose

that any s1 ∈ S1 \ S2 and s3 ∈ S3 \ S2 belong to distinct components of Λ \ S2. If
x1 ∼ x2 and x2 ∼ x3, then x1 ∼ x3.



6 J. HUANG AND P. PRZYTYCKI

Proof. The proof is identical to that of [Hua24b, Lem 10.4]. We include it for the
convenience of the reader. We can assume that S2 does not contain S1 (or S3), since
otherwise the left coset corresponding to x2 would be contained in the left coset
corresponding to x1, and so x2 ∼ x3 would imply x1 ∼ x3.
Up to the left translation, we can assume that x2 corresponds to the identity coset

AΛ\S2 . For i = 1, 3, let Λi be the union of the components of Λ \S2 that are disjoint
from Si. By our hypotheses, we have Λi ̸= ∅ and Λ1 ∪ Λ3 contains all the vertices
of Λ \ S2. Since AΛ\S2 is the direct sum of the Artin groups with Coxeter diagrams
the components of Λ \ S2, any left coset of AΛ1 in AΛ\S2 and any left coset of AΛ3

in AΛ\S2 intersect. For i = 1, 3, let Hi be the left coset of AΛ\Si
in AΛ corresponding

to xi. For i = 1, 3, since Λi ⊂ Λ \ Si, we have that AΛ\S2 ∩Hi contains a left coset
of AΛi

in AΛ\S2 . Thus we have AΛ\S2 ∩H1 ∩H3 ̸= ∅ and so x1 ∼ x3. □

2.2. Posets. Let S be a set of size n. A simplicial complex X is of type S if all the
maximal simplices of X have dimension n−1 and there is a function Type: X0 → S
such that Type(x) ̸= Type(y) if x and y are neighbours. Note that the restriction
of Type to the vertex set of each maximal simplex is a bijection.
As an example, if AΛ is an Artin group, and S is the vertex set of Λ, then the
Artin complex ∆Λ is a simplicial complex of type S (or, rather, Ŝ).

Definition 2.3. Let X be a simplicial complex of type S. Any total order < on S
induces the following relation < on X0. We declare x < y if x and y are neighbours,
and Type(x) < Type(y).

Let P be a poset, i.e. a partially ordered set. Let Q ⊂ P . An upper bound (resp.
lower bound) for Q is an element x ∈ P such that q ≤ x (resp. x ≤ q) for any q ∈ Q.
An upper bound x of Q is the join of Q if x ≤ y for any upper bound y of Q. A lower
bound x of Q is the meet of Q if y ≤ x for any lower bound y of Q. We write x ∨ y
and x ∧ y for the join and meet of {x, y} (if they exist). We say that P is a lattice
if P is a poset and any two elements of P have the join and the meet. For a, b ∈ P
with a ≤ b, the interval [a, b] between a and b is the collection of all the elements x
of P satisfying a ≤ x and x ≤ b. A poset P is weakly graded if there is a poset map
r : P → Z, i.e. for every x < y in P , we have r(x) < r(y). Such r is called a rank
function. A bowtie x1y1x2y2 consists of distinct elements of P satisfying xi < yj for
all i, j = 1, 2. The name comes from the fact that if we draw y1, y2 above x1, x2 in
the Hasse diagram, then we obtain a bowtie shaped configuration.

Definition 2.4. A poset P is bowtie free if for any bowtie x1y1x2y2 there exists
z ∈ P satisfying xi ≤ z ≤ yj for all i, j = 1, 2.

Lemma 2.5 ([BM10, Prop 1.5] and [HH23, Prop 2.4]). If P is a bowtie free weakly
graded poset, then any subset Q ⊂ P with an upper bound has the join, and any
Q ⊂ P with a lower bound has the meet.

Proof. The case of |Q| = 2 is [HH23, Prop 2.4]. This easily implies the case of
finite Q. Thus for infinite Q with an upper bound u, we have that each finite subset
of Q has the join, which is ≤ u. Let T be a finite subset of Q such that the join uT

of T has largest rank among all the joins of the finite subsets of Q. We claim that
uT is the join of Q. To justify the claim, it is enough to show that for any q ∈ Q,
we have q ≤ uT . Let u be the join of T ∪ {q}. Then we have uT ≤ u. On the other
hand, we have r(u) ≤ r(uT ) by our choice of T . Thus uT = u, and so q ≤ uT , as
desired. The assertion on the meet is proved analogously. □

Definition 2.6. A poset is upward flag if any three pairwise upper bounded elements
have an upper bound. A poset is downward flag if any three pairwise lower bounded
elements have a lower bound. A poset is flag if it is upward flag and downward flag.
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Definition 2.7. A poset is weakly upward flag if any three elements pairwise upper
bounded by non-maximal elements have an upper bound. Analogously, we define
weakly downward flag and weakly flag posets.

We will be often discussing Coxeter diagrams Λ that are linear graphs with con-
secutive vertices s1, . . . , sn. In that case, we write shortly Λ = s1 · · · sn.

Theorem 2.8 ([Hae24, Prop 6.6]). Let Λ = s1 · · · sn be the Coxeter diagram of
type Bn with msn−1sn = 4, and total order ŝ1 < · · · < ŝn. Then the induced relation <
on ∆0

Λ from Definition 2.3 is a partial order that is weakly graded, bowtie free and
upward flag

Theorem 2.9 ([Hua24a, Thm 7.1]). Let Λ = s1s2s3 be the Coxeter diagram of
type H3 with ms2s3 = 5, and ŝ1 < ŝ2 < ŝ3. Then the induced relation < on ∆0

Λ from
Definition 2.3 is a partial order that is weakly graded, bowtie free and upward flag.

2.3. Disc diagrams. A map from a CW complex Y to a CW complex X is com-
binatorial if its restriction to each open cell of Y is a homeomorphism onto an open
cell of X. A CW complex X is combinatorial, if the attaching map of each open cell
of X is combinatorial for some subdivision of the sphere.
A disc diagram D is a finite contractible combinatorial complex with a fixed
embedding in the plane R2. We can then view R2 ∪ {∞} as the combinatorial
complex that is a union of D and a 2-cell at infinity. The boundary cycle of D is
the edge-loop in D that is the attaching map of the cell at infinity. A disc diagram
in a combinatorial complex X is a combinatorial map f : D → X, where D is a disc
diagram. The boundary cycle of f is the composition of the boundary cycle of D
with f . A disc diagram f : D → X is minimal if it has minimal area (i.e. number
of 2-cells in D) among all diagrams in X with the same boundary cycle. We say
that f is reduced if it is locally injective at D \D0. The following is a well-known
variation of a result by Van Kampen.

Lemma 2.10 ([MW02, Lem 2.16 and 2.17]). Any homotopically trivial cycle ω in X
is the boundary cycle of a disc diagram f : D → X. Any minimal disc diagram is
reduced.

Note that if ω is not embedded, then D might not be homeomorphic to a disc.
Suppose that the corners of each p-gon of a disc diagram D are assigned real
numbers, called angles, with sum (p− 2)π. Let v be a vertex of D whose link in D
has nv components. We define the curvature at v of D to be (2 − nv)π minus the
sum of all the angles at v. We will use the following ‘Gauss–Bonnet theorem’.

Theorem 2.11 ([MW02, Thm 4.6]). The sum of the curvatures at all the vertices v
of D equals 2π.

Here is an example of an application of Theorem 2.11. However, we will be
using without reference various similar results on 2-dimensional CAT(0) simplicial
complexes, especially in Sections 6–7.

Lemma 2.12. Let Y be a 2-dimensional CAT(0) simplicial complex of type {ŝ, t̂, p̂},
all of whose triangles have type ŝt̂p̂ with angles π

4
, π
2
, π
4
or π

6
, π
2
, π
3
.

(i) Then any induced 4-cycle ω in Y 1 has type ŝp̂ŝp̂ and has a common neighbour
of type t̂.

(ii) In the π
6
, π
2
, π
3
case, for n ≤ 6, any embedded 2n-cycle ω in Y 1 of type (t̂p̂)n has

a common neighbour of type ŝ and satisfies n = 6.
(iii) In the π

4
, π
2
, π
4
case, for n ≤ 4, any embedded 2n-cycle ω in Y 1 of type (t̂p̂)n has

a common neighbour of type ŝ and satisfies n = 4.
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Proof. For part (i), let D → Y be a minimal disc diagram bounded by the 4-cycle ω.
Let T1, . . . , T4 ⊂ D be the triangles containing the boundary edges. Note that since
ω is induced, the Ti are distinct. Furthermore, the sum of the angles of Ti incident
to ∂D is at least 4 · π

2
. Since D is minimal, it is locally CAT(0), and by Theorem 2.11

the sum of the angles at ∂D is at most 2π. Consequently, we have equality, and
there are no other triangles in D incident to ∂D. As a result, there are no other
triangles in D, as desired.
For part (ii), we consider 2n triangles Ti ⊂ D containing the boundary edges. The
sum of the angles of Ti incident to ∂D is at least 2n

(
π
2
+ π

3

)
= 5nπ

3
. By Theorem 2.11,

the sum of the angles at ∂D is at most 2nπ−2π. Consequently 5nπ
3

≤ 2nπ−2π, and
so n ≥ 6 and we conclude as before. This part also follows from [Hua24b, Lem 9.8].
The proof of part (iii) is analogous to that of part (ii). □

3. Complexes for hyperplane arrangements

3.1. Hyperplane arrangements and their dual polyhedra. A hyperplane ar-
rangement in the vector space Rn is a locally finite family A of affine hyperplanes.
Let Q(A) be the set of nonempty affine subspaces that are intersections of subfam-
ilies of A (here Rn ∈ Q(A) as the intersection of an empty family). Each point
x ∈ Rn belongs to a unique element of Q(A) that is minimal with respect to in-
clusion, called the support of x. A fan of A is a maximal connected subset of Rn

consisting of points with the same support. Denote the collection of all fans of A
by Fan(A). Note that Rn is the (disjoint) union of Fan(A). We define a partial
order on Fan(A) so that U1 < U2 if U1 is contained in the closure of U2. Let bΣA
be the simplicial complex that is the geometric realisation of this poset. For each
U ∈ Fan(A), we choose a point xU ∈ U . This gives a piecewise linear embedding
bΣA ⊂ Rn sending the vertex of bΣA corresponding to U to xU .
By [Sal87, pp. 606-607], the simplicial complex bΣA is the barycentric subdivision
of a combinatorial complex ΣA whose vertices correspond to the top-dimensional
fans. Namely, for each vertex of bΣA corresponding to U ∈ Fan(A), the union of all
the simplices of bΣA corresponding to chains with smallest element U is homeomor-
phic to a closed disc [Sal87, Lem 6], which becomes the face of ΣA corresponding
to U . We will sometimes view bΣA and ΣA as subspaces of Rn. For B ∈ Q(A),
a face F of ΣA is dual to B, if B contains the fan U corresponding to F and
dim(B) = dim(U). We equip the 1-skeleton of ΣA with the path metric d such that
each edge has length 1. Given vertices x, y ∈ Σ0

A, it turns out that d(x, y) is the
number of hyperplanes separating x and y [Del72, Lem 1.3].

Lemma 3.1 ([Sal87, Lem 3]). Let x ∈ Σ0
A and let F be a face of ΣA. Then there

exists unique ΠF (x) ∈ F 0 such that d(x,ΠF (x)) ≤ d(x, y) for any y ∈ F 0.

The vertex ΠF (x) is called the projection of x to F . A hyperplane H ∈ A crosses
a face F of ΣA if H is dual to an edge of F . For an edge xy of ΣA, if the hyperplane
dual to xy crosses F , then ΠF (x)ΠF (y) is an edge dual to the same hyperplane,
otherwise we have ΠF (x) = ΠF (y). Thus ΠF extends naturally to a map Σ1

A → F 1.

Lemma 3.2. Let E and F be faces of ΣA. Then ΠF (E
0) = F ′0 for some face

F ′ ⊂ F .

Proof. Let A′ be the collection of all the hyperplanes that cross both E and F . Note
that for any edge-path P in E, any edge of ΠF (P ) is dual to an element of A′.
Let B ∈ Q(A) be the intersection of all the elements of A′. If A′ = ∅, then we
set B = Rn. Let E ′ be any face of E dual to B, which is a vertex for B = Rn, and
let w be any vertex of E ′. By the above discussion, ΠF (w) is contained in a face
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F ′ of Σ dual to B. Moreover, we have F ′ ⊂ F . Furthermore, ΠF (E
′0) = F ′0 and

ΠF (E
0) ⊂ F ′0, as desired. □

In the situation of Lemma 3.2, we write F ′ = ΠF (E). The assignment E → ΠF (E)
gives rise to a piecewise linear map ΠF : ΣA ∼= bΣA → bF ∼= F .

3.2. Salvetti complex. Let V = Σ0
A. Consider the set of pairs (F, v), where F

is a face of ΣA and v ∈ V . We define an equivalence relation ∼ on this set by
(F, v) ∼ (F ′, v′) whenever F = F ′ and ΠF (v

′) = ΠF (v). Note that each equivalence
class [F, v′] contains a unique representative of form (F, v) with v ∈ F 0. The Salvetti
complex Σ̂A is obtained from ΣA×V (a disjoint union of copies of ΣA) by identifying
faces F × v and F × v′ whenever [F, v] = [F, v′] [Sal87, pp. 608]. For example, for
each edge F = v0v1 of ΣA, we obtain two edges F × v0 and F × v1 of Σ̂A, glued
along their endpoints v0 × v0 and v1 × v1. We orient the edge F × v0 from v0 × v0 to
v1 × v0 = v1 × v1. Then Σ̂0

A = V , while Σ̂1
A is obtained from Σ1

A by doubling each
edge. Thus each edge of the form F × v is oriented so that its endpoint is farther
from v in F 1 than its starting point.
There is a natural map p : Σ̂A → ΣA forgetting the second coordinate. For each
subcomplex Y of ΣA, we write Ŷ = p−1(Y ). If F is a face of ΣA, then F̂ is a standard
subcomplex of Σ̂A.

Lemma 3.3 ([Hua24a, Lem 4.5]). Let E and F be faces of ΣA. If [E, v1] = [E, v2],
then [ΠF (E), v1] = [ΠF (E), v2].

Definition 3.4. Let F be a face of ΣA. Consider the disjoint union of V copies of
the map ΠF , where ΠF × v : ΣA × v → F × v. It follows from Lemma 3.3 that this
map factors to a map ΠF̂ : Σ̂A → F̂ , which is a retraction (see [GP12b, Thm 2.2]).

The following key property of ΠF̂ follows directly from Definition 3.4.

Lemma 3.5. Let E and F be faces of ΣA. Then ΠF̂ (Ê) = Π̂F (E).

Let A ⊗ C be the complexification of A, which is a collection of affine complex
hyperplanes in Cn. Define

M(A⊗ C) = Cn −
⋃
H∈A

(H ⊗ C).

It follows from [Sal87, Thm 1] that Σ̂A is homotopy equivalent to M(A ⊗ C), and
so they have isomorphic fundamental groups.
In the remaining part of this subsection, we assume that WΛ is a finite Coxeter
group with its canonical representation ρ : WΛ → GL(n,R) [Dav08, Chap 6.12]. A
reflection of WΛ is a conjugate of s ∈ S. Each reflection fixes a hyperplane in Rn,
which we call a reflection hyperplane. Let A be the family of all reflection hyper-
planes. The hyperplane arrangement A is the reflection arrangement associated
with WΛ. We denote ΣΛ = ΣA and Σ̂Λ = Σ̂A. Since WΛ permutes the elements
of A, there is an induced action WΛ ↷ M(A⊗C) and an induced action WΛ ↷ Σ̂A,
which are free. The union of A cuts the unit sphere of Rn into a simplicial complex,
which is isomorphic to the Coxeter complex CΛ and dual to ΣΛ. The following are
standard [Par14, §3.2 and 3.3].

• π1M(A⊗ C) = PAΛ [vdL83],
• π1(M(A⊗ C)/WΛ) = π1(Σ̂Λ/WΛ) = AΛ,
• Σ̂2

Λ/WΛ is isomorphic to the presentation complex of AΛ.
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Definition 3.6. Note that Σ̂1
Λ is isomorphic to the Cayley graph of WΛ (with edges

appropriately oriented), and Σ1
Λ is isomorphic to the unoriented Cayley graph ofWΛ

(obtained by collapsing each double edge of the usual Cayley graph to a single edge).
Thus the edges of Σ̂Λ and ΣΛ are labelled by the elements of S. The type of a face
of ΣΛ or a standard subcomplex of Σ̂Λ is defined to be the collection of the labels
of edges of this subcomplex.

Remark 3.7 (Alternative description of the Artin complex ∆Λ). Let Σ̃Λ be the
universal cover of Σ̂Λ. Then by the last bullet point above, Σ̃1

Λ can be identified
with the Cayley graph of AΛ. An elevation of a subcomplex of Σ̂Λ to Σ̃Λ is a
connected component of the preimage of this subcomplex under the covering map.
Vertices of ∆Λ are in bijective correspondence with the elevations of the standard
subcomplexes of type ŝ for s ∈ S, since the vertex set of such an elevation is a
left coset gAŝ ⊂ AΛ = Σ̃0

Λ. Vertices of ∆Λ span a simplex if their corresponding
elevations have non-empty common intersection. We will call these elevations stan-
dard subcomplexes of Σ̃Λ. By [vdL83], the intersection of a collection of standard
subcomplexes of Σ̃Λ of types Si is empty or is a standard subcomplex of type

⋂
i Si.

3.3. Collapsing hyperplanes. Let A be a hyperplane arrangement and let A′ ⊂
A. Note that each fan of A is contained in a unique fan of A′. Since the vertices
of bΣA (the barycentric subdivision of ΣA) correspond to the fans of A, this gives
a map from the vertex set of bΣA to the vertex set of bΣA′ . This map extends to
a simplicial map κ = κA′ : bΣA → bΣA′ , which can also be viewed as a piecewise
linear map from ΣA to ΣA′ .
By the description of the faces of ΣA in the terms of the simplices of bΣA at the
beginning of Section 3.1, κ maps each face F of ΣA onto a face of ΣA′ that we denote
κ(F ). Note that if an edge e of ΣA is dual to a hyperplane outside A′, then κA′(e)
is a vertex, otherwise κA′(e) is an edge.
Furthermore, for v, v′ ∈ Σ0

A satisfying ΠF (v
′) = ΠF (v), we have Πκ(F )(κ(v

′)) =

Πκ(F )(κ(v)). Thus κ induces a piecewise linear map κ̂ : Σ̂A → Σ̂A′ .

3.4. Central arrangements. Let A be a hyperplane arrangement in Rn that is
central, that is, all its hyperplanes pass through the origin. Let H ∈ A and let
Rn−1 ⊂ Rn be parallel to and distinct from H. The deconing AH of A with respect
to H is the hyperplane arrangement in Rn−1 consisting of the intersections of the
elements of A with Rn−1. Note that AH is well-defined, since choosing a different
parallel hyperplane Rn−1 gives rise to a hyperplane arrangement differing from the
first one by an affine isomorphism. It is well-known thatM(A⊗C) is homeomorphic
to M(AH ⊗C)×C∗, where C∗ = C\{0}, see e.g. [OT13, Prop 5.1]. Thus π1M(A⊗
C) ∼= π1M(AH ⊗ C) ⊕ Z. It is also possible to see this isomorphism on the level
of the Salvetti complex, where we identify ΣAH

with the subcomplex of ΣA on one
side of H.

Lemma 3.8. Let A be a central arrangement and H ∈ A. Then the inclusion
i : Σ̂AH

→ Σ̂A is π1-injective. Moreover, π1Σ̂A = i∗(π1Σ̂AH
)⊕ Z.

Proof. Let bΣ̂A denote the barycentric subdivision of Σ̂A. Recall that, in [Sal87,
pp. 608], Salvetti constructed a piecewise linear embedding ϕ : bΣ̂A → M(A ⊗ C).
He proved in [Sal87, pp. 611] that ϕ is a homotopy equivalence. Let Rn−1 ⊂ Rn be
as above. Then M(AH ⊗C) is a subspace of Rn−1⊗C. We can homotopy ϕ so that
ϕ(Σ̂AH

) ⊂ M(AH ⊗C) and ϕ|Σ̂AH
: Σ̂AH

→ M(AH ⊗C) is a homotopy equivalence.
Thus the lemma follows from the paragraph preceding its statement. □
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3.5. Line arrangements. Let A be a central arrangement of lines in R2. Let ω be
a locally embedded edge-path in Σ̂A, and ℓ ∈ A. An ℓ-segment of ω is a maximal
subpath mapped to an edge dual to a fan in ℓ under Σ̂A → ΣA.

Lemma 3.9 ([Fal95, Lem 3.6]). Suppose that P is a locally embedded homotopically
trivial edge-loop in Σ̂A, and ℓ ∈ A. Then P contains at least two ℓ-segments.

A minimal positive path in Σ̂A is a minimal length path between its endpoints
that is positively oriented. (The orientation of the edges was introduced at the
beginning of Section 3.2 and discussed in Definition 3.6.) Note that the boundary
of each 2-cell of Σ̂A is a union of two minimal positive paths from some vertex x to
its antipodal vertex y. We call x the source of this 2-cell, and y the sink. Let ∆x

be the concatenation of a minimal positive path from x to y and a minimal positive
path from y to x. The element represented by ∆x in π1(Σ̂A, x) is independent of the
choice of the paths.
Below, we denote the edges of the two minimal length paths from x to y in Σ1

A
by e1 · · · en and dn · · · d1. For an edge ei of Σ1

A, we label both edges of êi by ei. Note
that they are oriented in opposite directions. Let z be the common vertex of e1
and e2.

Lemma 3.10. (1) Let P be an edge-path in Σ̂A from x1 to x2. Then ∆x1P is
homotopic, relative to the endpoints, to P∆x2. In particular, ∆x1 is central
in π1(Σ̂A, x1).

(2) Paths ∆ze
−1
2 e−1

3 · · · e−1
n e−1

n · · · e−1
3 e−1

2 and e1e1 represent the same element of
π1(Σ̂A, z).

Proof. Assertion 1 is a consequence of [Del72, Lem 1.26 and Prop 1.27]. For Asser-
tion 2, note that ∆z ∼ e2 · · · end1d1en · · · e2, where ∼ stands for a homotopy relative
to the endpoints. The union of the two 2-cells of Σ̂A with sources the two end-
points of e1 form a cylinder in Σ̂A with boundary paths e21 and d

2
1. More precisely,

e21 ∼ e2e3 · · · end21e−1
n · · · e−1

3 e−1
2 . Thus

∆z ∼ e2e3 · · · end21e−1
n · · · e−1

3 e−1
2 e2e3 · · · enen · · · e2 ∼ e21e2e3 · · · enen · · · e2.

□

Let e1, d1 be dual to the fans in ℓ ∈ A. Let i : Σ̂Al
→ Σ̂A be as in Lemma 3.8.

Lemma 3.11. We have a short exact sequence

π1(Σ̂Al
, z)

i∗→ π1(Σ̂A, z)
p∗→ π1(ê1, z),

where p = Πê1. In particular, if for a representative P of α ∈ π1(z, Σ̂A) the path
Πê1(P ) is homotopically trivial, then α can be represented by a loop in Σ̂Al

.

Proof. Since π1(ê1, z) is isomorphic to Z, this follows from Lemma 3.8, from im i∗ <
ker p∗, and from the surjectivity of p∗. □

Lemma 3.12. Let A′ = A \ {l}, where l is dual to e1. Let P be an edge-path in
ê3 ∪ ê4 ∪ · · · ∪ ên. If κ̂A′(P ) is homotopic, relative to the endpoints, into κ̂A′(êj)

in Σ̂A′, for some j ̸= 1, then P is homotopic, relative to the endpoints, into êj
in Σ̂A.

For j = 2 this means that P is a homotopically trivial edge-loop by Lemma 3.8.

Proof. Let fi = κA′(ei). By Lemma 3.8, f̂3∪ f̂4∪· · ·∪ f̂n ⊂ Σ̂A′ is π1-injective. Thus
for j ̸= 2 the edge-path κ̂A′(P ) is homotopic in f̂3 ∪ f̂4 ∪ · · · ∪ f̂n ⊂ Σ̂A′ into f̂j.
Consequently, P is homotopic in ê3 ∪ ê4 ∪ · · · ∪ ên into êj.
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Figure 2. Denting

For j = 2, since P is contained in ê3∪ê4∪· · ·∪ên and κ̂A′(P ) is homotopic, relative
to the endpoints, into f̂2, we have that P is an edge-loop. If P is homotopically
nontrivial in ê3∪ ê4∪· · ·∪ ên, then by Lemma 3.8 κ̂A′(P ) is homotopically nontrivial
in Σ̂A′ . However, by considering the retraction Πf̂2

: Σ̂A′ → f̂2, we obtain that a loop

in f̂2 cannot be homotopic in Σ̂A′ to a homotopically nontrivial loop in f̂3∪f̂4∪· · ·∪f̂n,
which is a contradiction. □

4. Some sub-arrangements of the H3-arrangement

Let Λ be the Coxeter diagram of type H3, which is the linear graph with consec-
utive vertices abc and mab = 3,mbc = 5. Let A be the reflection arrangement in R3

associated with WΛ. Denoting the quotient map from the Artin complex ∆ = ∆Λ

to the Coxeter complex C = CΛ by π, we say that a vertex x of ∆ has face type C,
where C is the face of Σ dual to π(x).
We start with describing a procedure of converting an n-cycle in ∆ to a concate-
nation of n words in AΛ (cf. [Hua24b, Def 6.14]). These n words are well-defined up
to an appropriate notion of equivalence.

Construction 4.1. Let ω = x1 · · ·xn be a cycle in ∆ of type ŝ1 · · · ŝn. For each
i ∈ Z/nZ, consider a triangle containing xixi+1 and corresponding gi ∈ AΛ. Then
gi = gi−1wi for wi ∈ Aŝi and w1 · · ·wn = 1. A different choice of such triangles
would lead to a word u1 · · ·un with ui = q−1

i−1wiqi for some qi ∈ AS\{si,si+1}. In this
case we say that the words u1 · · ·un and w1 · · ·wn are equivalent.
Given ω, we construct a homotopically trivial edge-loop P = P1 · · ·Pn in Σ̂ as
follows. Let Σ̃ be the universal cover of Σ̂ = Σ̂Λ, with standard subcomplexes Ti

corresponding to xi. Let P̃i be edge-paths in Ti from gi−1 to gi representing wi. We
define Pi to be the image of P̃i in Σ̂. We have Pi ⊂ Ĉi, where Ci is the face type
of xi.
Conversely, consider a homotopically trivial edge-loop P = P1 · · ·Pn in Σ̂, with
the Pi contained in hosts Ĉi. Then we can construct a cycle in ∆ as follows. For any
lift P̃ of P to Σ̃, each P̃i is contained in a standard subcomplex that is an elevation
of Ĉi corresponding to a vertex xi of ∆. Then ω = x1 · · ·xn is a cycle of ∆.

Definition 4.2. We refer to Figure 2 for the following discussion. Let ω and P be
as in Construction 4.1. Suppose that x1 ̸= x2 ̸= x3 are of types â, ĉ, â or ĉ, â, ĉ, and
P2 is also contained in B̂ with B ⊂ Σ a square. Then there is a vertex y ∈ ∆0 of
face type B that is a neighbour of x1, x2, x3. Let C be the face of Σ intersecting B
along the edge opposite to B ∩ C2. Then there is a vertex x ∈ ∆0 of face type C
that is a neighbour of y and consequently of x1, x3 by Remark 2.1. Replacing x2

by x in ω is called denting x2 to C.



353-COMBINATORIAL CURVATURE AND THE 3-DIMENSIONAL K(π, 1) CONJECTURE 13

4.1. Sub-arrangement of type I.

Definition 4.3. Consider consecutive vertices θ1, θ2, θ3 of C of types â, b̂, â in a
hyperplane of A. Let H ⊂ A be the collection of hyperplanes passing through at
least one of the θi, see Figure 3, left. The central arrangement H in R3 is called
the sub-arrangement of type I. Let H ∈ H be the hyperplane passing through θ1
represented as the boundary circle in Figure 3, left. Consider the deconingH′ = HH ,
which is a hyperplane arrangement in R2, see Figure 3, right.

Figure 3. Sub-arrangement of type I

Let X = ΣH′ and X̂ = Σ̂H′ . Denote the four vertical hyperplanes of H′ by
h1, h2, h3, h4, from left to right. Let Xi be the union of all the closed faces of X that
intersect hi. For i = 1, 2, 3, let Ŷi = X̂i ∩ X̂i+1. We define subcomplexes Xij of Xi

for j = 1, 2 as follows. For i = 1, 3, let Xi1 be the subcomplex of Xi coloured white
in Figure 4 (the hexagon), and let Xi2 be the subcomplex of Xi coloured gray (the
union of three squares). For i = 2, 4, let Xi1 be the subcomplex of Xi coloured gray
(the square on the top), and let Xi2 be the subcomplex of Xi coloured white.
We now define a simple complex of groups U12 (see [BH99, II.12]) with fundamen-
tal group π1(X̂1 ∪ X̂2) as in Figure 5, whose underlying complex U12 is the union of
two triangles. The vertex groups and the edge groups are the fundamental groups
of the subcomplexes of X̂ as labelled in Figure 5, and the remaining local groups are
trivial. The morphisms between the local groups are induced by the inclusions of
the associated subcomplexes, which are injective by Lemma 3.8. By [Hua24a, §6.1],
U12 is developable with π1U12 = π1(X̂1 ∪ X̂2).

Definition 4.4. Let U12 be the development of U12 (cf. [BH99, II.12]). Equivalently,
the vertices of U12 (of face type X̂ij) correspond to the elevations of X̂ij to the uni-
versal cover of X̂1 ∪ X̂2, which we also call standard subcomplexes of face type X̂ij.
By [Hua24a, Lem 6.3], the intersection of a pair of standard subcomplexes and in
fact of any collection of standard subcomplexes) is either empty or connected. Ver-
tices of U12 are neighbours if their corresponding subcomplexes intersect. Vertices
of U12 form a triangle, if their corresponding subcomplexes have non-empty common
intersection (which is then a single vertex).

Below, we consider the inclusion X̂ = Σ̂H′ ⊂ Σ̂H introduced in Section 3.4.

Lemma 4.5 ([Hua24a, Lem 6.6]). The inclusion X̂1 ∪ X̂2 ⊂ Σ̂H is π1-injective.
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h1 h2 h3 h4

Figure 4. Dual complex

{1}

π1(X̂11 ∩ X̂22)

π1(X̂11 ∩ X̂21)π1(X̂11) π1(X̂21)

π1(X̂21 ∩ X̂22)

π1(X̂11 ∩ X̂12)

π1(X̂12 ∩ X̂22)π1(X̂12) π1(X̂22)

{1}

Figure 5.

There is a natural action π1(X̂1 ∪ X̂2) ↷ U12, with quotient U12. We equip U12

with the piecewise Euclidean metric of the unit square. It pulls back to a piecewise
Euclidean metric on U12.

Lemma 4.6 ([Hua24a, Lem 6.4]). U12 is CAT(0).

4.2. Converting paths in X̂1 ∪ X̂2 to paths in U12.

Definition 4.7. Let T = {X̂11, X̂12, X̂21, X̂22}. Let P be a homotopically trivial
edge-loop in X̂1∪X̂2 that decomposes as a concatenation of edge-paths Pi contained
in hosts Ti ∈ T . Let P̃ be a lift of P to the universal cover of X̂1∪ X̂2. Then each P̃i

is contained in a standard subcomplex of face type Ti corresponding to a vertex xi

of U12. For each i, we have that xi+1 is equal to, or a neighbour of xi. Thus
ω = x1x2 · · · is a cycle in U12 corresponding to P (or P̃ ). Note that ω depends on
the decomposition of P , the choice of the hosts and (least importantly) the choice
of the lift of P . In practice, we will be looking for a minimal decomposition.

Definition 4.8. Let P̃ be an edge-path in the universal cover of X̂1 ∪ X̂2. We say
that P̃ starts (resp. ends) with a triangle σ ⊂ U12 if P̃ starts (resp. ends) with the
vertex corresponding to σ.
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Under the same notation as in Definition 4.7, since non-empty intersections of
standard subcomplexes were connected, we have the following.

Lemma 4.9. Suppose that y1 · · · yk is a locally embedded edge-path of face type
Ti1 · · · Tik in lk(xi,U12) from xi−1 to xi+1. Then P̃i is homotopic in its elevation
of Ti, relative to its endpoints, to a concatenation of locally embedded edge-paths
P̃i1 · · · P̃ik, with P̃ij projecting into Ti ∩ Tij. Moreover,

(1) if 2 ≤ j ≤ k − 1, then P̃ij is nontrivial in the sense that its endpoints are
distinct,

(2) if P̃i starts with the triangle xixi−1y2 and ends with the triangle xiyk−1xi+1,
then P̃i1 and P̃ik are trivial.

Note that an analogous result holds for U12, X̂1 ∪ X̂2 replaced by ∆, Σ̂.

Definition 4.10. Let κ̂ : Σ̂ → Σ̂H be as in Section 3.3. Let κ̃ be the induced map
between the universal covers. We view X̂ as a subcomplex Σ̂H as in Section 3.4.
Let E be an elevation of X̂1∪ X̂2 to the universal cover of Σ̂H, which is the universal
cover of X̂1 ∪ X̂2 by Lemma 4.5. Consider the subcomplex Σ∗ ⊂ Σ (depending
on H) that is the union of 2-cells C with κ(C) a 2-cell of X1 ∪X2. Let ∆∗ be the
subcomplex of ∆ spanned by the vertices of face type in Σ∗ whose corresponding
standard subcomplexes map under κ̃ into E. Then κ̃ induces a simplicial map
κ∗ : ∆∗ → U12. For a vertex x of ∆∗, we denote xH = κ∗(x). Whenever the
dependence on H is relevant, we write ∆∗

H, κH instead of ∆∗, κ.
We say a that a 2-cell C of Σ∗ and its image κ(C) in X1 ∪X2 are non-collapsed
if κ(C) = X11, X12, or X22. In particular, κ̂|Ĉ is a homeomorphism. A vertex of ∆

∗

(resp. U12) is non-collapsed if its face type is non-collapsed. Let ∆nc (resp. Unc
12) be

the subcomplex of ∆∗ (resp. U12) spanned on non-collapsed vertices.

Lemma 4.11. Let x ∈ ∆∗ be non-collapsed of face type C. If κ(C) = X11 or X21,
then the map lk(x,∆∗) → lk(xH,U12) induced by κ∗ is an isomorphism. Further-
more, if κ(C) = X22, then the map lk(x,∆nc) → lk(xH,Unc

12) induced by κ
∗ is an

isomorphism.

Proof. By the the description of edges and triangles in ∆ and U12 in Remark 3.7
and Definition 4.4, all the relevant neighbours of x, xH correspond to lines in the
isomorphic standard subcomplexes corresponding to x, xH. Two such neighbours
span an edge of the link exactly when these lines intersect, which is invariant under
the isomorphism. □

4.3. Sub-arrangement of type II.

Definition 4.12. Let A be as at the beginning of the Section 4. Consider consecu-
tive vertices θ1, . . . , θ4 of C of types â, ĉ, b̂, ĉ in a hyperplane of A. Let K ⊂ A be the
collection of hyperplanes passing through at least one of the θi. See Figure 6, left.
The central arrangement K in R3 is called the sub-arrangement of type II. Let H ∈ K
be the hyperplane passing through θ1 represented as the boundary circle in Figure 6,
left. We consider the deconing K′ = KH , which is a hyperplane arrangement in R2,
see Figure 6, right.

Let X = ΣK′ and X̂ = Σ̂K′ . We view Σ̂K′ as a subcomplex of Σ̂K, as in Section 3.4.
Denote the four vertical hyperplanes of K′ by h1, h2, h3, h4 (from left to right in
Figure 7(I)). Let Xi be the union of all the closed faces of X that intersect hi. For
2 ≤ i ≤ 4, Xi is formed of three 2-cells, denoted from top to bottom by Xi1,Xi2

and Xi3. The following lemma follows from Lemma 3.8 and [Hua24a, Lem 6.8].
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θ1

θ4

Figure 6. Sub-arrangement of type II

Lemma 4.13. Inclusions X̂2 ∪ X̂3 ⊂ Σ̂K, X̂3 ∪ X̂4 ⊂ Σ̂K, and X̂2 ∪ X̂3 ∪ X̂4 ⊂ Σ̂K are
π1-injective.

h1 h2 h3 h4

π1(X̂21) π1(X̂31) π1(X̂41)

π1(X̂22)

π1(X̂23)

π1(X̂32) π1(X̂42)

π1(X̂33) π1(X̂43)

e1
e2

e3

e4
e5

d1

d2

d3

d4
d5

e6

e7

e8

e9

(I) (II) (III)

Figure 7. Dual complex

Let W234 be the Coxeter group of type B3, and let A234 be its reflection arrange-
ment. Namely, A234 has the following hyperplanes: xi = 0 for 1 ≤ i ≤ 3, and
xi ± xj = 0 for 1 ≤ i ̸= j ≤ 3. Let Σ234 and Σ̂234 be the associated dual polyhedron
and the Salvetti complex. Let A′

234 be the deconing of A234 with respect to x1 = 0.
Then we have isomorphisms of combinatorial complexes

ΣA′
234

∼= X2 ∪ X3 ∪ X4 and Σ̂A′
234

∼= X̂2 ∪ X̂3 ∪ X̂4.

Let V234 be the simple complex of groups with the underlying complex V234 de-
scribed in Figure 7(II). Note that π1V234 = π1Σ̂A′

234
. Hence the local groups em-

bed in π1V234, and so V234 is developable. Its development is called the Falk com-
plex V234. Let V23 be the gray subcomplex of V234 in Figure 7(II). Let V23 be the
simple complex of groups with the underlying complex V23 induced from V234. Then
π1(V23) = π1(X̂2 ∪ X̂3). Let V23 be the development of V23. We analogously de-
fine V34.
Let K̃234 (resp. K̃23) be the universal cover of X̂2∪ X̂3∪ X̂4 (resp. X̂2∪ X̂3). Vertices
of V234 are in bijective correspondence with the elevations of X̂ij in K̃234, for 2 ≤
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i ≤ 4, 1 ≤ j ≤ 3, called standard subcomplexes of face type X̂ij. The face type of
the corresponding vertex of V234 is also X̂ij. We can describe edges and triangles
of V234 (and of V23 and V34) using these standard subcomplexes in the same way as in
Definition 4.4. We equip V23 with the piecewise Euclidean metric of a rectangle with
sides of lengths 1 and 2. It pulls back to a piecewise Euclidean metric on V23. We
define an analogous piecewise Euclidean metric on V34. We will use the vocabulary
from Definitions 4.7 and 4.8 in the context of V234 as well.

Definition 4.14. Consider the subcomplex Σ∗ ⊂ Σ (depending on K) that is the
union of 2-cells C with κ(C) a 2-cell of X2 ∪ X3 ∪ X4. Using κ̂ : Σ̂ → Σ̂K, we can
define a subcomplex ∆∗ ⊂ ∆ arising from Σ∗, and a simplicial map κ∗ : ∆∗ → V234

in a similar way as in Definition 4.10. We say a that a 2-cell C of Σ∗ and its image
κ(C) in X2 ∪ X3 ∪ X4 are non-collapsed if κ(C) = X21,X31,X41,X32, or X33 — these
are the faces for which κ|C is a homeomorphism. A vertex of ∆∗ (resp. V234) is
non-collapsed if its face type is non-collapsed.

The following has the same proof as Lemma 4.11.

Lemma 4.15. Let x ∈ ∆∗ be non-collapsed of face type C. If κ(C) ̸= X33, then
the map lk(x,∆∗) → lk(xK,V234) induced by κ∗ is an isomorphism. If κ(C) = X33,
then this map is an isomorphism onto the subcomplex spanned by the vertices of face
types X̂22, X̂32, and X̂42.

5. Filling cycles in V234

Let Λ be the Coxeter diagram of type B3, which is the linear graph with consec-
utive vertices s1s2s3 and ms1s2 = 3,ms2s3 = 4, and total order s1 < s2 < s3. We
shortly write Λ = 234. Let V234, V234, Xi, X̂i and X̂ij be as in Section 4.3.
The goal of this section is to establish the properties of certain 8-cycles and 10-
cycles in V234, namely Propositions 5.10, 5.11, and 5.12. We will start with lemmas
on vertex links in Section 5.1, which will be used to study the cycles in Section 5.2.

5.1. Vertex links in V234. Let Y = X2 ∪X3 ∪X4. We label the edges of Y (and Ŷ)
as in Figure 7(III). Identifying Σ̂1

234 with the Cayley graph of W234, for each edge e
of Y, the two edges of ê ⊂ Ŷ ⊂ Σ̂234 are oriented in opposite directions.

Lemma 5.1. Let ω be a locally embedded cycle in the link of a vertex of type ŝ3
(resp. ŝ1) in V234. Then ω contains at least two vertices of face type X̂32 (resp. of
type ŝ2 but not of face type X̂32).

Proof. Suppose that ω lies in the link of a vertex of face type X̂22. We apply
Lemma 4.9 to ω to produce a locally embedded edge-loop P in X̂22. By Lemma 3.9
applied to P , the cycle ω has at least two vertices of face type in {X̂21, X̂23}. Other
cases are analogous. □

Lemma 5.2. Let x be a vertex of V234 of face type X̂22. Let ω be a locally embedded
n-cycle in lk(x,V234). Then n ≥ 8. Moreover, the equality holds if and only if ω
corresponds, in the sense of Lemma 4.9, up to a cyclic permutation of vertices, to
an edge-loop in X̂22 of form e2k1 e2e3e4e

−2k
5 e−1

4 e−1
3 e−1

2 or e
2k
1 e−1

2 e−1
3 e−1

4 e−2k
5 e4e3e2. An

analogous statement holds for x of face type X̂42, with ei replaced by di.

Proof. As before, we apply Lemma 4.9 to ω to produce a locally embedded edge-loop
in X̂22, and then we apply Lemma 3.9 to this edge-loop to deduce that ω has at least
two vertices whose face types belong to {X̂21, X̂23}, at least two vertices with face



18 J. HUANG AND P. PRZYTYCKI

type X̂31, at least two vertices with face type X̂32, and at least two vertices with face
type X̂33. Hence n ≥ 8. When n = 8, up to a cyclic permutation, the only possible
face type of ω is X̂21X̂31X̂32X̂33X̂23X̂33X̂32X̂31. Thus the corresponding edge-loop in X̂22

is of form e2k11 e∗2e
∗
3e

∗
4e

2k2
5 e∗4e

∗
3e

∗
2, where ki and ∗ are non-zero integers. Since X̂22 is the

cover of the presentation complex of a dihedral Artin group corresponding to the
pure Artin group, it remains to apply [Cri05, Lem 39]. □

We record the following corollary, which will be used in the later sections.

Corollary 5.3. V23 (and V34) are CAT(0).

Proof. Since V23 is the development of a complex of groups, it is simply connected.
It remains to that show that each lk(x,V23) is CAT(1), i.e. each embedded cycle in
lk(x,V23) has length ≥ 2π. This is clear if x has face type X̂21, X̂32, or X̂23, as its link
is a bipartite graph with edge length π

2
. The case where x has face type X̂22 follows

from Lemma 5.2. It remains to consider x of face type X̂31 (or X̂33). By Lemma 4.9
and Lemma 3.9, any embedded cycle in lk(x,V31) has at least two vertices of face
type X̂21, and at least two vertices of face type X̂32. Any such cycle has ≥ 8 edges
(of length π

4
), as desired. □

The following lemma has the proof analogous to Lemma 5.2.

Lemma 5.4. Let x be a vertex of V234 of face type X̂31. Let ω be a locally embedded n-
cycle in lk(x,V234). Then n ≥ 6. If n = 6, then ω corresponds, up to a cyclic permu-
tation of vertices, to an edge-loop in X̂31 of form e2k6 e2e7d

−2k
2 e−1

7 e−1
2 , e2k6 e−1

2 e−1
7 d−2k

2 e7e2,
e2k2 e7d2e

−2k
8 d−1

2 e−1
7 , or e2k2 e−1

7 d−1
2 e−2k

8 d2e7. An analogous statement holds for x of face
type X̂33.

Lemma 5.5. Let ω be a locally embedded cycle in the link of a vertex of type ŝ1. If
ω contains a subpath of type ŝ2ŝ3ŝ2, where none of the type ŝ2 vertices are of face
type X̂32, then |ω| ≥ 12.

Proof. We can assume that ω lies in the link of a vertex of face type X̂22, and
contains a subpath of face type X̂21X̂31X̂21. By Lemma 4.9 and Lemma 3.9, ω has
at least two vertices of face type X̂33. So if |ω| < 12, then it is a 10-cycle of face
type X̂31X̂21X̂31X̂21X̂31X̂32X̂33X̂32X̂33X̂32 or X̂31X̂21X̂31X̂21X̂31X̂32X̂33X̂23X̂33X̂32.
In the first case, by Lemma 4.9 we obtain a locally embedded edge-loop in X̂22

of form Pω = e2k11 e2m2 e2k21 e∗2e
∗
3e

∗
4e

∗
3e

∗
4e

∗
3e

∗
2, where k1,m, k2 and ∗ are non-zero inte-

gers. By considering Πê1 : X̂22 → ê1 (see Definition 3.4), we obtain k1 + k2 = 0. By
Lemma 3.10, e2k11 e2m2 e2k21 is homotopic in X̂22 to (e−1

2 e−1
3 e−2

4 e−1
3 e−1

2 )k1e2m2 (e2e3e
2
4e3e2)

k1 .
Indeed, since k1 + k2 = 0, by Lemma 3.10(1), the terms from Lemma 3.10(2)
involving ∆ will cancel. Since Pω is homotopically trivial in X̂22, and the in-
clusion ê2 ∪ ê3 ∪ ê4 → X̂22 is π1-injective (Lemma 3.8), we obtain that P1 =
(e−1

2 e−1
3 e−2

4 e−1
3 e−1

2 )k1e2m2 (e2e3e
2
4e3e2)

k1 and P2 = e∗2e
∗
3e

∗
4e

∗
3e

∗
4e

∗
3e

∗
2 are homotopic in the

graph Γ234 = ê2 ∪ ê3 ∪ ê4. Given an edge-path P in Γ234, its reduced representative
is the unique locally embedded edge-path in Γ234 homotopic to P in Γ234. However,
the reduced representative of P1 is distinct from P2, which is already reduced, which
is a contradiction.
In the second case, by Lemma 4.9 we obtain a locally embedded edge-loop in X̂22

of form Pω = e2k11 e2m2 e2k21 e∗2e
∗
3e

∗
4e

2k3
5 e∗4e

∗
3e

∗
2, where k1,m, k2 and ∗ are non-zero integers.

By considering Πê1 : X̂22 → ê1, we obtain k1 + k2 + k3 = 0. By Lemma 3.10, Pω is
homotopic in X̂22 to

(e−1
2 e−1

3 e−2
4 e−1

3 e−1
2 )k1e2m2 (e−1

2 e−1
3 e−2

4 e−1
3 e−1

2 )k2e∗2e
∗
3e

∗
4(e

−1
4 e−1

3 e−2
2 e−1

3 e−1
4 )k3e∗4e

∗
3e

∗
2.
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This edge-loop is homotopically trivial in X̂22, hence it is homotopically trivial
in Γ234. Thus the reduced representative of

e∗4e
∗
3e

∗
2(e

−1
2 e−1

3 e−2
4 e−1

3 e−1
2 )k1e2m2 (e−1

2 e−1
3 e−2

4 e−1
3 e−1

2 )k2e∗2e
∗
3e

∗
4

is (e4e3e22e3e4)
k3 , which contradicts m ̸= 0. □

Lemma 5.6. Let D → V234 be a minimal disc diagram with an edge xy of type ŝ1X̂32

lying in triangles xyz, xyz′ of D. Then x, y, z, z′ cannot be simultaneously interior
vertices of D with degrees 8, 4, 6, 6.

Proof. For triangles δ1, δ2 of V234 sharing an edge τ , and corresponding vertices x1, x2

of K̃234, let P (δ1, δ2) denote the image in Σ̂234 of the embedded edge-path from x1

to x2 in the line of K̃234 corresponding to τ . We assume without loss of generality
that x has face type X̂22. We argue by contradiction and refer to Figure 8(I). Without
loss of generality, we can assume that z′ has face type X̂33. Then Lemma 5.2 implies
that z has face type X̂31. Moreover, either P (δ0, δ1) = e4, P (δ1, δ2) = e3, and
P (δ2, δ3) = e2; or P (δ0, δ1) = e−1

4 , P (δ1, δ2) = e−1
3 , and P (δ2, δ3) = e−1

2 . We only
discuss the former case, since the latter is similar. Applying Lemma 5.4 to the 6-
cycles in the link of z and z′ implies that P (δ4, δ2) = e7 and P (δ1, δ5) = e9. On the
other hand, since X̂32 is a product of two oriented circles, and the degree of y in D
is 4, P (δ4, δ2) = e7 implies P (δ5, δ1) = e9, which is a contradiction. □

5.2. Filling special cycles in V234. We induce the partial order on the vertex
set V0

234 from ∆0
234 via the inclusion V234 ⊂ ∆234. The map π : ∆234 → C sends V234

to V234.

Lemma 5.7. V0
234 is bowtie free.

Proof. Given distinct x1, x2, y1, y2 ∈ V0
234 with xi ≤ yj for 1 ≤ i, j ≤ 2, there is

z ∈ ∆0
234 such that x1, x2 ≤ z ≤ y1, y2, by Theorem 2.9. Since π(z) is a neighbour

or equal to each of π(x1), π(x2), π(y1), π(y2) ∈ V 0
234, we have π(z) ∈ V 0

234. Hence
z ∈ V0

234, as desired. □

Lemma 5.8. Let ω = (xi)
6
i=1 be a locally embedded cycle in V234 of type ŝ1ŝ3ŝ1ŝ3ŝ2ŝ3

or ŝ1ŝ3ŝ2ŝ3ŝ2ŝ3, angle π at x5, and angle ≥ 3π
4
at x6. Then ω is embedded and bounds

a diagram in V234 as in Figure 8 (II). Furthermore, there is no locally embedded cycle
in V234 of type ŝ2ŝ3ŝ2ŝ3ŝ2ŝ3.

Proof. For the first assertion, by the upward flag property in Theorem 2.8, there is
z ∈ ∆0

234 of type ŝ3 that is a common upper bound for x1, x3, and x5. If z ̸= x6,
then by the bowtie free property in Theorem 2.8 applied to x1zx5x6, we obtain that
x1 is a neighbour of x5, contradicting the angle assumption at x6. Thus z = x6. By
Lemma 5.7 applied to x3x4x5x6 and to x1x2x3x6, we obtain that x3 is a neighbour
of x5, and there is w ∈ V0

234 of type ŝ2 that is neighbour of each of x1, x2, x3, x6.
Then the first assertion follows. The furthermore assertion is proved similarly. □

Lemma 5.9. Let ω = (xi)
6
i=1 be a cycle in V234 of type ŝ1ŝ3ŝ1ŝ3ŝ1ŝ3 such that the

face type of x3 is distinct from that of x1 and x5. Then
(1) x2 = x4, or
(2) x2 and x4 are connected in lk(x3,V234) by a locally embedded path of length 2
with middle vertex of face type X̂32, or

(3) There is a vertex z of V234 such that the cycle obtained from ω by replacing x6

with z bounds a reduced disc diagram in Figure 9 on the right, with the
interior vertices of face type X̂32.
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Proof. Suppose x2 ̸= x4. By the upward flag property in Theorem 2.8, there is
a vertex z of ∆234 of type ŝ3 that is a neighbour of all x1, x3, x5. Since π(z) is a
neighbour of π(x1) and π(x3), it has face type X̂31 or X̂33, and so it belongs fo V 0

234.
Consequently, we have z ∈ V0

234. If z = x2 or x4, then we have (2) by Lemma 5.7.
Otherwise, still by Lemma 5.7, we have the disc diagram in Figure 9 on the left. If
the subdiagram on the right is not reduced, then the two interior vertices are equal
and so we have (2). Otherwise, we have (3). □

x1x5

x6 x7 x8

(III)

ŝ3
ŝ3

ŝ1

ŝ3ŝ3

x5 x4x6

x1

x2

x3

(II) ŝ1

x y

z

z′
δ0

δ1

δ2

δ3
δ4

δ5

(I)

ŝ1

Figure 8.

x1

x2

x3

x4

x5

x6

z

x1

x2

x3

x4

x5

z

X̂32

X̂32

Figure 9.

The following propositions will be proved simultaneously.

Proposition 5.10. Let ω = (xi)
8
i=1 be a cycle in V234 of type ŝ1ŝ3ŝ1ŝ3ŝ1ŝ3ŝ2ŝ3.

Suppose that
(1) ω has angle ≥ 3π

4
at x6 and x8,

(2) ω has angle π at x7, and
(3) ω has angle ≥ π

2
at x1 and x5.

Then ω is embedded, and it bounds a minimal disc diagram D → V234 such that D
embeds as a subdiagram of Figure 8(III) with x5x6x7x8x1 mapping to the indicated
path.

Proposition 5.11. Let ω = (xi)
10
i=1 be a cycle in V234 of type ŝ1ŝ3ŝ2ŝ3ŝ2ŝ3ŝ1ŝ3ŝ2ŝ3.

Then the following properties cannot hold simultaneously:
(1) ω has angle ≥ π

2
at x1 and x7,

(2) ω has angle π at x3, x4, x5, and x9, and
(3) ω has angle ≥ 3π

4
at x2, x6, x8 and x10.

Proposition 5.12. Let ω = (xi)
10
i=1 be a locally embedded cycle in V234 of type

ŝ3ŝ2ŝ3ŝ2ŝ3ŝ2ŝ3ŝ1ŝ3ŝ1. Assume that x2 has face type X̂32, but x4 and x6 do not have
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face type X̂32. Suppose that ω has angle π at x2, x3, x4 and x6. Then ω has angle π
4

at x1.

To prove Propositions 5.10, 5.11, and 5.12, we will consider minimal disc diagrams
D → V234 with boundary ω. First note that ω is embedded by Lemma 5.8. Thus
D is homeomorphic to a disc.

Definition 5.13. A splitting system of a minimal disc diagram D → V234 is the
preimage under D → V234 of all straight line segments in the triangles xyz of V234 of
type ŝ1ŝ2ŝ3 joining the midpoint of xz with the midpoint of xy, for y of face type X̂32,
or with the midpoint of yz, for y not of face type X̂32. Equivalently, we can define
the splitting system in the following way. Consider the complex V234 illustrated in
Figure 10(I), where the vertices of type ŝi are labelled i and the vertices of face
type X̂32 are circled. Then the splitting system of D → V234 is the preimage of
the dashed lines under the composition D → V234 → V234. Note that the splitting
system is a union of arcs, starting and ending on ∂D, and (possibly) circles.
The union of all the edges of D disjoint from the splitting is the core graph of

D → V234. In other words, the core graph of D → V234 is the preimage of the
thickened lines in Figure 10(I) under the composition D → V234 → V234.

x

3 2 3

1

3
1

3

1

3
2
3
2
3

x

3 2 3

1

3
1

3

1

z2

z3

x′

1 2

12

x4

2 3 2

2 3 2

11
2

(I) (II) (III)

Figure 10.

Remark 5.14. By Lemma 5.1, each vertex of the core graph lying in intD has
degree ≥ 2 in the core graph. In other words, all leaves of the core graph lie in ∂D.

Lemma 5.15. (i) The splitting system contains no circles.
(ii) The core graph is a forest.
(iii) Let xi be a vertex of ∂D of type ŝ2 with distinct neighbours xi−1, xi+1 both of
type ŝ1 or ŝ3. Then there is no arc in the splitting system joining the midpoints
of xi−1xi and xixi+1.

(iv) Let xi be a vertex of ∂D of type ŝ1 or ŝ3. If there is an arc β in the splitting
system joining the midpoints of xi−1xi and xixi+1, then the intersection of the
core graph with the connected component R of D\β containing xi consists only
of xi.

(v) Let xi−1xixi+1 be a path of ∂D of type ŝ3X̂32ŝ3. If there is an arc β in the
splitting system joining the midpoints of xi−2xi−1 and xi+1xi+2, then the inter-
section of the core graph with the connected component of D \ β containing xi

consists only of xi−1xixi+1. Similarly, if xi−2 · · ·xi+2 is a path of ∂D of type
ŝ3X̂32ŝ3X̂32ŝ3, and there is an arc β in the splitting system joining the mid-
points of xi−3xi−2 and xi+2xi+3, then the intersection of the core graph with the
connected component of D \ β containing xi consists only of xi−2 · · ·xi+2.
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(vi) If a connected component Q of the complement in D of the splitting system
contains exactly two vertices of ∂D and both of them are of type ŝ3, then the
intersection of the core graph with Q is an arc ending at these vertices.

Proof. To prove (i) and (ii), consider an innermost cycle β in either the splitting
system or the core graph. Note that the open region R ⊂ D bounded β contains a
point of the core graph or the splitting system. Since all connected components of
the splitting system in R are circles, by the innermost assumption we have that β
lies in the splitting system, and each connected component of the core graph in R
is a tree. This contradicts Remark 5.14.
For (iii), assume without loss of generality that xi has type ŝ2 but not X̂32 and

xi−1, xi+1 are of type ŝ3. If β were such an arc, consider the connected component R
of D\β containing xi. By (ii), each connected component of the core graph in R is a
tree. By Remark 5.14, this connected component equals xi. Hence xi does not have
a neighbour of type ŝ1, which is impossible for xi−1 ̸= xi+1. The proofs of (iv),(v),
and (vi) are analogous. □

Lemma 5.15(i) gives a bound on the number of the connected components of the
splitting system, since each of them is an arc starting and ending in ∂D. In Propo-
sitions 5.10, 5.11, and 5.12, the number of points in the intersection of the splitting
system with ω is ≤ 10. Up to a homeomorphism of D, each splitting system cor-
responds to a perfect non-crossing matching of these points. We illustrate the ones
satisfying Lemma 5.15(ii,iii) in Figure 11 and Figure 12 below. In Proposition 5.10
we consider cases A and F, depending on whether the vertex x7 has type X̂32 (then
it is circled) or not. Similarly, in Proposition 5.11 we distinguish cases B, C, D, G,H,
and I, depending on which vertices of ω are of face type X̂32 (they are circled). We
will now gradually analyse all these 42 diagrams, excluding most of them.

Proof of Propositions 5.10, 5.11, and 5.12. In Proposition 5.11, assume by contra-
diction that all (1)-(3) hold. In Proposition 5.12, assume that ω has angle ≥ 3π

4
at x1. Consider a minimal disc diagram D → V234 with boundary ω. We will
reach a contradiction for all the diagrams illustrated in Figures 11 and 12, except
for diagrams A6, F3, and F4.
In diagram C3, the core graph in the shaded region cannot have a leaf at x8

(or at x10). Otherwise, considering the triangle yx7x8 of D, by assumption (3) of
Proposition 5.11, the vertex y would not be of face type X̂32. Consequently, the edge
x8y would intersect a splitting curve that also intersects the edge x7y, and so the
edge x7y would intersect two splitting curves, which is a contradiction. Thus, by
Lemma 5.15(ii) the core graph in the shaded region is of the form indicated by the
thickened line in Figure 11.
In most of the diagrams, we indicated an edge (or edges) xix with x ̸= xi−1, xi+1

of type ŝ1, which exists by the assumption on the angles. In diagrams D1, D3, E1,
E2, E4, G2, and G3, there are at least two such edges and we denote by x4x the first
one in the order around x4 indicated in Figure 11 and Figure 12. Let x4y be the
second such edge. Note that x and y lie on the same side of the arc of the splitting
system intersecting the edge x4x5 (which is clear for diagrams E1, E4, and G3).
Otherwise, for diagrams D1, D3, E2, and G2, considering the arc of the splitting
system intersecting x4y, we would obtain y = x1, contradicting Lemma 5.7.
If x ∈ ∂D, then we can appeal to Lemma 5.7 and Lemma 5.8 to reach the
conclusion of Proposition 5.10, or a contradiction with one of the assumptions on
the angles. Thus from now on we assume x ∈ intD. This excludes diagrams F1
and I1, where x8 cannot have an interior neighbour x of type ŝ1. By Lemma 5.5,
the degree of x is at least 12. In other words, x has at least 6 neighbours of type ŝ3.
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By Lemma 5.15(iv,v), since any edge between x and a vertex of type ŝ3 inter-
sects an arc of the splitting system, in diagrams A1, B1, C1, D1, D2, E1, E2, G1,
G2, and H1, the vertex x can have at most 5 neighbours of type ŝ3, which is a
contradiction.
In diagram E3, we consider the first two edges x3x

′, x3x
′′ of type ŝ3ŝ1 in the

order around x4 indicated in Figure 12. We claim that the vertex x′′ equals to x9.
Otherwise, x′′ lies in the light-shaded region. Since all the vertices in the light-shaded
region are neighbours of x6, the vertex x has 4 neighbours, which contradicts the
n ≥ 8 part of Lemma 5.2, and justifies the claim. Since x′ has at least 8 neighbours,
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it has at least 4 neighbours of type ŝ3, all of which, except for x6, lie in the shaded
region. Consequently, x′ has a neighbour z of type ŝ3 in the interior of the shaded
region. Since the two neighbours of z in the core graph are neighbours of both x′′

and x′, the vertex z has 4 neighbours, contradicting the n ≥ 6 part of Lemma 5.4.
In diagrams A2, A3, D3, E4 (resp. B2, B3, D4), the vertex x has at least 4 (resp.
at least 3) consecutive type ŝ3 neighbours zj in one of the shaded regions, labelled
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according to their order around x. By Lemma 5.15(vi), only the first and the last
of zj might lie in ∂D. Thus, except for the first and the last one, any zj has at most
two type ŝ1 neighbours (one of which is x), and so zj has 4 neighbours, contradicting
Lemma 5.4. See Figure 10(II) for the A2 case. Similarly, in diagrams C2 (resp. A4,
C3, G3, H2), the vertex x has at least 4 (resp. at least 5) consecutive type ŝ3
neighbours in the shaded region, one of which contradicts Lemma 5.4. Note that
in diagram C3 such a type ŝ3 neighbour cannot be simultaneously a neighbour of
both x1 and x7, by the shape of the connected component of the core graph we
established earlier.
In diagrams A5, B4, B7, C4, D5, E5, (resp. B5, B6) the vertex x has at least 5
(resp. at least 4) consecutive type ŝ3 neighbours zj in the shaded region. Except for
the first and the last one, and the second or next-to-last one in diagrams C4, D5,
E5, and B7, all zj lie in the interior of the shaded region, and so there are at least
two such consecutive zj. By Lemma 5.4, each such zj has at least 6 neighbours, so it
has at least two type ŝ1 neighbours in the light-shaded region. Thus we can find x′

of type ŝ1 in the light-shaded region that is a common neighbour of two such zj. See
Figure 10(III) for the A5 case. Then x′ has at most 3 neighbours of type ŝ3 (two of
which are among zj), implying that x′ has at most 6 neighbours, which contradicts
Lemma 5.2.
In diagrams C5, D6, and E6, the vertex x has at least 5 consecutive type ŝ3
neighbours zj in the shaded region. Except for the first and the last one, each zj is
interior and by the n ≥ 6 part of Lemma 5.4 has at least two type ŝ1 neighbours in the
light-shaded region. We can assume that they all have exactly two such neighbours.
Indeed, if zj had 3 consecutive type ŝ1 neighbours in the light-shaded region, then
the middle one would have at most 6 neighbours (one in the shaded region, two in the
light-shaded region, and 3 in the thickened part of ∂D), contradicting Lemma 5.2.
Let x′ ̸= x be a common neighbour of type ŝ1 of two such zj. Then x′ has degree 8,
which contradicts Lemma 5.6.
Consider now diagram A6. We claim that x1 has at most one interior neighbour
of type ŝ3. Otherwise, if we had such consecutive z, z′, by Lemma 5.4 each of them
would have at least two type ŝ1 neighbours in the light-shaded region. If one of
them, say z, had degree > 6, then it would have at least 3 type ŝ1 neighbours in the
light-shaded region. Except for the first and last one, any such neighbour x′ would
have degree ≥ 12 by Lemma 5.5. Then one if its type ŝ3 neighbours in the shaded
region would have degree 4, contradicting Lemma 5.4. We can thus assume that
the degrees of z and z′ are equal to 6. Let x′ be the common neighbour of type ŝ1
of z, z′ in the light-shaded region. Then x′ has no common neighbours of type ŝ3
with x1 except for z, z′. By Lemma 5.6, we have that x′ has at least 3 common
neighbours of type ŝ3 with x5. This contradicts Lemma 5.4 for the middle one of
these neighbours and justifies the claim. Analogously, x5 has at most one interior
neighbour of type ŝ3. This implies that the length of the core graph component in
the light shaded region is ≤ 5 and so it implies the conclusion of Proposition 5.10.
In diagram B8, the vertex x has at least 5 consecutive type ŝ3 neighbours zj in
the shaded region. Except for the first and the last one, each zj is interior and by
Lemma 5.4 has at least two type ŝ1 neighbours in the light-shaded region. We can
assume that they all have exactly two such neighbours since otherwise by Lemma 5.5
one of these neighbours would have degree ≥ 12 and it would have a neighbour of
type ŝ3 outside the shaded region violating Lemma 5.4. Let x′ ̸= x be a common
neighbour of type ŝ1 of two such zj. By Lemma 5.6, the vertex x′ has degree > 8
and so it contains at least 3 type ŝ3 neighbours outside the shaded region. This
contradicts Lemma 5.4 for the middle one of these neighbours.
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In diagrams I2, F2, F3, and F4, since the angle at x8 is ≥ 3π
4
, there is neighbour x′

of x8, of type ŝ1, in the indicated region. In diagram F2 we have that x′ is also a
neighbour of x2 and so we obtain a contradiction as in diagram H2. In diagrams
I2, F3, and F4, by Lemma 5.2, the vertex x′ has ≥ 4 neighbours of type ŝ3. In
diagram F3, these can be only x2, x4, x6, and x8, which, by Lemma 5.7, implies the
conclusion of Proposition 5.10. In diagram I2, by Lemma 5.5, both x8 and x10 are
neighbours of x′. Since the same holds for the interior neighbours of type ŝ1 of x2

and x6, we have that both of these neighbours equal x′. But then x4 has at most
one interior vertex of type ŝ1, contradiction. In diagram F4, x′ has at most two
neighbours zj in the shaded region, since otherwise one of them would have only
4 neighbours, contradicting Lemma 5.4. Thus, by Lemma 5.2, x′ must be also a
neighbour of x6 and x8. In particular, x′ is the only interior vertex of type ŝ1 in its
region. Consequently, if we have z1 ̸= x2, then, by Lemma 5.4, z1 is a neighbour of
x1 and x3. Analogously, if we have z2 ̸= x4, then z1 is a neighour of x3 and x5. By
Lemma 5.7, this implies the conclusion of Proposition 5.10. □

Corollary 5.16. Proposition 5.11 remains valid without assumption (1).

Proof. Suppose x6 = x8. If x5 = x9, then, by Lemma 5.8, we have x2 = x10

or x4 = x10. By Lemma 5.7, this contradicts assumptions (2) or (3). Thus we
can assume x5 ̸= x9. If x2 = x10, then, by Lemmas 5.8 and 5.7, this contradicts
assumption (2). Thus we can assume x2 ̸= x10. Let x′

3, x
′
9 be type â neighbours

of x3, x9. The cycle ω8 = x′
9x10x1x2x

′
3x4x5x6 satisfies assumptions (2) and (3) of

Proposition 5.10. For assumption (1), if ω8 has angle π
4
at x4, then this contradicts

assumption (2) for ω. If ω8 has angle π
4
at x6, then by Lemma 5.7 applied to

x′
9x10x1x2x3x4, we obtain that x′

9 is a neighbour of x3, contradicting (2) for ω as
well. Thus by Proposition 5.10 we have that ω8 bounds a minimal disc diagram that
is a subdiagram of Figure 8(III). By Lemma 5.2, the vertex x3 lies in the image of
that disc diagram. Thus there is a neighbour of type â of x3 and x5, which again
contradicts (2) for ω. □

6. Critical 8-cycles

Let Λ be the linear graph abc with mab = 3, mbc = 5, as in Section 4. A critical
8-cycle in ∆ has type âĉâĉâĉb̂ĉ (or, shortly, (âĉ)3b̂ĉ).

Definition 6.1. An embedded critical 8-cycle (xi) is admissible if x7 is a neighbour
of
(1) x1, x5, or
(2) x3.

Note that in Case (2), the vertex x3 is a neighbour of both x6 and x8 by Re-
mark 2.1.

Lemma 6.2. Let ω be an embedded critical 8-cycle. Under any of the following
conditions, ω is admissible.
(1) The vertex x3 is a neighbour of x8 (or x6).
(2) There is a vertex x of type â that is a neighbour of x2, x4, and x7.
(3) Replacing in ω the vertex x2 by z2 results in a critical cycle ω0 that is not
embedded or is admissible.

(4) There is a vertex x of type â that is a neighbour of x4 and x8 (or of x2

and x6).
(5) There is a vertex z of type ĉ and a vertex x of type â such that z a neighbour
of x3 and x, and x is a neighbour of x7.
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(6) Replacing in ω the vertex x1 by x results in a critical cycle ω0 that is not
embedded or is admissible.

(7) Replacing in ω the vertex x3 by x results in a critical cycle ω0 that is not
embedded or is admissible.

Proof. For (1), note that x3, x5, x7 are pairwise upper bounded. By Theorem 2.9,
there is z ∈ ∆0 of type ĉ that is their common upper bound. Applying the bowtie
freeness from Theorem 2.9 to x3zx7x8, we obtain that x3 is a neighbour of x7 or
z = x8. In the latter case, x8 is a neighbour of x5. Applying the bowtie freeness to
x5x6x7x8, we obtain that x5 is a neighbour of x7, as desired.
For (2), we can assume x ̸= x1, x3, x5. By Remark 2.1, x is a neighbour of
both x8 and x6. Applying the bowtie freeness to x1x2xx8, we obtain their common
neighbour y1. Analogously, we obtain a common neighbour y2 of x, x4, x5, x6, and a
common neighbour y of x2, x3, x4, x. Then we have an 8-cycle x8y1x2yx4y2x6x7 in
lk(x,∆). Since lk(x,∆) has girth ≥ 10, this 8-cycle is not locally embedded at one
of y1, x8, x7, x6, y2. Since ω is embedded, this 8-cycle is not locally embedded at x8

or x6, which implies that ω is admissible.
For (3), if ω0 is not embedded, then since ω is embedded, the only possibility
is that z2 equals x6, x8, or x4. In the first two cases, ω is admissible by (1). If
z2 = x4, then, since x1, x5, x7 are pairwise upper bounded, they have a common
upper bound z of type ĉ. If z ̸= x6, then by the bowtie freeness applied to x5x6x7z
we obtain that x5 and x7 are neighbours. If z = x6, then z ̸= x8, and analogously x1

and x7 are neighbours. If ω0 is admissible, then so is ω since they share the vertices
x1, x3, x5, x7.
For (4), since x, x5, x7 are pairwise upper bounded, they have a common upper
bound z of type ĉ. We can assume that x5 and x7 are not neighbours, and so applying
the bowtie freeness to zx5x6x7, we obtain z = x6, i.e. x is a neighbour of x6. Applying
the bowtie freeness to x6x7x8x, we obtain that x7 is a neighbour of x. Since x1, x3, x
are pairwise upper bounded, they have a common upper bound z2 of type ĉ. Since x
is a neighbour of z2, x4, x7, the critical cycle obtained from ω by replacing x2 with z2
is either not embedded or is admissible by (2). Thus we are done by (3).
For (5), since x3, x5, x are pairwise upper bounded, they have a common upper
bound z4 of type ĉ. The critical cycle obtained from ω by replacing x4 with z4 is
either not embedded or is admissible by (4). Thus we are done by (3).
For (6), if ω0 is not embedded, then either x = x3, in which case ω is admissible
by (1), or x = x5, in which case x5 is a neighbour of x7 by applying the bowtie
freeness to x5x6x7x8. Now assume that ω0 is embedded. Then x7 is a neighbour
of one of x3, x5, x. In the last case, x is a neighbour of x6, and so ω is admissible
by (4).
For (7), if ω0 is not embedded, then, say, x = x1, and so ω is admissible by (4).
If ω0 is admissible and satisfies Definition 6.1(1), then so does ω. If ω0 satisfies
Definition 6.1(2), then ω is admissible by (2). □

In the remaining part of this section, let ω = x1 · · ·x8 be an embedded critical
8-cycle. Let wi, Ci, Pi be as in Construction 4.1.
The goal of this section is to prove:

Proposition 6.3. Each embedded critical 8-cycle is admissible.

Proposition 6.3 follows from Propositions 6.4, 6.5, and 6.6, which are proved in
Subsections 6.1, 6.2, and 6.3.

6.1. Case of one decagon.
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Proposition 6.4. Let ω be an embedded critical 8-cycle with only one decagon
among the Ci. Then ω is admissible.

Since C1 = C3 = C5, we have that Ci intersects C1 for all even i. We will also
assume that C7 intersects C1. Indeed, otherwise we have C6 = C8, and there is a
hyperplane dual to an edge of C7 and disjoint from all the remaining Ci. Thus, by
Lemma 3.5, we have ΠĈ7

(Pi) ⊂ Ĉ7 ∩ Ĉ6 for i ̸= 7. Since ΠĈ7
(P ) is homotopically

trivial in Ĉ7, this implies that P7 is homotopic in Ĉ7 to a path inside Ĉ7 ∩ Ĉ6. Thus
x6 = x8, contradicting the assumption that ω is embedded.

Case 1: C2 = C4 = C6 = C8. Let B ̸= C7 be the other square intersecting C1 and C2.
Let H be the type I sub-arrangement of A with κH(C1) = X22, κH(C2) = X11, and
κH(C7) = X21. Let ωH = κ∗

H(ω). Since ω is locally embedded, and Ci are non-
collapsed, ωH is locally embedded by Lemma 4.11. In particular, the angle of ωH

at xH
7 equals π. If the angle of ω

H at xH
6 or x

H
8 equals

π
4
, then xH

7 is a neighbour of
xH
5 or x

H
1 . By Lemma 4.11, x7 is a neighbour of x5 or x1, as desired. Thus we can

assume that the angles of ωH at xH
6 or x

H
8 are ≥ 3π

4
.
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Figure 13.

Since U12 is CAT(0) (Lemma 4.6), ωH bounds one of the diagrams in Figure 13.
Suppose first that yH has face type X̂21. Then, by Lemma 4.11, we can lift yH to
y ∈ lk(x1,∆)0 that is a neighbour of x2, x8. Furthermore, we can lift xH

3 (in case (I))
or xH (in case (II)) to x ∈ lk(y,∆)0 that is a neighbour of x2 and x8. Thus we can
replace in ω the vertex x1 by x to form another critical 8-cycle ω0. Note that ω0

is not embedded or is admissible, since x and x7 are neighbours by Lemma 4.11.
Thus by Lemma 6.2(6), ω is admissible. Hence we can assume that yH has face
type X̂12. Thus, by Lemma 4.11, the vertices x1 and x7 are connected in lk(x8,∆

∗
H)

by a locally embedded path of length three with an interior vertex of face type B.
Let J be the type I sub-arrangement of A with κJ (C1) = X22, κJ (C2) = X11,

and κJ (B) = X21. Since κ̂J maps Ĉ7 π1-injectively into X̂12, we have xJ
6 ̸= xJ

8 .
Thus we can again assume that ωJ bounds a minimal disc diagram in Figure 13,
with H replaced by J . As before, we can assume that yJ has face type X̂12. Thus
by Lemma 4.11, the vertices x1 and x7 are connected in lk(x8,∆

∗
J ) by a locally

embedded path of length three with an interior vertex of face type C7. Since B ̸= C7,
this contradicts the fact that the girth of lk(x8,∆

∗
J ) = lk(x8,∆

∗
H) is 8.

Case 2: There are exactly two distinct hexagons among the Ci. Denote these hexa-
gons by D1 and D2. To start with, we consider the case where D1 and D2 do not
intersect a common square. Then C6 = C8. Assume without loss of generality
C6 = D1. Let B be the square such that B ∩ C1 and D2 ∩ C1 are opposite edges
of C1. Note that B intersects D1. Let H be the type I sub-arrangement of A with
κH(C1) = X22, κH(D1) = X11, and κH(B) = X21. Note that the vertices of ω of
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face type D2 do not belong to ∆∗
H. However, κH(D2) is an edge of X22, and thus

κ̂H(P ) ⊂ X̂1 ∪ X̂2. Thus declaring that κ̂H(Pi) is hosted by X̂22 whenever i ∈ {2, 4}
satisfies Ci = D2, we obtain ωH in U12 as in Definition 4.7. If C2 = D2, then
xH
1 = xH

3 , and if C4 = D2, then xH
3 = xH

5 . Since at least one of C2, C4 equals D2, we
have |xH

1 , x
H
5 | ≤ 2

√
2. On the other hand, if ωH has angle ≥ 3π

4
at both xH

6 and x
H
8 ,

since by Lemma 4.11 it also has angle π at xH
7 , and U12 is CAT(0), the endpoints

of the path xH
5 x

H
6 x

H
7 x

H
8 x

H
1 are at distance ≥ 4, which is a contradiction. Thus ωH

has angle π
4
at one of xH

6 , x
H
8 . As before we can deduce that x7 is a neighbour of x5

or x1, as desired.

C1

D1

D2

B

B′

e2

e3
e4

e1

B′′

Figure 14.

It remains to assume that D1 and D2 intersect a common square B′, see Fig-
ure 14. Assume without loss of generality C7 ∈ {B′, B}. Let K be the type II
sub-arrangement of A with κK(D1) = X31, κK(B

′) = X32, and κK(C1) = X42. Let
ωK = κ∗

K(ω) ⊂ V34. As before, we can assume that the angles at xK
6 , x

K
8 are ≥ 3π

4
.

Since V34 is CAT(0) (Corollary 5.3), we obtain that ωK bounds, up to a symmetry,
one of the minimal disc diagrams in Figure 13, with H replaced by K, or Figure 15.
If ω is not admissible, consider such ω with the smallest area of the disc diagram.
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Figure 15.

We claim that xK
2 does not have a single interior neighbour y

K. Indeed, otherwise
by Lemma 4.15 we can lift yK to y ∈ lk(x2,∆)0, and we can lift the neighbour of yK

opposite to xK
2 to z2 ∈ lk(y,∆)0. The critical cycle obtained from ω by replacing x2

with z2 has appropriate diagram with smaller area and so it is not embedded or it
is admissible. Thus ω is admissible by Lemma 6.2(3). This justifies the claim and
excludes Figures 13(I) and 15(I). In Figure 13(II), by Lemma 5.2, we have, up to a
symmetry,
(i) C2 = C8 = D1, C7 = B′, C4 = C6 = D2, or
(ii) C6 = C8 = D1, C7 = B,C2 = C4 = D2.

In Figure 15(II) we must have case (i).
LetH be the type I sub-arrangement of A with κH(C1) = X22, κH(D2) = X11, and

κH(B
′′) = X21. Note that, to achieve that, we need to reflect Figure 4 with respect

to, say, the line h2, and then apply an orientation-preserving isometry carrying it
appropriately to Figure 14. In case (i), let ωH = κ∗

H(ω) ⊂ U12. Note that xH
7 = xH

8

and so xH
1 is a neighbour of x

H
6 , and xH

2 has type b̂ (since it has face type X̂12).
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Furthermore, the 6-cycle xH
1 x

H
2 x

H
3 x

H
4 x

H
5 x

H
6 is locally embedded at x

H
4 , x

H
5 , and xH

6

by Lemma 4.11. Since U12 is CAT(0), there is a common neighbour yH of xH
4 and x

H
6

in lk(xH
5 ,U12) (otherwise xH

4 x
H
5 x

H
6 is a geodesic and this 6-cycle cannot ‘close up’

in U12). See Figure 16 for all the possible minimal disc diagrams bounded by this
6-cycle.
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Figure 16.

If yH is of face type X̂21, then by Lemma 4.11 we can lift it to a common neighbour
y ∈ lk(x5,∆) of x4 and x6. If xH

3 is a neighbour of x
H
6 , then by Lemma 4.11 x3 is

a neighbour of x6, and so ω is admissible by Lemma 6.2(1). Otherwise, xH
4 is a

neighbour of xH
1 , and so we can lift x

H
1 to a common neighbour x ∈ lk(y,∆) of x4

and x6. Since xH
1 is a neighbour of x

H
7 , by Lemma 4.11 we have that x is a neighbour

of x7. Hence the cycle obtained from ω by replacing x5 with x is not embedded or
is admissible, and so ω is admissible by Lemma 6.2(6).
If yH is of face type X̂12, then, by Lemma 4.11:
(1) x3 and x5 are connected in lk(x4,∆) by a locally embedded path of face type

C1B
′C1 or C1B

′C1B
′C1, and

(2) x4 and x6 are connected in lk(x5,∆) by a locally embedded nontrivial path
all of whose interior vertices have face types B,D1, or B′.

In Figure 13(II), x3 and x5 are connected in lk(x4,∆) by a locally embedded
path of face type C1B

′C1B
′′C1, which contradicts (1) or Lemma 3.9. To conclude

discussing case (i), we consider Figure 15(II). Let fi = κK(ei). Then κ̂K(P5) is
homotopic in X̂42 into f̂4. On the other hand, by (2), after possibly replacing the wi

by equivalent words, we can choose P5 to be an edge-loop in ê1 ∪ ê2 ∪ ê3 that is
homotopically nontrivial in Ĉ1. This contradicts Lemma 3.12.
In case (ii), note that κH(B) is an edge of X12. Thus declaring that κ̂H(P7) is
hosted by X̂12, we obtain ωH in U12 as in Definition 4.7. Note that xH

6 = xH
7 = xH

8 .
The 6-cycle xH

1 x
H
2 x

H
3 x

H
4 x

H
5 x

H
6 is locally embedded at x

H
2 , x

H
3 , and xH

4 . As before,
since U12 is CAT(0), there is a common neighbour yH of xH

2 and x
H
4 in lk(x

H
3 ,U12).

Moreover, this 6-cycle has angle π
2
at xH

4 , in which case x
H
2 , x

H
5 are neighbours, or

angle π at xH
4 , in which case x

H
1 , x

H
4 are neighbours.

If yH is of face type X̂21, then by Lemma 4.11 we can lift it to a common neighbour
y ∈ lk(x5,∆) of x4 and x6. The link of yH contains neighbours xH

2 , x
H
5 or x

H
1 , x

H
4 . By

Lemma 4.11, x2, x5 are neighbours or x1, x4 are neighbours, and so ω is admissible
by Lemma 6.2(4).
If yH is of face type X̂12, then x3 and x5 are connected in lk(x4,∆) by a locally
embedded path of face type C1B

′C1 or C1B
′C1B

′C1. On the other hand, in Fig-
ure 13(II), x3 and x5 are connected in lk(x4,∆) by a locally embedded path of face
type C1B

′′C1B
′C1, which contradicts Lemma 3.9 as before.

Case 3: There are at least three distinct hexagons among the Ci. Hexagons intersect-
ing C1 are consecutive if they intersect a common square. We claim that either
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(i) among C2, C4, C6, C8 there is C that equals Ci for a unique i, and such that for
C ′, C ′′ consecutive with C, there is at most one j with Cj ∈ {C ′, C ′′} or there
are two such j, and they equal 6 and 8, or

(ii) up to a symmetry, C6, C8 are as in Figure 17(I) and {C2, C4} = {C6, C}.

C6

C8

D

C1

Ce1

e2

xK
1

xK
2

xK
3xK

4xK
5

xK
6 xK

7 xK
8

yK

(I)

(II)

Figure 17.

To justify the claim, start with any C that equals Ci for a unique i. If both C ′, C ′′

equal to some Cj, then (i) is satisfied with C replaced by C ′ or C ′′. If, say, C ′′ is
distinct from all Cj, but C is not as required in (i), then without loss of generality
C ′ = C6 and C ′ = C2 or C4. If the remaining Ck is consecutive with C ′, this brings
us to (ii). Otherwise, we have (i) with C replaced by Ck. This justifies the claim.
If (i) holds, first note that if {C6, C8} ⊂ {C ′, C ′′}, then C6 = C8 since these faces
are equal or consecutive. Furthermore, Pi is not homotopic in Ĉ = Ĉi to a path in Ĉ1,
since ω is embedded. Consequently, by considering ΠĈ(P ) = ΠĈ(P1) · · ·ΠĈ(P8),
which is homotopically trivial in Ĉ, we deduce, via Lemma 3.5, that there exists Cj

consecutive with C. Moreover, we obtain Pi = e∗, where e ⊂ C is the edge contained
in the square B intersecting C and Cj. If i = 6 or 8, then x7 is a neighbour of x5

or x1, as desired. Otherwise, if, say, i = 2, then the critical cycle obtained from ω
by denting x2 to Cj (see Definition 4.2) is not embedded or is admissible by Case 2.
Consequently, ω is admissible by Lemma 6.2(3).
If (ii) holds, then by considering ΠĈ(P ), after possibly replacing the wi by equiv-
alent words, we can choose Pi = e∗2e

∗
1e

∗
2 for Ci = C. Let K be the type II sub-

arrangement of A with κK(C6) = X31, κK(D) = X32, κK(C1) = X42. Since κK(e1) is
a vertex, we have κ̂K(Pi) ⊂ X̂41. Declaring that κ̂K(Pi) is hosted by X̂41, we ob-
tain ωK in V34 as in Definition 4.7. As before, we can assume that ωK has angle
≥ 3π

4
at both xK

6 and xK
8 . If C2 = C, then xK

2 has face type X̂41. Since xK
8 has

face type X̂33, we have that ωK has angle ≥ 3π
4
at xK

1 . Since V34 is CAT(0), the
endpoints of xK

5 x
K
6 x

K
7 x

K
8 x

K
1 x

K
2 are at distance ≥ 4. This contradicts the fact that the

path xK
2 x

K
3 x

K
4 x

K
5 has length 2

√
2+ 1. Thus we have C2 = C6. Since xK

2 and x
K
8 have

distinct face types, ωK is locally embedded at xK
1 . Since V34 is CAT(0), we obtain

that ωK bounds the minimal disc diagram in Figure 17(II). Since xK
2 and xK

8 have
face types X̂31 and X̂33, the vertex yK has face type X̂32. By Lemma 4.15, we can
lift yK to y ∈ lk(x2,∆)0 and xK

8 to z ∈ lk(y,∆)0 of face type C8. Thus the critical
cycle obtained from ω by replacing x2 by z satisfies (i), and so it is not embedded
or it is admissible. Consequently, ω is admissible by Lemma 6.2(3).

6.2. Case of two decagons.
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Proposition 6.5. Let ω be an embedded critical 8-cycle with exactly two decagons
among the Ci. Then ω is admissible.

B0

D3

D8

D4

A1

D2

B

D1

B3

D5

A2 D7

D6

d1

d2

e10

e3

e4

e5

e7

e8

e2e1

e9 e6B5

e14
e13

e12

e11

Figure 18.

Denote these decagons A1, A2. There is a square B intersecting A1 and A2, see
Figure 18. Note that any Ci intersects A1 or A2. This is immediate for all Ci except
for C7, where otherwise we can obtain x6 = x8 by a similar argument as at the
beginning of Section 6.1.
Case 1: All Ci belong, up to a symmetry, to {A1, A2, D1, D2, B0, B,B3}. Let Ω
be the collection of all embedded critical 8-cycles with all their Ci belonging to
the above set, and satisfying an extra condition (∗):

• if C8 = D2, then C1 ̸= C3, and
• if C6 = D2, then C3 ̸= C5.

Note that condition (∗), and hence the class Ω, is invariant under the involution I
on the set of critical 8-cycles sending x1 · · ·x8 to x5x4 · · ·x1x8x7x6, which still has
type âĉâĉâĉb̂ĉ.
It suffices to show that the critical cycles in Ω are admissible. Indeed, if ω is
a critical cycle with, say, C1 = C3 (we cannot have simultaneously C3 = C5) and
C8 = D2, then C7 = B. Thus we can apply a symmetry of Σ interchanging D1

with D2, which fixes B, to send ω to an element of Ω.
Let K be the type II sub-arrangement of A with κK(D1) = X31, κK(B) = X32,

κK(A2) = X42. Then ωK = κ∗
K(ω) ⊂ V234. Denote fi = κK(ei). As before, we can

assume that the angles at xK
6 , x

K
8 are ≥ 3π

4
. If there is ω ∈ Ω that is not admissible,

consider such ω with ωK bounding a minimal disc diagram in V234 of the smallest
possible area. Proposition 5.10 and Lemmas 5.8 and 5.7 imply that, up to the
involution I, ωK bounds one of the minimal disc diagrams in Figures 13 (with H
replaced by K), 15, or 19.
We claim that xK

2 does not have a single interior neighbour y
K. To justify the

claim, we first verify that such yK would have face type distinct from X̂23 and X̂43.
For contradiction, suppose that such yK has face type X̂23 or X̂43. In Figure 19(I,II),
by Lemma 5.4 applied with x = zK2 , the two vertices labelled y′K would have face
type X̂32, contradicting Lemma 5.2 applied with x = x′K. In Figures 13(I) and 15(I),
the vertex yK is a neighbour of xK

8 , x
K
1 and x

K
3 . Thus C1 = C3 = A1, and x8 has face

type D2. This contradicts condition (∗).
This confirms that the face type of yK is distinct from X̂23 and X̂43. By Lemma 4.15,
we can lift yK to y ∈ lk(x2,∆)0, and we can lift the neighbour of yK opposite to xK

2

to z2 ∈ lk(y,∆)0. The critical cycle obtained from ω by replacing x2 with z2 has
appropriate diagram with smaller area, and still satisfies condition (∗), and so it
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xK
1

xK
3

xK
5

xK
6xK

7xK
8

xK
1

xK
3

xK
5

xK
6xK

7xK
8

xK
2

xK
4

xK
2 xK

4

(I) (II)

yK

xK
1 xK

5

xK
6xK

7xK
8

y′K

x′K

xK
2 xK

4

(III)

xK
3

xK
yK

yK

zK2

y′
K

y′
K

x′K

zK2 y′
K

y′
K

x′K

Figure 19.

is not embedded or it is admissible. Thus ω is admissible by Lemma 6.2(3). This
justifies the claim and excludes Figures 13(I), 15(I), and 19(I,II).
Up to a symmetry, we can assume A2 = Ci for exactly one i. By considering

ΠÂ2
(P ), for any choice of the Pi we have Pi ⊂ ê3 ∪ ê4 ∪ ê5 or Pi ⊂ ê4 ∪ ê5 ∪ ê6, or we

are in a special case with C7 = B3, C6 = C8 = D1, and D2 = C2 or C4.
In this special case, we have that xK

2 or x
K
4 , say x

K
2 , has face type distinct from

that of xK
6 , x

K
8 , which excludes Figure 15(II). In Figure 19(III), by Lemma 5.2, y

′K

(resp. yK) has face type X̂43 (resp. X̂41). Thus xK
2 and x

K
4 have the same face type

as xK
6 , x

K
8 , which is a contradiction. Consequently, we have Figure 13(II). Again,

by Lemma 5.2, y′K has face type X̂43 and so xK
3 has face type X̂42, which implies

C3 = A2, and consequently C1 = C5 = A1. After possibly replacing the wi by
equivalent words, we can assume that PK

1 starts at σ1 and ends at σ2, and PK
2 starts

at σ2 and ends at σ3 (see Definition 4.8). Since yK has face type X̂32, by Lemma 4.9
we have PK

1 = f ∗
7 and PK

2 = f ∗
2 f

∗
3 f

∗
14 with ∗ non-zero, where fj = κK(ej). Since

Πf̂1
(PK

1 ) is homotopically trivial, we obtain that Πê1(P1) is homotopically trivial.
Since xK

2 is non-collapsed, we have P2 = e∗2e
∗
3e

∗
14 with ∗ non-zero. Thus Πê1(P1P2)

is homotopically nontrivial. Then ΠD̂6
(P ) = e∗13e

∗
12e

∗
13e

∗
12, where the first e

∗
13 and

last e∗12 come from ΠD̂6
(P1P2) and ΠD̂6

(P7), which are homotopically nontrivial.
This contradicts Lemma 3.8 applied to ê13∪ ê12 ⊂ D̂6, and finishes the discussion of
the special case.
In Figure 19(III), by Lemma 5.6 applied with the edge xKy′K playing the role
of xy, we have that y′K is not of face type X̂32. Hence, by Lemma 5.2, the vertices
yK, xK

7 have the same face types (which are thus X̂41) and the vertices xK, x′K have
the same face types. Thus, by Lemma 5.4, the vertices xK

1 , x
K
5 have the same face

types (distinct from that of xK, x′K), implying C1 = C5, and consequently C3 = A2.
Thus xK

i = xK
3 has a single interior neighbour y

K, which has face type X̂41. Since we
have covered already the special case, we have P3 ⊂ ê3 ∪ ê4 ∪ ê5 or P3 ⊂ ê4 ∪ ê5 ∪ ê6.
Furthermore, PK

3 has the form f ∗
j f

∗
6 f

∗
l , where the first and the third term can be

removed after possibly replacing the wi by equivalent words. By Lemma 3.12, we
can lift yK to y ∈ lk(x3,∆)0. We also lift xK to x ∈ lk(y,∆)0, which still has face
type A2. The critical cycle obtained from ω by replacing x3 with x has appropriate
diagram with smaller area, and still satisfies condition (∗), and so it is not embedded
or it is admissible. Thus ω is admissible by Lemma 6.2(7).
In Figure 13(II), suppose first i = 3. If x7 has face type B3, then, by Lemma 5.2,

y′K has face type X̂43. Thus C2 has face type D2, which is the special case that we
have already covered. If x7 has face type B0, then y′K has face type X̂23, and so
xK
3 has face type X̂22, which is a contradiction. If x7 has face type B, then yK has
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face type X̂21 or X̂23, and y′K, xK have face types X̂32, X̂22. By the same reasoning
as in the previous paragraph, we can lift y′K to y′ ∈ lk(x3,∆)0. We also lift xK

to x ∈ lk(y,∆)0, which has face type A1. The critical cycle obtained from ω by
replacing x3 with x is not embedded or is admissible by Proposition 6.3. Thus ω is
admissible by Lemma 6.2(7).
Second, suppose in Figure 13(II) that we have i ̸= 3, say i = 1. If yK has face
type X̂32, then we lift yK, xK, and we proceed as in the last case with y and y′

interchanged. If yK has face type distinct from X̂32, then, by Lemma 5.2, y′′
K has

face type X̂41 or X̂43, thus xK
1 , x

K
5 have the same face type, which is a contradiction.

It remains to consider Figure 15(II). Since ω is embedded, by Lemma 3.12 we
have i = 3. Furthermore, if C7 = B, then the critical cycle obtained from ω by
denting x3 to A1 is not embedded or is admissible by Proposition 6.4. Thus ω is
admissible by Lemma 6.2(7).
Thus we can assume C7 = B3, where all even Ci equal D1. Moreover, we can
choose P3 = e∗6 with P

K
3 starting at δ1 and ending at δ2. LetH be the hyperplane inA

dual to e8, and let K ⊂ Σ be the union of the faces on the side of H containing e6.
We will justify that we can choose all Pj inside K̂. Indeed, except j = 3, all Cj

intersect H. Starting with j = 4, and applying Lemma 3.11, Pj is homotopic in Ĉj,
relative to the endpoints, to Pj1Pj2 with Pj1 ⊂ K̂ and Pj2 ⊂ Ĉj∩Ĉj+1. We replace Pj

by Pj1 and Pj+1 by Pj2Pj+1. We repeat the same procedure for j = 5, 6, 7, 8, 1. Since
Πê8(P ) is homotopically trivial, ending this procedure with j = 1 yields P2 ⊂ K̂.
Then PK

4 starts at δ2 and ends at a triangle δ3 of V234 containing the edge xK
4 x

K
5 .

Since xK
4 = xK

6 , we have that P
K
5 is homotopic in X̂22 to f ∗

8 . Since P5 ⊂ K̂, we
conclude that PK

5 is homotopically trivial in X̂22 and so it both starts and ends
at δ3. Then PK

6 starts at δ3 and ends at a triangle δ4 containing the edge x
K
6 x

K
7 .

Note that δ4 = δ2, since otherwise PK
4 PK

6 is a path in X̂31 with nontrivial image under
Πf̂8
contradicting P4, P6 ⊂ K̂. Thus we can assume PK

6 = PK
4

−1, and so P6 = P4
−1

by Lemma 4.15. Analogously, P8 = P−1
2 , and similarly P7 = P−1

3 . Considering
ΠÂ1

(P ), and noticing that ΠÂ1
(Pi) are homotopically trivial loops in Â1 for i ̸= 1, 5,

we obtain P1 = P−1
5 . It follows that w1 commutes with w2w3w4.

Let P be the parabolic closure of w1 (i.e. the smallest parabolic subgroup of AΛ

containing w1, which exists by [CGGMW19]). Note that P = Abc, since otherwise
we would have w1 = gb∗g−1 or gc∗g−1 for some g ∈ Abc. Hence there would exist
j ∈ {1, 7, 8, 9, 10} with Πêj(P1) homotopically nontrivial. However, j ̸= 8 since
P1 ⊂ K̂. Furthermore, since ΠD̂(P ) = k∗

1k
∗
2k

∗
1k

∗
2 is homotopically trivial in D̂ (see

Figure 20), hence in k̂1 ∪ k̂2 by Lemma 3.8, and the ∗ over k2 are non-zero, we have
that the remaining ∗ are zero, and so j ̸= 10. The remaining j are excluded since
ωK is not locally embedded at xK

1 .
Since w2w3w4 commutes with w1, it normalises P = Abc. By [Par97, Thm 5.2 (5)],
the edge-loop P2P3P4 is homotopic in Σ̂ to an edge-loop of the form Qn1(Q1Q2)

n2Q3

defined as follows. Let p2 be the antipodal vertex to the basepoint p1 of P1 in Σ.
Let A′

1 ⊂ Σ be the opposite face to A1, and let p3 be the projection of p1 onto A′
1.

We define Q1 to be the minimal positive path from p1 to p3, Q2 to be the minimal
positive path from p3 to p1, and Q to be the concatenation of a minimal positive
path from p1 to p2 and a minimal positive path from p2 to p1. We allow any Q3 ⊂ Â1.
Since Πê6(P2P3P4) = Πê6(P

−1
7 ) is homotopically nontrivial, we have n1 + n2 ̸= 0.

On the other hand, for an edge e whose dual hyperplane does not intersect A1, D1

or B3, we have that Πê(P2P3P4) is trivial, implying n1 + n2 = 0, contradiction.
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A1

A2

D

D1

B0 B3

D3

k1
k2

Figure 20.

Suppose now that the condition of Case 1 is not satisfied. We assume
without loss of generality C5 = A1.

Case 2: C1 = C5. Then all of the Ci intersect A1. Suppose that one of the Ci, say C6,
equals D8. If we also have C8 = D8, then by considering ΠÂ2

(P ), we can choose
P3 = e∗4. By Proposition 6.4, the critical cycle obtained from ω by denting x3 to A1 is
not embedded or is admissible. Thus ω is admissible by Lemma 6.2(7). If C8 ̸= D8,
then by considering ΠD̂8

(P ), we obtain that x7 is a neighbour of x5. Thus we can
assume that none of the Ci equals D8.
Up to a symmetry, it remains to assume C6 = D3. Suppose first C8 = D1. By
considering ΠD̂3

(P ), we can choose P6 ⊂ ê10∪ ê11. Let K be the sub-arrangement of
A as in Case 1. All the vertices of ω lie in ∆∗

K, except for x6. However, κK(e10) is a
vertex, so we have κ̂K(P6) ⊂ X̂21. Thus declaring that κ̂K(P6) is hosted by X̂21, we
obtain ωK in V234 as in Definition 4.7. Note that xK

6 = xK
7 , and so x

K
5 and xK

8 are
neighbours.
By considering ΠÂ2

(P ), we obtain that P3 is contained in ê3 ∪ ê4 ∪ ê5, which will
allow us in a moment to apply Lemma 3.12 to P3. We apply Lemma 5.9 to the
6-cycle xK

1 · · · xK
5 x

K
8 . If we have Lemma 5.9(1), i.e. x

K
2 = xK

4 , then, by Lemma 3.12,
we obtain x2 = x4, which is a contradiction. If we have Lemma 5.9(2), i.e. xK

2 ̸= xK
4

have a common neighbour yK in lk(xK
3 ,V234), then, as in Case 1, by Lemma 3.12,

the vertex yK can be lifted to a neighbour y of x2, x4 in lk(x3,∆) of face type B.
Let x be a neighbour of y of face type A1. The critical cycle obtained from ω by
replacing x3 with x is not embedded or is admissible by Proposition 6.4. Thus ω is
admissible by Lemma 6.2(7).
If we have Lemma 5.9(3), then let y′K be the interior vertex of the disc diagram
in (3) that is a neighbour of xK

2 . By Lemma 4.15, we can lift y
′K to a neighbour y′

of x1, x3 in lk(x2,∆) of face type B. Let z be a lift of zK to a neighbour of x1, x3

in lk(y′,∆). Then the critical cycle obtained from ω by replacing x2 with z is not
embedded or is admissible, since it satisfies Lemma 5.9(2). Hence ω is admissible
by Lemma 6.2(3).
Second, suppose C8 = D3. Let H be the type I sub-arrangement of A with

κH(A1) = X22, κH(D3) = X11, and κH(B5) = X21. Note that again we need to
reflect Figure 4 before comparing it with Figure 18. Then all xi belong to ∆∗

H (note
that κ(A2) is a square ofX12), except for the ones of face typeD2. However, declaring
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that such κ̂H(Pi) are hosted by X22, we obtain ωH in U12 as in Definition 4.7. Note
that xH

3 is a neighbour of x
H
1 and xH

5 . Since U12 is CAT(0), we have that ωH has
angle π

4
at xH

8 or x
H
6 , and so ω is admissible as before.

Case 3: C3 = C5. Then none of the Ci equals D7. If one of the Ci equals D5, then
i = 8 and, considering ΠD̂5

(P ), we deduce that x7 is a neighbour of x1. Thus we can
assume that none of the Ci equals D5 or D6. We can also assume Ci ̸= D8, since
otherwise i = 4, and, by considering ΠD̂8

(P ), we can choose P4 = d∗1 or d
∗
2, say d

∗
1.

Then, by Lemma 6.2(3), we can replace ω by the critical cycle obtained by denting
x4 to D3.
Up to a symmetry, it remains to assume D3 ∈ {C4, C6}. If C4 = D3 ̸= C6, then

ΠD̂3
(P6∪P7∪P8) = e∗10 or e

∗
11. Thus, by considering ΠD̂3

(P ), we can choose P4 = e∗11.
By denting x4 to D1 we obtain a critical cycle that is admissible either by Case 1 or
the case C6 = D3 ̸= C4, which will be discussed in a moment. Thus ω is admissible
by Lemma 6.2(3). If C6 = D3 ̸= C4, then, by considering ΠD̂3

(P ), we can choose
P6 ⊂ ê10 ∪ ê11. Let K be the sub-arrangement of A as in Case 1. Declaring that
κ̂K(P6) is hosted by X̂21, we obtain ωK in V234 as in Definition 4.7. As before, xK

5

and xK
8 are neighbours. We apply Lemma 5.9 to the 6-cycle x

K
5 x

K
8 x

K
1 x

K
2 x

K
3 x

K
4 , with

xK
1 playing the role of x3, and we finish as in Case 2.
If C6 = C4 = D3, then let H be the type I sub-arrangement of A as in Case 2.
Then all xi belong to ∆∗

H, except possibly for x2 if it has face type D2. However,
declaring then that κ̂H(P2) is hosted byX22, we obtain ωH in U12 as in Definition 4.7.
Note that xH

3 is a neighbour of x
H
1 = xH

8 = xH
7 , and hence of x

H
6 . Since U12 is CAT(0),

we have that the 4-cycle xH
3 x

H
4 x

H
5 x

H
6 has a common neighbour y

H. If yH has face
type X21, then by Lemma 4.11 we obtain that x3 and x6 are neighbours, and so ω is
admissible by Lemma 6.2(1). If yH has face type X12, then by Lemma 4.11 x4 can
be dented to D1, reducing to the case C4 ̸= D3 by Lemma 6.2(3).

6.3. Case of three decagons.

Proposition 6.6. Let ω be an embedded critical 8-cycle with three decagons among
the Ci. Then ω is admissible.

C1

C3

C5

C1

C3

C5C8 C7 C6

D1

D2

e

D

D1

(I) (II)

B

e1
e2

e3

B0B1

D2 D3

D4

e4

e5

e6

d1

d2

e7

D5D6 B2B3

e13

e10

e9

e8

B4

e14

e12

e11

Figure 21.

Up to a symmetry, we have Figure 21(I) or (II). In (II), we have C2 ∈ {C8, D1}
and C4 ∈ {C6, D2}. By considering ΠĈ1

(P ), we can choose P1 = e∗. The critical
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cycle obtained from ω by denting x1 to C3 is not embedded or is admissible by
Proposition 6.5. Thus ω is admissible by Lemma 6.2(6). Hence in the remainder of
the subsection, we assume (I).

Case 1: One of C6, C8 belongs to {D2, D3}. Then we have either C8 = D2 and C6 =
D, or C6 = D3 and C8 = D. However, in the latter case, reflecting along the
hyperplane of Σ intersecting C3 and D, and applying the involution I from Case 1,
brings us to the former one. Thus we can assume C8 = D2 and C6 = D. First,
we assume C4 = D. By considering ΠĈ5

(P ), we can choose P5 = e∗6e
∗
5e

∗
4. We can

assume that the last ∗ is non-zero, since otherwise we can choose P5 = e∗6 and by
Lemma 6.2(6) reduce to Proposition 6.5 by denting x5 to C3. Then ΠD̂4

(P5) = d∗1 is
nontrivial. Since ΠD̂4

(P ) = d∗1d
∗
2d

∗
1d

∗
2 is homotopically trivial in D̂4, by Lemma 3.8

we obtain that the ∗ over d2 are zero. In other words, Πê13(P2P3) and Πê13(P8) are
homotopically trivial. By considering ΠĈ3

(P ), we can assume P3 ⊂ ê1 ∪ ê2 ∪ ê3.
LetH be the type I sub-arrangement of A with κH(C1) = X22, κH(D2) = X11, and

κH(B4) = X21. Here again we reflect Figure 4. Let PH = κ̂H(P ). Note that κH(e3)

is a vertex. Since C4 = D, declaring that PH
i is hosted by X̂12 for i = 3, . . . , 7, and

for i = 2 when C2 = D, we obtain a 4- or 3-cycle ωH in U12 as in Definition 4.7.
By Lemma 4.11, ωH is locally embedded at xH

1 . Since U12 is CAT(0), we obtain
that ωH has angle π

4
at xH

8 . Thus x
H
1 and x

H
7 are neighbours and so x1 and x7 are

neighbours. If C4 = D3, then, by considering ΠD̂3
(P ), we can choose P4 = e∗7. Thus,

by Lemma 6.2(3), we can reduce to the case C4 = D by denting x4 to D.

In the remaining cases, we assume that none of C6, C8 belongs to {D2, D3}.

Case 2: C2 = C4 = D, and at least one of C6, C8 equals D.

Case 2.1: C7 = B. By considering ΠĈ3
(P ), we can choose P3 = e∗1e

∗
2e

∗
3. Let K be

the type II sub-arrangement of A with κK(D1) = X31, κK(B) = X32, κK(C1) = X42.
Then κK(e1) and κK(e3) are vertices. Declaring that PH

3 is hosted by X̂33 we obtain
a cycle ωH in V234 as in Definition 4.7 with xH

2 = xH
3 = xH

4 . Note that ω
H is locally

embedded at xH
6 , x

H
7 , and x

H
8 . Thus ω

H is locally embedded at one of xH
1 , x

H
5 , say x

H
1 .

If ωH is not locally embedded at xH
5 or x

H
4 , then by Lemma 5.7 applied to x

H
1 x

H
6 x

H
7 x

H
8

we have that xH
1 is a neighbour of x

H
7 and so x1 is a neighbour of x7. If ωH is locally

embedded at xH
5 and x

H
4 , then by Lemma 5.8 applied to x

H
1 x

H
2 x

H
5 x

H
6 x

H
7 x

H
8 we obtain

that xH
7 is a neighbour of x

H
1 or x

H
5 and we finish as before.

Case 2.2: C7 = B0 or B1. By the boldface assumption at the end of Case 1, we have
C6 = C8 = D. By the argument similar to the one at the beginning of Case 1, we
can assume C7 = B0. By considering ΠĈ1

(P ), we can choose P1 = e∗8e
∗
9e

∗
10. We can

assume that the ∗ are non-zero, since otherwise we can reduce to Proposition 6.5
by denting x1 to C3 or C5. Consider the path η = x8x11x12x13x2 in lk(x1,∆) of face
type DBDB1D corresponding to e∗8e

∗
9e

∗
10. Let K be the type II sub-arrangement

of A with κK(D) = X31, κK(B0) = X32, κK(C3) = X42. Then the cycle ω0 obtained
from ω by replacing x8x1x2 with η lies in ∆∗

K. Let ω
K
0 = κ∗

K(ω0).
We first consider the case where ωK

0 has angle π at x
K
8 . By considering ΠĈ3

(P ),
we obtain P3 ⊂ ê1 ∪ ê2 ∪ ê3. Thus by Lemma 3.12 ωK

0 is locally embedded at x
K
3 .

Analogously ωK
0 is locally embedded at x

K
5 and so it is locally embedded. By Propo-

sition 5.12, with xK
6 x

K
7 x

K
8 x

K
11x

K
12 · · · playing the role of x1x2x3x4x5 · · · (note that xK

7

has face type X̂32, but xK
11 and x

K
13 do not have face type X̂32), ωK

0 has angle
π
4
at xK

6 ,
and so x5 and x7 are neighbours.
Second, assume that ωK

0 has angle
π
2
at xK

8 , and so there is a common neighbour x
K

of xK
7 and xK

11 in lk(xK
8 ,V234). By Lemma 4.15, we can lift xK to a a common
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neighbour x of x7 and x11 in lk(x8,∆). Since x7x8x11 has face type B0DB, we have
that x has face type C5. Let ω′ = x3x4x5x6xx12x13x2. If ω′ is not embedded, then
either x = x5, in which case x5 and x7 are neighbours, or x12 = x6, in which case x1

is a neighbour of both x6 and x2 and ω is admissible by Lemma 6.2(4), or x12 = x4,
in which case x12 is a neighbour of x3 and ω is admissible by Lemma 6.2(5). If ω′ is
embedded, then by Proposition 6.5 it is admissible, and so x13 is a neighbour of x3

(other possibilities are excluded since the faces B1 and C5 are disjoint). The critical
cycle obtained from ω by replacing x2 with x12 is not embedded or is admissible
since it fits the case of P1 = e∗8e

∗
9e

∗
10 with one of the ∗ zero. Thus ω is admissible by

Lemma 6.2(3).

Case 3: C2 = C4 = D, and none of C6, C8 equals D. If C6 = D5 and C8 = D1, then
by considering ΠD̂5

(P ) we obtain that x7 is is a neighbour of x5. The case C6 = D1

and C8 = D6 is analogous. It remains to assume C6 = C8 = D1. If C7 = B3,
then by considering ΠĈ5

(P ) we can choose P5 = e∗6e
∗
5e

∗
4. Let H be the type I sub-

arrangement of A with κH(C1) = X22, κH(D1) = X11, κH(B3) = X21. Declaring
that PH

i are hosted by X̂12 for i = 2, . . . , 5, we obtain a cycle ωH in U12 as in
Definition 4.7 with xH

2 = xH
3 = xH

4 = xH
5 . By Lemma 4.11, x

H
6 x

H
7 x

H
8 is a geodesic.

Since U12 is CAT(0), ωH has angle π
4
at xH

8 and so x7 and x1 are neighbours as usual.
The case C7 = B2 is analogous.
We now assume C7 = B. By considering ΠĈ5

(P ), we can assume P5 = P51P52P53

with P51 = e∗6e
∗
5e

∗
4, P52 = e∗14 and P53 = e∗4. We assume that P52 and P53 are

nontrivial, since otherwise we can proceed as in the previous paragraph. Declaring
that PH

i are hosted by X̂12 for i = 2, 3, 4, 51, 53, and PH
52 is hosted by X̂11, we

obtain a cycle ωH in U12 as in Definition 4.7, with xH
2 = xH

3 = xH
4 = xH

51. Since
PH
53 is nontrivial, ω

H has angle π at xH
53. Thus x

H
6 x

H
7 x

H
8 and x

H
6 x

H
53x

H
52 are geodesics

meeting at an angle ≥ π
2
. Since U12 is CAT(0), it follows that the angle of ωH at

xH
8 is

π
4
, and so x7 and x1 are neighbours as usual.

Case 4: C2 = D2 or C4 = D3. If C2 = D2, then ΠD̂2
(P6∪P7∪P8) = e∗12 or e

∗
11. Thus,

by considering ΠD̂2
(P ), we can choose P2 = e∗12. By Lemma 6.2(3), by denting x2

to D we can reduce to the case where C2 = D. Analogously, if C4 = D3, then by
denting x4 to D we can reduce to the case where C4 = D.

7. Critical 10-cycles

Let Λ be the linear graph abc with mab = 3, mbc = 5, as in Section 4. A critical
10-cycle in ∆ has type âĉb̂ĉb̂ĉâĉb̂ĉ (or, shortly, âĉ(b̂ĉ)2âĉb̂ĉ).

Definition 7.1. An embedded critical 10 cycle (xi) is admissible if
(1) x1 is a neighbour of x3 or x9, or x7 is a neighbour of x5 or x9, or
(2) there is a vertex of type â that is a neighbour of x3, x5, and x9.

The goal of this section is to prove:

Proposition 7.2. Each embedded critical 10-cycle is admissible.

Proposition 7.2 follows from Propositions 7.4 and 7.5 below, which are proved in
Subsections 7.1 and 7.2. In the remaining part of this section, let ω = x1 · · ·x10 be
an embedded critical 10-cycle. Let wi, Ci, Pi be as in Construction 4.1.

Lemma 7.3. Let ω be an embedded critical 10-cycle. Under any of the following
conditions ω is admissible.
(1) There is a vertex x of type â that is a neighbour of x3 and x5.
(2) There is a vertex x of type â that is a neighbour of x3 and x9.
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(3) Replacing in ω the vertex x1 by x′
1 results in a critical cycle ω0 that is not

embedded or is admissible.
(4) Replacing in ω the vertex x2 or x10 results in a critical cycle ω0 that is not
embedded or is admissible.

Proof. In (1), by Remark 2.1, x is a neighbour of x2 and x6. Let ω8 be the critical
8-cycle x1x2xx6x7x8x9x10. By Proposition 6.3, ω8 is not embedded, or is admissible.
If ω8 is not embedded, then, since ω is embedded, we have x = x1 or x = x7,
which implies that ω is admissible. If ω8 is embedded and satisfies Definition 6.1(1),
then ω satisfies Definition 7.1(1). If ω8 satisfies Definition 6.1(2), then ω satisfies
Definition 7.1(2).
In (2), by Remark 2.1, x is a neighbour of x4 and x8. By Theorem 2.9, there is
a common upper bound z ∈ ∆0 of type ĉ of x, x5, x7. If z = x6, then applying the
bowtie freeness from Theorem 2.9 to xx4x5x6, we obtain that x is a neighbour of x5,
and so ω satisfies Definition 7.1(2). If z ̸= x6, then applying the bowtie freeness to
zx5x6x7, we obtain that x7 is a neighbour of x5, and so ω satisfies Definition 7.1(1).
In (3), if ω0 is not embedded, then x′

1 = x7. Applying the bowtie freeness from
Theorem 2.9 to x7x8x9x10, we obtain that x7 is a neighbour of x9. Thus we can
assume that ω0 is embedded. The admissibility of ω follows immediately from the
admissibility of ω0 unless x′

1 is a neighbour of (i) x3 or (ii) x9.
In (i), let x′

9 be a neighbour of type â of x9 (and hence of x8 and x10 by Remark 2.1).
Let ω8 be the critical 8-cycle x7x8x

′
9x10x

′
1x4x5x6. Note that ω8 is embedded, since

otherwise x7 = x′
9, which is a neighbour of x9, or x′

9 = x′
1, and so ω is admissible

by (2) applied with x = x′
1. By Proposition 6.3, ω8 is admissible, and so x5 is a

neighbour of x7, x
′
1, or x

′
9. In the second case, ω is admissible by (1) applied with

x = x′
1. In the third case, ω is admissible by (2) applied with x = x′

9.
In (ii), let x′

3 be a neighbour of type â of x3. We consider the critical 8-cycle
ω8 = x7x8x

′
1x2x

′
3x4x5x6, and we proceed analogously as in (i).

In (4), if ω0 is not embedded, then, by Lemma 5.7, ω satisfies Definition 7.1(1).
If ω0 is admissible and satisfies Definition 7.1(1) (resp. (2)), then ω satisfies Defini-
tion 7.1(1) (resp. (2)). □

7.1. Case of one decagon.

Proposition 7.4. Let ω be an embedded critical 10-cycle with C1 = C7. Then ω is
admissible.

In the discussion below, we consider two kinds of symmetries. One kind are the
symmetries of Σ. The second is the involution I ′ on the set of critical 10-cycles
sending x1 · · ·x10 to x7x6 · · · x1x10x9x8, which still has type âĉb̂ĉb̂ĉâĉb̂ĉ.
Note that C4 intersects C1. Otherwise, up to a symmetry, C1 and C4 are as in
Figure 22(I), and we have ΠC4(Ci) ⊂ e1 for i ̸= 4, 9. If ΠC4(C9) is not contained
in e1, then, up to a symmetry, C9 is as in Figure 22(I). Since ΠĈ4

(P ) is homotopically
trivial in Ĉ4, by Lemma 3.5 we obtain that P4 is homotopic in Ĉ4 to e∗1 or e

∗
1e

∗
2e

∗
1.

The former is impossible, since it implies x3 = x5. The latter implies that x3 and x5

have a common neighbour of type â, and so ω is admissible by Lemma 7.3(1).
We now show that C3, C5, C9 intersect C1. Otherwise, up to a symmetry, we can
assume that one of them equals B in Figure 22(II). If exactly one of them equals B,
then, by Lemma 3.5, we haveΠB̂(P ) = e∗, implying that ω is not locally embedded at
one of x3, x5, x9. Thus we can assume that at least two of them equal B. Then, up to
a symmetry, we have C3 = B and at least one of C5, C9 equals B. Up to a symmetry
of Σ interchanging B′ with D0, we can also assume {C5, C9} ⊂ {B,D0, D2, D4}.
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C4 e1

e2

C3
C2

C1

C9

D0

D1
D2

D3

D4

C1

(I) (II)

B

B′

e

Figure 22.

First assume that C9 equals B or D0. Let K be the type II sub-arrangement
of A with κK(C2) = X31, κK(D0) = X32, κK(C1) = X42. Since C5 ̸= B′, we have
κK(C6) = X31 or X33. By Lemma 7.3(1), we can suppose that x3 and x5 do not have
a common neighbour of type â. If ω is not admissible, then, by Lemma 4.15, ωK =
κ∗
K(ω) satisfies the assumptions (2) and (3) of Proposition 5.11. This contradicts
Corollary 5.16.
Second, assume C9 = D2, and C8 = C10 = D1. Let L be the type II sub-
arrangement of A with κL(D1) = X31, κL(D0) = X32, κL(C1) = X42. Note that, to
achieve that, we need to reflect Figure 7 with respect to, say, the line h3, and then
apply an orientation-preserving isometry carrying it appropriately to Figure 22(II).
Then κL(C3) is an edge. Declaring that PL

i are hosted by X̂33 for i = 2, . . . , 6, we
obtain a 6-cycle xL

1 x
L
2 x

L
7 x

L
8 x

L
9 x

L
10 in V34 as in Definition 4.7. Since V34 is CAT(0),

the angle at xL
8 or x

L
10 is

π
4
, and so, by Lemma 4.15, the angle at x8 or x10 is π

4
. Thus

ω is admissible.
Third, assume C8 = D3. If C10 ̸= D3, then, by considering ΠĈ8

(P ), we obtain that
the angle at x8 is π

4
, and so ω is admissible. If C10 = D3, then let J be the type I

sub-arrangement of A with κJ (C1) = X22, κJ (D3) = X11, κJ (D4) = X21. Note that
again we reflect Figure 4. Since κJ (C3) = κJ (C2) is an edge of X11, declaring that
PJ
i are hosted by X̂11 for i = 1, . . . , 7, we obtain a 4-cycle xJ

7 x
J
8 x

J
9 x

J
10 in U12 as in

Definition 4.7. Since U12 is CAT(0), the angle at xH
8 is

π
4
, and so, by Lemma 4.11,

the angle at x8 is π
4
and ω is again admissible.

Up to a symmetry, this exhausts all the possibilities, since in particular the case
C9 = D2, C8 = D1, and C10 = D3 is sent to the case C9 = D2, C8 = D3, and
C10 = D1 under the involution I ′. Thus we can assume that all the Ci intersect C1.
Let C be the family of hexagons appearing among the Ci. Recall that two hexagons
intersecting C1 are consecutive if they intersect a common square. We can assume
that there is no hexagon C that equals Ci for a unique i, and such that for C ′, C ′′

consecutive with C, there is at most one j with Cj ∈ {C ′, C ′′} or there are two such
j1, j2, and {i, j1, j2} = {2, 4, 6}. Otherwise, we consider ΠĈ(P ), and the argument
is similar to Case 3(i) of Proposition 6.4, except no denting is necessary here and
we possibly need Lemma 7.3(1) when i = 4.
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We claim that then C is contained in a sequence F1, F3, F5 of consecutive hexagons,
see Figure 23, left. Indeed, if |C| = 5, then C2, C4, C6 are distinct and consecutive,
and we can take i = 4 above. If |C| = 4, then we can take Ci to be one of the two
hexagons that have only one consecutive hexagon among the Cj. If C consists of
three hexagons that are not consecutive, then two of them are consecutive. If this
consecutive pair equals {C8, C10}, then we can take i = 8 or 10. If this pair equals
{C2, C4, C6}, then we can take i = 2, 4, or 6. This justifies the claim.

Case 1: C2, C4, C6 are distinct. Since {C8, C10} ≠ {F1, F5}, using a symmetry of Σ
we can assume F1 ̸= C8, C10 and F2 ̸= C9. Using the involution I ′, we can assume
F1 = C2. Furthermore, one of C8, C10 equals F3, since otherwise we could take
Ci = C2 above. In particular, we have C9 ̸= F6.
Let K be the type II sub-arrangement of A with

κK(F1) = X31, κK(F2) = X32, κK(C1) = X42.

Here we reflect Figure 7 before comparing it with Figure 23, left. We construct the
following cycle ωK in V34, which is CAT(0). We declare that PK

i is hosted by X̂43 for
xi of face type F5, and that PK

5 (resp. P
K
9 ) has the same host as P

K
6 (resp. P

K
10). Then

xK
5 = xK

6 and xK
9 = xK

10, see Figure 23, right. By Lemma 7.3(1) and Lemma 4.15,
we can assume that the path xK

2 x
K
3 x

K
4 x

K
6 is a geodesic with angle ≥ 3π

4
at xK

2 , and
so |xK

1 , x
K
7 | ≥ 4. However, the length of the path xK

7 x
K
8 x

K
10x

K
1 is ≤ 2 +

√
2, which is

a contradiction.

Case 2: C2, C4, C6 are not distinct. Then we can assume that none of them equals F5.
Let K be the type II sub-arrangement of A as in Case 1. Declaring that PK

i are
hosted by X̂43 for Ci = F5, by X̂42 for Ci = F6, and by X̂43 or X̂33 for Ci = F4,
we obtain a cycle ωK in V34. Suppose first C5 ̸= F4. Then by Lemma 7.3(1) and
Lemma 4.15, we can assume that the path xK

2 x
K
3 x

K
4 x

K
5 x

K
6 is a geodesic with an-

gles ≥ 3
4
at xK

2 , x
K
6 , which implies |xK

1 , x
K
7 | ≥ 6. However, the length of the path

xK
7 x

K
8 · · ·xK

1 is ≤ 2 + 2
√
2, which is a contradiction. If C5 = F4, then we obtain a

contradiction exactly as in Case 1.

C1

F1

F2

F3

F4

F5

xK
1

xK
2 xK

3 xK
4 xK

5 = xK
6

xK
7

xK
8

xK
10 = xK

9

F6

Figure 23.

7.2. Case of two decagons.

Proposition 7.5. Let ω be an embedded critical 10-cycle with C1 ̸= C7. Then ω is
admissible.

There are two possible configurations for the pair C1, C7, illustrated in Fig-
ure 24(I,II). Consider first Figure 24(I). If C4 ̸= D2, and all C2, C4, C6 belong to
{C8, C10}, then, by considering ΠĈ1

(P ), we obtain that P1 = e∗2, and so ω is not
locally embedded at x1, which is a contradiction. Thus, if C4 ̸= D2, then one of
C2, C4, C6 is distinct from C8, C10. Using a symmetry, we can assume without loss
of generality C2 = D1, C4 = C10, and C6 = C8. By considering ΠĈ1

(P ), we obtain
that P1 is homotopic in Ĉ1, relative to the endpoints, to e∗2e

∗
1e

∗
0. After possibly
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C1 C7

C10 C8

D2

e3

C1 C7

D3

D4

B0

D1

B3
D5

D7

D6
B2

D2

BD8

(I) (II)

B1

B5

e1

e7e6

e5

e4e3

A

d10

C9

e2

e1

e0

D1
D3

A

e2

d1

d2

B4

B6

Figure 24.

replacing the wi by equivalent words, we can assume P1 = e∗1, and so we can dent
x1 to A. By considering ΠĈ7

(P ), and arguing similarly, we can also dent x7 to A.
By Lemma 7.3(3) and Proposition 7.4 it follows that ω is admissible. If C4 = D2,
then C2 = D1 and C6 = D3. From considering ΠĈ4

(P ) it follows that we can choose
P4 = e∗3. Thus there is a neighbour of type â of x3 and x5 and so ω is admissible by
Lemma 7.3(1).
In the remaining part of the subsection, we will consider Figure 24(II). Then C9

and all even Ci intersect C1 or C7. If C3 is disjoint from both C1, C7, then, by
considering ΠĈ3

(P ), we obtain that ω is not locally embedded at x3, except in one
case, where, up to a symmetry, we have C1 · · ·C10 = C1D3B6D3B0D1C7D5B3D1.
Note that ΠD̂7

(P ) = d∗1d
∗
2d

∗
1d

∗
2 is homotopically trivial in D̂7. Since ω is locally

embedded at x3, the ∗ over d1 are nonzero. By Lemma 3.8, we obtain that the ∗
over d2 are zero. It follows that ΠĈ7

(P1) is a homotopically trivial loop in Ĉ7. Thus,
by considering ΠĈ7

(P ), we can choose P7 = e∗1. This allows us to dent x7 to A,
which, by Lemma 7.3(3), brings us to the case where all the Ci intersect C1 or C7.
An analogous discussion applies to C5. Thus we can assume that all the Ci intersect
C1 or C7.

Case 1: One of the Ci equals D3, D4, D5, or D6. This includes the case where C2

or C6 equals D7 or D8. We say that Dj ∈ {D3, D4, D5, D6} is good, if there is
a unique i with Ci = Dj.

Case 1.1: One of the Dj, say D3 = Ci, is good. If i = 4, then C6 = D1 and C2 = D1

or D8. Furthermore, ΠD̂3
(P8 ∪ P9 ∪ P10) equals e∗3 or e

∗
2. Considering ΠD̂3

(P ), it
follows that we can choose P4 = e∗3. Thus there is a neighbour of type â of x3 and x5

and so ω is admissible by Lemma 7.3(1). If i = 2, then C4 = D1 and C6 = D1, D2

or D5, and again ΠD̂3
(P8 ∪ P9 ∪ P10) equals e∗3 or e

∗
2. Considering ΠD̂3

(P ), we can
choose P2 to be trivial. Thus ω has angle π

4
at x2, and so ω is admissible.

If i = 10, then C9 = B0, and C8 = D1. Considering ΠD̂3
(P ), we can choose P10 to

be trivial, which leads to angle π
4
at x10, except the special cases where C2C3C4C5C6 =

D1BD2B1D2 or D8B4D4B1D2. In the second special case, by considering ΠĈ7
(P ),
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we can choose P7 = e∗7, and denting x7 to C1, by Lemma 7.3(3), reduce to Proposi-
tion 7.4.
In the first special case, let K be the type II sub-arrangement of A with κK(D2) =

X31, κK(B) = X32, κK(C1) = X42. Declaring that PK
9 is hosted by X̂43, we obtain a

cycle ωK in V234, see Figure 25(I). Since xK
9 = xK

10, we have that x
K
8 is a neighbour

of xK
1 . By Lemmas 7.3(1) and 4.15, we can assume that x

K
3 , x

K
4 , x

K
5 do not have a

common neighbour and the angles at xK
2 , x

K
6 are ≥ 3π

4
. By Lemma 5.8, we have

xK
6 ̸= xK

8 . Let x
′
3
K be a type â neighbour of xK

3 , and let ω
K
8 = xK

7 x
K
8 x

K
1 x

K
2 x

′K
3 x

K
4 x

K
5 x

K
6 .

Then ωK
8 satisfies the hypotheses of Proposition 5.10. Thus ω8 bounds a minimal

disc diagram D that is a subdiagram of Figure 8(III). By Lemma 5.2, the link
lk(x′

3
K,V234) has girth ≥ 8. Thus, since x′

3
K in Figure 25(I) corresponds to x5

in Figure 8(III), the vertex xK
3 lies in the image of D. Considering the simplicial

structure of D, we obtain a neighbour of type â of xK
3 , x

K
4 , and xK

5 , which is a
contradiction.
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2 xK

3 xK
4 xK

5 xK
6
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7

xK
8

xK
9 = xK

10

x′
3
K
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Figure 25.

Now we assume that none of D3, D4, D5, D6 are good, and in particular Ci = D3

is not good. Consider sequences Θ1 = (C2, C3, C4, C5, C6), and Θ2 = (C8, C9, C10).
Note that D3 cannot occur twice in Θ2. Hence D3 occurs at least once in both Θ1

and Θ2, or D3 occurs twice in Θ1 but does not occur in Θ2.

Case 1.2: D3 occurs at least once in both Θ1 and Θ2. Then C8 = D1, and C10 =
D3. If C5 = B0, then, by considering ΠĈ7

(P ), we can choose P7 = e∗7. Denting x7

to C1, we reduce to Proposition 7.4 by Lemma 7.3(3).
Otherwise, since D5 is not good, we have C2 = D3, C4 = D1, C5 = B or B3,
and C6 = D1 or D2. Let H be the type I sub-arrangement of A with κH(C1) =
X22, κH(D3) = X11, κH(B5) = X21 (we reflect Figure 4). We declare that P6 is
hosted by X22 if C6 = D2, and Pi is hosted by X12 if Ci ∈ {B,B3, C7}.
If C6 ̸= D2, then we have xH

3 = xH
4 = xH

5 = xH
6 = xH

7 = xH
8 = xH

9 . By Lemma 5.7,
the cycle xH

10x
H
1 x

H
2 x

H
3 has angle

π
4
at xH

2 , and so ω is admissible by Lemma 4.11.
If C6 = D2, then we have xH

3 = xH
4 = xH

5 , and xH
7 = xH

8 = xH
9 . We can assume

that ωH has angle 3π
4
at xH

2 and x
H
10, as before. Since U12 is CAT(0), we obtain that

ωH bounds a minimal disc diagram in Figure 25(II). If yH has type X̂12, then we
can choose PH

1 homotopic in X̂22, relative to the endpoints, to a path in X̂22 ∩ X̂12.
Thus we can assume P1 ⊂ ê6 ∪ ê5 ∪ ê4. Consequently, ΠD̂2

(P1) is trivial. By
considering ΠD̂2

(P ), it follows that we can choose P6 to be trivial, which implies
that the angle at x6 is π

4
and so ω is admissible as before. If yH has face type X̂21,

then we can dent x1 to the decagon distinct from C1 intersecting B5 and reduce to
the configuration from Figure 24(I).

Case 1.3: D3 occurs at least twice in Θ1 but does not occur in Θ2. Then C2 = C4 =
D3 and C6 = D1. We have {C8, C10} ⊂ {D1, D2}, since D4, D5, D6 are not good. Let
H be the sub-arrangement as in Case 1.2. Then P5, P6, P7 are hosted by X12. We
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declare that Pi with Ci = D1 (resp. D2) are hosted by X12 (resp. X22), and P9 has
the same host as P10. If C8 ̸= D2 or C10 ̸= D1, then ωH is a 5-cycle xH

1 x
H
2 x

H
3 x

H
4 x

H
5

as in Figure 25(III) with angle π at xH
3 and angle

π
2
at xH

5 . Since U12 is CAT(0),
ωH has angle π

4
at xH

2 , and we finish as before. If C8 = D2 and C10 = D1, then
xH
5 = xH

6 = xH
7 and so ω

H is a 7-cycle xH
1 x

H
2 x

H
3 x

H
4 x

H
5 x

H
8 x

H
10, where x

H
4 and xH

8 are
neighbours. If xH

1 , x
H
3 are not neighbours, then, since U12 is CAT(0), the path ωH

bounds the reduced disc diagram in Figure 25(IV). Thus xH
3 , x

H
4 , x

H
5 have a com-

mon neighbour, and by Lemma 4.11 so do x3, x5. Hence, by Lemma 7.3(1), ω is
admissible.

Case 2: All even Ci belong to {D1, D2}. Without loss of generality, we can assume
that neither C3 nor C5 equals B1 or B2. Let L be the type II sub-arrangement of A
with κK(D1) = X31, κK(B) = X32, κK(C7) = X42. If C9 /∈ {B1, B2}, and ω is not
admissible, then κ̂L(ω) contradicts Corollary 5.16.
If C9 ∈ {B1, B2}, then C8 = C10, and we consider the 8-cycle ωL

8 obtained from
xL
1 · · ·xL

8 by replacing x
L
3 with its neighbour of type â. Using Proposition 5.10, we

obtain that ω is admissible by the same argument as in the special case of Case 1.1.

8. 353 square complexes

We refer to Definition 1.5 for the notion of a 353-square complex.

Definition 8.1. A 353-square complex is stable if for any set S ⊂ A or D of pairwise
close vertices, there is a finite subset S ′ ⊂ S, such that if a vertex v is close to or a
neighbour of the entire S ′, then v is close (or equal) to or a neighbour of the entire S.

Definition 8.2. A 353-square complex is wide if any simplex of X⊠ is contained in
a simplex σ with |σ0 ∩ A| ≥ 2, and |σ0 ∩ D| ≥ 2.

The goal of this section is to prove Theorem 1.3.

8.1. Disc diagrams.

Remark 8.3. From Definition 1.5(1) it follows that if ad1a1d2, ad1a2d2, and da1d1a2
are squares, then d1a1d2a2 and da1d2a2 are squares (see Figure 26(1)). Consequently,
if a minimal disc diagram D in X contains a cube corner, then it cannot contain
the additional two squares in Definition 1.5(3), since otherwise we could replace the
five squares by three squares.

d1

a1

d2

a2

d

a

v1

v0

v2

v

(1) (2) (3)

Figure 26.

Definition 8.4. Let D be a square disc diagram homeomorphic to a disc. We say
that D is n-bordered, for n ≥ 0, if

• there are exactly n vertices of ∂D not contained in any interior edge, and
• each of the remaining vertices of ∂D is contained in exactly one interior edge.



353-COMBINATORIAL CURVATURE AND THE 3-DIMENSIONAL K(π, 1) CONJECTURE 45

See Figure 26(2) for an example of a 2-bordered disc diagram.
We say that D is an inter-osculation (see Figure 26(3)) if there are consecutive
vertices v0, v1, v2 ∈ ∂D, and another vertex v ∈ ∂D, such that

• v0, v2, v are not contained in any interior edge, and
• v1 is contained in at least one interior edge, and
• each of the vertices of ∂D \ {v0, v1, v2, v} is contained in exactly one interior
edge.

A hyperplane in a square disc diagram is a maximal immersed 1-manifold obtained
by connecting the midpoints of opposite edges (called dual edges) in consecutive
squares, see for example [Sag95, §2.4]. The carrier of an embedded hyperplane h is
the union of squares intersecting h.

Lemma 8.5. Let f : D → X be a minimal disc diagram in a 353-square complex.
We equip D1 with the path metric such that each edge has length 1.
(i) D is not 1- or 2-bordered. If D is an inter-osculation, then it is a cube corner.
(ii) Hyperplanes in D are embedded, not homeomorphic to circles, and pairwise
intersect at most once.

(iii) A geodesic in D1 intersects each hyperplane at most once.
(iv) If ∂D = αβ−1, where α, β are geodesics in D1 with first edges da1, da2, then
either d, a1, a2 lie in a square of D, or not in a square but in a cube corner
of D. In the latter case f(a1), f(a2) are not close.

(v) In (iv), the vertex u opposite to d in the top square (resp. cube corner) lies on
a geodesic in D1 with the same endpoints as α.

T

v

f

e
S

h

T

v = v0

f
S

v1

v2

S′

e′ e′

v0
v1

h′

v2 v2

(a) (b) (c) (d)

Figure 27.

Proof. For part (i), to reach a contradiction, let D → X be a minimal disc diagram
with the smallest area that is

• 1-bordered, or
• 2-bordered, or
• is an inter-osculation but not a cube corner.

Let v be the vertex of ∂D from Definition 8.4 in the third case, or a vertex not
contained in an interior edge, in the first two cases. Let T ⊂ D be the square
containing v, and let f ⊂ T be an edge not containing v. Let S ⊂ D be the second
square containing f , and let e be the second edge in S containing the vertex of T
opposite to v (see Figure 27(a)). By Definition 1.5(1), we have that e is not contained
in T . Consider the hyperplane h of D dual to e. Note that h cannot self-intersect,
since we would obtain a smaller area 1-bordered diagram. Let p be the intersection
point of h and ∂D outside S. Note that when D is an inter-osculation, p is not the
midpoint of a thickened edge in Figure 26(3). If there would be a path in ∂D from p
to f ∩ ∂D whose all vertices are contained in the interior edges of D, then we would
obtain a smaller area 2-bordered diagram. Thus there is a path in ∂D from p to
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f ∩ ∂D whose all vertices except for v are contained in the interior edges of D. This
gives us an inter-osculation with v0 = v, v1 = f ∩ ∂D, and v2 the other vertex of
S ∩ ∂D. By the minimality assumption on D, this inter-osculation is a cube corner
and so e lies in a square sharing an edge with T . See Figure 27(b). Note that this
cube corner is minimal, since it is a subdiagram of a minimal diagram.
Let S ′ be the remaining square of D sharing an edge with S, and let e′ be its edge
intersecting e but not contained in S. By Definition 1.5(2,3), and Remark 8.3, the
degree of the vertex v1 = e∩e′ is distinct from 3 and 4. Let h′ be the hyperplane of D
dual to e′. As before, h′ does not self-intersect, and we obtain an inter-osculation
with v0, v1, v2 as in Figure 27(c). By the minimality assumption on D this inter-
osculation is a cube corner and so D contains the subdiagram in Figure 27(d).
Analogically, interchanging the left and the right side of the diagram, we obtain
that the degree at v2 equals 3. This contradicts Definition 1.5(4).
Hyperplanes not satisfying part (ii) give rise to disc diagrams excluded by part (i).
For part (iii), note that the 1-skeleta of hyperplane carriers are isometrically
embedded in D1. Indeed, if vertices of the carrier were closer in D1 than in the
1-skeleton of the carrier, then they would be separated in the carrier by two hyper-
planes contained in the same hyperpane ofD, which would contradict part (ii). Thus
a path intersecting twice a hyperplane can be shortened by replacing its subpath by
a path in the carrier.
In part (iv), if d, a1, a2 do not lie in a square, then, by part (iii), the hyperplanes
dual to da1, da2 need to intersect elsewhere. Thus they form an inter-osculation,
which by part (i) is a cube corner. Consequently, a1 and a2 are not close by Defini-
tion 1.5(2) and Corollary 8.6 below.
Part (v) follows from part (iii), since if the geodesic from u to the last vertex of

α and β was intersected by any hyperplane h of the top square or cube corner, then
h would intersect twice α or β. □

Corollary 8.6. Let X be a 353-square complex. Then all 4-cycles in X are squares.

Proof. Let α be a 4-cycle in X and D → X a minimal disc diagram bounded by α.
By Lemma 8.5(ii), D has only 2 hyperplanes, which moreover intersect at most once.
Thus D consists of a single square. □

Corollary 8.7. Let X be a 353-square complex and let a1, a2, a3 be pairwise close.
Then there exists d that is a neighbour of all ai.

Proof. Assume by contradiction that a1, a2, a3 do not have a common neighbour.
Then we have an embedded 6-cycle inX passing through a1, a2, a3. By Lemma 8.5(ii),
its minimal disc diagram D → X has 3 hyperplanes and 3 squares, and so it is a cube
corner. Moreover, ai are not contained in the interior edges of D. By Lemma 8.5(iv),
a1, a2 are not close, which is a contradiction. □

8.2. Structure of downward links. We fix from now on a ‘base’ vertex w of a
353-square complex X. Let Sk = Sk(w) denote the set of vertices of X at distance k
from w in X1, and let Bk be the subgraph of X1 induced on the union of Sl over
0 ≤ l ≤ k. We also suppose that X is stable. Given d ∈ Sk, we define p(d) as the
set of all neighbours of d in Sk−1.

Lemma 8.8. Let A ⊂ p(d) be a set of pairwise close vertices. Then there exists
d′ ∈ Sk−2 that is a neighbour of all the elements of A.

Proof. Assume first that A is finite, that is, A = {ai}ni=1. For n = 1, there is
nothing prove. For n = 2, choose geodesics α, β from d to the base vertex w passing
through a1, a2, and let D → X be a minimal disc diagram with boundary αβ−1. By
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Lemma 8.5(iv), we have that d, a1, a2 lie in a square of D, whose remaining vertex
belongs to Sk−2 by Lemma 8.5(v).
Suppose now n = 3. By n = 2 case, there are d1, d2, d3 ∈ Sk−2 that are neighbours
of both ai distinct from a1 (resp. a2, a3). Suppose without loss of generality that all di
are distinct. Consider a minimal disc diagram D bounded by geodesics from a2 to w
via d1 and d3. By Lemma 8.5(iv,v), we have one of the following options. Suppose
first that there is a square containing d1, a2, d3 and a vertex a ∈ Sk−3. Then, by
Definition 1.5(2), the cube corner with vertices d, ai, di, is not minimal, and so for
some i there is an edge aidi, as desired. Second, suppose that there are two squares
containing a2 (and some d0) in D. By Lemma 8.5(v), we have d0 ∈ Sk−2. By
Definition 1.5(3), we have either again an edge aidi, or d0 is a neighbour of both a1
and a3 and so d0 is the required d′.
If n ≥ 4, arguing by induction, there are again distinct d1, d2, d3 ∈ Sk−2 that
are neighbours of all ai except for a1 (resp. a2, a3). In particular, we have a square
d1a2d3a4 and so d1, d3 are close. By n = 2 case, there is a vertex a ∈ Sk−3 that is
a neighbour of both d1, d3. As in the first case of the previous paragraph, applying
Definition 1.5(2), we deduce that for some i there is an edge aidi.
The case of infinite A follows from the stability of X. □

Note that the following result would be trivial if we had assumed that X is wide.

Corollary 8.9. Let A ⊂ A be a set of pairwise close vertices. Then there exists d
that is a neighbour of all the elements of A.

Proof. By the stability of X, we can assume A = {ai}ni=1, and we proceed by the
induction on n. For the induction step, assume that we have already a common
neighbour d of all ai distinct from a1. If d is not a neighbour of a1, then it belongs
to S3(a1). We then apply Lemma 8.8 with w = a1 and k = 3. □

In view of Corollary 8.9, in Lemma 8.8 instead of assuming that there exists d
with ai ∈ p(d), we can just assume ai ∈ Sk−1. Indeed, if d is a common neighbour
of ai from Corollary 8.9, then d either belongs to Sk−2, as required in Lemma 8.8 or
d belongs to Sk, implying ai ∈ p(d).

Lemma 8.10. Suppose that a1, a2 ∈ p(d) are not close, but are both close to a
neighbour a of d.
(i) Then a ∈ p(d) (i.e. a ∈ Sk−1).
(ii) If a1, a2 are both close to another neighbour a′ of d, then a and a′ are close.
(iii) If d1, d2 ∈ Sk−2 are neighbours of a′ and a1, a2, respectively, then d1 and d2 are
close.

Proof. By Lemma 8.5(iv,v), there is a minimal cube corner C with boundary vertices
d1a1da2d2a3, where d1 ∈ Sk−2. Since a1 and a are close and a and a2 are close, they
belong to the remaining squares needed to apply Definition 1.5(3). This shows that
a is a neighbour of d1 (and d2) and so a ∈ Sk−1, proving (i). For (ii), we analogously
obtain that a′ is a neighbour of d1 and d2. Thus ad1a′d2 is a square and so a and a′

are close.
For (iii), If d1, d2 are not close, then, by Lemma 8.5(iv,v), there is a minimal cube
corner C with boundary vertices a−d1a′d2a+d′ with a− ∈ Sk−3. By Definition 1.5(3),
we have that d ∈ Sk is a neighbour of a−, which is a contradiction. □

Lemma 8.11. Let G be a simplicial graph
(1) of diameter 2,
(2) without induced embedded 4-cycles, and
(3) whose all induced embedded 5-cycles have a common neighbour.
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Let A1, A2 be the vertex sets of finite complete subgraphs of G. Then there is a
vertex a of G that is a neighbour of or equal to all of the elements of A1 ∪ A2.

Proof. First note that we can assume that each element a1 ∈ A1 is not a neighbour
of some element a′2 ∈ A2, since otherwise we can take a = a1. Second, note that we
can assume that a1 is not a neighbour of each element a2 ∈ A2. Indeed, otherwise
we replace A2 by A2\{a2}, and we find by induction a neighbour a of all the elements
of A1 ∪A2 \ {a2}. Applying assumption (2) to a1a2a′2a with a′2 as above, we obtain
that a is a neighbour of a2, as desired.
If |A1| = |A2| = 1, then the lemma follows from assumption (1). Assume now

A1 = {a1} and A2 = {a3, a4}. By assumption (1), a1 and a3 have a neighbour a2, and
a1 and a4 have a neighbour a5. We can assume that a2 and a4 are not neighbours,
since otherwise we can take a = a2. Analogously, we can assume that a3 and a5
are not neighbours, since otherwise we can take a = a5. Then a2 and a5 are not
neighbours by assumption (2). Thus a1a2a3a4a5 is an induced embedded 5-cycle and
it remains to apply assumption (3).
We now suppose A1 = {a1} and 3 ≤ m = |A2|, and we argue by induction on m.
By induction, there is a vertex a (resp. a′) that is a neighbour of or equal to all the
elements of A1∪A2 except possibly for a2 (resp. a′2) in A2. Applying assumption (2)
to aa1a

′a′′2 for some a
′′
2 ∈ A2 \ {a2, a′2}, we obtain that a and a′ are neighbours.

Applying assumption (2) to aa′a2a′2, we obtain that a is a neighbour of a2 or a
′ is a

neighbour of a′2.
Finally, assume 2 ≤ |A1|, |A2|. Choose a1 ̸= a′1 ∈ A1, a2 ̸= a′2 ∈ A2. By induction,
there is a vertex a1 (resp. a′1, a2, a′2) that is a neighbour of or equal to all the elements
of A1∪A2 except possibly for a1 (resp. a′1, a2, a

′
2). By assumption (2), both a

1 and a′1

are neighbours of both a2, a′2. Applying assumption (2) to a1a2a′1a′2 we obtain that,
say, a1 is a neighbour of a′1. Applying again assumption (2) to a1a′1a1a′1, we obtain
that a = a1 or a = a′1 satisfies the lemma. □

Lemma 8.12. Let A1, A2 ⊂ p(d) be sets of pairwise close vertices. Then there is
a ∈ p(d) that is a close (or equal) to all the elements of A1 ∪A2. In particular, two
maximal sets of pairwise close vertices in p(d) have non-empty intersection.

Proof. Assume to start with that both A1 and A2 are finite. Let G be the sim-
plicial graph with vertex set p(d), and edges between close elements. It suffices
to verify that G satisfies the assumptions of Lemma 8.11. Assumption (1) follows
from Lemma 8.5(iv,v). Assumption (2) follows from Lemma 8.10(ii). To verify
assumption (3), let a1 · · · a5 be an induced embedded 5-cycle. By Lemma 8.8, for
i = 1, . . . , 5 there are di ∈ Sk−2 that are neighbours of ai and ai−1 (mod 5). By
Lemma 8.10(iii), each di is close to di+1. Again by Lemma 8.8, this leads to the
existence of squares diaidi+1a

′
i with a′i ∈ Sk−3. Note that the cube corners with

centres ai and boundaries ai−1dai+1di+1a
′
idi are minimal. By Definition 1.5(4), there

is a ∈ p(d) that is close to all ai, as desired.
The cases of infinite |A1| or |A2| follow from the stability of X. □

8.3. Contractibility.

Lemma 8.13. Let L be a simplicial complex containing a simplex M satisfying the
following properties.
(i) Every maximal simplex σ in L intersects M .
(ii) For every set V of vertices in L pairwise connected by edges and such that

V \M spans a simplex, we have that V spans a simplex.
Then L is contractible.
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Proof. Assume to start with that L is finite. Let L′ be the barycentric subdivision
of L. We equip the vertex set of L′ with the poset structure coming from the
inclusion between the simplices of L. Let K be the subcomplex of L′ spanned
on the barycentres of all the simplices of L intersecting M . Let M ′ ⊂ K be the
barycentric subdivision of M .
First, we justify that K is contractible. Indeed, assign to each vertex x of K
corresponding to a simplex σ of L, the barycentre F (x) of σ ∩M . For x ≤ x′, we
have F (x) ≤ F (x′). In particular, we have that F extends to a simplicial map fromK
to M ′, which is homotopically trivial. Finally, since F (x) ≤ x, by [Seg83, Prop 2.1],
we have that F is homotopic to the identity map on K. Consequently, the identity
map on K is homotopically trivial.
Second, we justify that L is contractible. For that, let L′′ be the barycentric
subdivision of L′. Let v be a vertex of L′′, which is a chain x0 ≤ x1 ≤ · · · ≤ xn of
vertices of L′. We consider two maps F1, F2 assigning to each such v a vertex of L′.
Let F1(v) = x0. For F2, let τj be the simplex of L corresponding to xj. Let πn be
the set of all the vertices of M that are neighbours of, or equal to, all the vertices
of τn. By (i), we have that πn is non-empty and by (ii) we have that τn ∪ πn spans
a simplex. We consider its subsimplex spanned on τ0 ∪ πn, the barycentre of which
we denote F2(v). Note that for v ⊆ v′, we have F1(v) ≥ F1(v

′) and F2(v) ≥ F2(v
′),

and so Fi extend to simplicial maps from L′′ to L′. In fact, we have that F1 is
homotopic to the identity map on L′′ (see [Prz09, Prop 4.2]). Furthermore, since
F1(v) ⊆ F2(v), by [Seg83, Prop 2.1], we have that F1 and F2 are homotopic. Finally,
the image of F2 is contained in the subcomplex corresponding to K. Since K is
contractible, we obtain that the identity map on L′′ is homotopically trivial.
If L is infinite, then each finite subcomplex of L is contained in a finite subcomplex

L′ ⊂ L satisfying the assumptions of the lemma. This implies that all the homotopy
groups of L vanish, and so L is contractible by Whitehead theorem. □

Remark 8.14. Suppose that L andM satisfy conditions (i) and (ii) from Lemma 8.13.
Then any induced subcomplex of L containing M also satisfies (i) and (ii) with the
same M .

Proof of Theorem 1.3. Inside the thickening X⊠, we consider the full subcomplexes
SpanBk spanned on the graphs Bk (see the beginning of Section 8.2). Suppose
without loss of generality Sk ⊂ D. To start with, suppose that Sk is finite. We call
a simplex τ of SpanBk peelable if |A∩ τ | = 1 and τ is not contained in a simplex of
SpanBk with another element of A. Note that if τ is peelable, and τ is contained
in a simplex ρ of SpanBk, then ρ is peelable.
SinceX is wide, there are no peelable simplices inX⊠. This implies that peelable τ
in SpanBk satisfies τ ∩D ⊂ Sk (since a common neighbour of τ ∩D must be missing
from Bk, hence belongs to Sk+1).
For τ peelable, let τ ′ = τ ∩ D. We claim that if τ ′1 = τ ′2, then τ1 = τ2. Indeed,
suppose τ1 = τ ′1 ∪ {a1}, τ2 = τ ′1 ∪ {a2}. If |τ ′1| ≥ 2, then a1, a2 are close, and so τ1 is
contained in SpanBk in the simplex τ1∪{a2}, contradicting peelability. If τ ′1 = {d},
then we have d ∈ Sk, a1, a2 ∈ Sk−1. Thus |p(d)| ≥ 2, and so by Lemma 8.5(iv,v)
there is a square in SpanBk containing a1d, which is a contradiction.
We denote by P k the subcomplex of SpanBk obtained from removing the peelable
open simplices τ and their ‘free’ open faces τ ′. Note that by the claim above, we
have that P k is obtained from performing successive collapses on SpanBk (starting
with τ of the maximal dimension), so they are homotopy equivalent.
Let now d ∈ P k ∩ Sk. We will describe the link L of d in P k. Let Aλ be the
maximal subsets of p(d) of pairwise close elements, over λ ∈ Λ. Since d ∈ P k,
we have |Aλ| ≥ 2 for each λ ∈ Λ. For each λ ∈ Λ, let Dλ ⊂ Sk−2 be the set of
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common neighbours of Aλ, which is non-empty by Lemma 8.8. Since |Aλ| ≥ 2,
any dλ, d′λ ∈ Dλ are close. Furthermore, by Lemma 8.12 and Lemma 8.10(iii), any
dλ ∈ Dλ, dµ ∈ Dµ are close. Since |Aλ| ≥ 2, we have that all dλ ∈ Dλ are also close
to d. Thus the union of Dλ over λ ∈ Λ spans a simplex M in the link L of d in P k.
We will now show that L and M satisfy the conditions of Lemma 8.13.
By Lemma 8.13, this will imply that P k deformation retracts to its subcomplex
obtained from removing the open star of d. Repeating this procedure with d replaced
by other elements of P k ∩ Sk, which can be done by Remark 8.14, shows that P k

deformation retracts to SpanBk−1.
Condition (ii) of Lemma 8.13 follows from the fact that SpanBk is flag, and no
peelable simplices have a vertex in M , since M is contained in Sk−2. For condi-
tion (i), since d ∪ σ is a maximal simplex of P k, it contains at least one a ∈ A by
Lemma 8.8 and Corollary 8.9. Since P k does not contain peelable simplices, in fact
we have σ0 = A ∪ D, where |A| ≥ 2. We have A ⊂ p(d), and so we can pick λ
satisfying A ⊆ Aλ. Then any dλ ∈ Dλ is close to all the elements of D, and so by
the maximality of σ we have dλ ∈ σ. Thus M ∩ σ contains dλ, as desired.
If Sk is infinite, then each finite subcomplex of SpanBk is contained in the span
of SpanBk−1 and a finite subset of Sk. Hence, by the above discussion, we can
homotope this subcomplex into SpanBk−1. This implies that all the homotopy
groups of SpanBk vanish, and so SpanBk is contractible by the Whitehead theorem.

□

9. 353 Simplicial complexes

Let ∆ be a simplicial complex of type S = {â, b̂, ĉ, d̂}, see Section 2.2. We equip S
with the total order â < b̂ < ĉ < d̂, which induces a relation < on the vertex set
of ∆ as in Definition 2.3. We denote by A the set of vertices of type â etc.

Definition 9.1. ∆ is a 353-simplicial complex if it is simply connected and satisfies
the following properties.
(1) The relation < on ∆0 is a partial order.
(2) Each lk(d,∆)0 (resp. lk(a,∆)0) is bowtie free and upward (resp. downward)
flag.

(3) Each cycle a1c1a2c2a3c3bc4 (resp. d1b1d2b2d3b3cb4) in some lk(d,∆) (resp.
lk(a,∆)) is not embedded or not induced.

(4) If γ = c1b1c2a2c3b3c4b4c5a5 is an induced embedded cycle in some lk(d,∆),
then there is a neighbour a ∈ lk(d,∆) of all the vertices of γ in B. An
analogous condition holds for A,B interchanged with D, C.

∆ is wide if each vertex in B∪C has at least two neighbours in A and two neighbours
in D.

We will provide the main example of a 353-simplicial complex in Theorem 9.12.
Our goal for the moment is to prove the following.

Theorem 9.2. Let ∆ be a 353-simplicial complex. Let X1 ⊂ ∆1 be the subgraph
induced on A∪D. Let X be the square complex with 1-skeleton X1 and squares that
are the 4-cycles γ having a common neighbour in ∆, called an apex of γ. Then X
is a 353-square complex.

9.1. Links. We need a series of preparatory observations on the link Γ = lk(d,∆).
By reversing the order < we have the obvious analogues of all the results in this
subsection for lk(a,∆). From Definition 9.1(1,2), we obtain:

Remark 9.3. Let γ be an induced embedded n-cycle in Γ.
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(i) If n = 4, then γ = a1c1a2c2 and there is a common neighbour b of all
a1, c1, a2, c2.

(ii) If n = 6, then γ has three vertices in A and they have a common neighbour.

Corollary 9.4. There is no cycle γ = u1c1bc2u2c in Γ with u1c1bc2u2 embedded and
induced.

Proof. Since u1c1bc2u2 is embedded and induced, we have that γ is embedded. By
Remark 9.3(ii), we have that γ is not induced. Thus c is a neighbour of b, which
contradicts Remark 9.3(i). □

Corollary 9.5. Let γ = a1c1bc2a2c3ac4 be a cycle in Γ with a1c1bc2a2 embedded and
induced. Then b is a neighbour of a.

Proof. By Definition 9.1(3), we have that γ is not embedded or not induced.
Suppose first that γ is not embedded. Since a1c1bc2a2 was embedded and induced,
we have c3 ̸= c1, and by Corollary 9.4, we have a ̸= a1, a2 and c3 ̸= c4. Thus without
loss of generality we can assume c3 = c2. If c1 = c4, then the corollary follows from
Remark 9.3(i) applied to the cycle c1bc2a. If c1 ̸= c4, then we argue in the same way
as in the proof of Lemma 5.8, using Definition 9.1(1,2).
Suppose now that γ is embedded but not induced. If a is a neighbour of c2 (or c1),
then we argue as above. Note that c3 is not a neighbour of b, since this would
contradict Remark 9.3(i) applied to the cycle bc2a2c3. Finally, if c3 is a neighbour
of a1, then this contradicts Corollary 9.4. Up to replacing c3 by c4, this exhausts all
the possibilities. □

Corollary 9.6. Let γ = c1b1c2a2c3b3c4b4c5a5 be a cycle in Γ with the paths of length 4
centred at each bi embedded and induced. Then there is a that is a neighbour of all bi.

Proof. Suppose by contradiction that such a does not exist. Then by Definition 9.1(4),
we have that γ is not embedded or not induced.
Suppose first that γ is not embedded. If c1 = c3, c2 = c5, or b1 = b3 (or b4),
then this contradicts Corollary 9.4. If c4 = c1 or c3 = c5, then this contradicts
the assumption that b3c4b4c5a5 is embedded and induced. We obtain an analogous
contradiction for c2 = c4. If c2 = c3, then let ai be a neighbour of bi for i = 1, 3.
If a3c4b4c5a5 is embedded and induced, then, applying Corollary 9.5 to the cycle
a3c4b4c5a5c1a1c2, we obtain that a1 is a neighbour of b4. Hence a1 is a neighbour
of c4 by Definition 9.1(1). By Definition 9.1(2) applied to a1c4b3c2, we obtain that
a1 is a neighbour of b3, and so we can take a = a1. If a3c4b4c5a5 is not embedded,
then a3 = a5, contradicting the hypothesis that b3c4b4c5a5 is induced. If a3c4b4c5a5
is embedded but not induced, then a3 is a neighbour of b4 or c5, which implies that
a3 is a neighbour of both b4 and c5 by Definition 9.1(1,2). By Corollary 9.4 applied
to the 6-cycle a3c2b1c1a5c5, we obtain that a3c2b1c1a5 is not induced. Since c2b1c1a5
is embedded and induced, the only possibility is that a3 is a neighbour of b1 or c1,
which implies that a3 is a neighbour of both b1 and c1 as before. Hence we can take
a = a3. The case of c1 = c5 is analogous.
Second, suppose that γ is embedded but not induced. By Corollary 9.4, we have
that a2 is not a neighbour of c5 and b3 is not a neighbour of c1. If b3 is a neighbour
of c2 or b1 is a neighbour of c3, then Remark 9.3(i) implies c2 = c3, which is a
contradiction. If b1 is a neighbour of c4, but not of c3, then the path a2c3b3c4b1 is
embedded and induced, and so this contradicts Corollary 9.4 applied to a2c3b3c4b1c2.
Up to symmetries, this exhausts all the possibilities. □

9.2. Proof of Theorem 9.2.
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Remark 9.7. Let ada′d′ be an embedded cycle in ∆ with common neighbour v.
Suppose that a, d and a′ have a common neighbour b. Then b is a neighbour of d′.
Indeed, we apply Remark 9.3(i) to the link of d, and the 4-cycle aba′v. If v ∈ B,
then b = v, which is a neighbour of d′. If v ∈ C, then b is a neighbour of v. Since v
is a neighbour of d′, we have b < v < d′, and so b < d′ by Definition 9.1(1).

Proof. First note that since ∆ is a simplicial complex of type {a, b, c, d}, it follows
from Definition 9.1(1) that X is connected. We now justify that X is simply con-
nected. Let α be a cycle in X1, and view it as a cycle in ∆1. Let D → ∆ be a
minimal disc diagram bounded by α. We first justify that we can assume that there
is no edge bc in D. Suppose that there were such an edge, in triangles v0bc, vnbc.
By Definition 9.1(1), the link of bc is complete bipartite, which is connected, and so
it contains a path v0v1 · · · vn. We can then replace in D the above two triangles by
the union of the triangles vivi+1b, vivi+1c over 0 ≤ i < n. Repeating this procedure
removes each edge bc from D. Then the set of the 2-cells of D can be partitioned into
subsets consisting of the 2-cells belonging to each of the stars around the vertices in
B and C. Each link of such a vertex x in D has vertices in A∪D. Since in X1 there
is an edge between any such a and d, we can replace the open star of x in D by a
square or a union of squares with apex x. Consequently, D → ∆ can be replaced
by a disc diagram in X.
It remains to verify parts (1)-(4) of Definition 1.5. For part (1), consider squares

ada′d1, ada
′d2. First assume that they have apices b1, b2. Then applying Remark 9.3(i)

to the link of d and the 4-cycle ab1a′b2, we see that b1 = b2, as desired. Second, sup-
pose that they have apices c1, c2. Then, by Remark 9.3(i), there is a neighbour b of
all a, c1, a′, c2, which then is a neighbour of all a, d1, a′, d2. Third, suppose that they
have apices c1, b2. Then, by Remark 9.3(i), we have that c1 and b2 are neighbours
and so b2 is a neighbour of all a, d1, a′, d2.
For the remaining parts, consider a minimal cube corner C with centre a, bound-
ary d1a3d2a1d3a2 and square apices v1, v2, v3. Then d1v3d2v1d3v2 is a cycle in the
link of a. Thus, by Definition 9.1(2), there is b that is a common neighbour of all di
and a.
We claim that for each j ̸= i the apex vi is neither a neighbour of di nor of aj.
Indeed, if, say, v2 is a neighbour of d2, then by Definition 9.1(1) a2 is a neighbour
of d2. Hence a2d2ad1 and a2d2ad3 are squares of X (with apex v2). By part (1),
a2d2a3d1 and a2d2a1d3 are squares of X, contradicting the minimality of C. If, say,
v2 is a neighbour of a3, then a2d3a3d1, ad3a3d1 are squares of X (with apex v2). By
considering the sequence ad3a3d1, ad2a3d1, ad2a3d3, ad2a1d3, a3d2a1d3 and repeatedly
applying part (1), we obtain that all these 4-cycles are squares. This contradicts
again the minimality of C, and justifies the claim. In particular, all vi are distinct.
Then we can assume that vi belong to C, since if, say, v1 = b′, then it would
have to be distinct from b, and so, by Remark 9.3(i) applied to the link of a, there
would be c that is a neighbour of b, d2, b′, d3, and a. Then c would be also an apex
of ad2a1d3 by Remark 9.7 with the roles of A,D interchanged. We will thus write
ci instead of vi. By Remark 9.3(i), we have that ci is a neighbour of b. Note that
since ci is not a neighbour of aj, for j ̸= i, we have by Definition 9.1(1) that b is not
a neighbour of aj. Consequently, the path a1c1bc2a2 is an induced embedded path
in the link of d3.
For part (2), let v be an apex of a1da2d′. Let c1, c2 be apices of ada1d1, ada2d2
guaranteed by the above paragraph (note that the labelling of the D vertices of C
changed). Since a1c1bc2a2 is an induced embedded path in the link of d, this con-
tradicts Corollary 9.4 applied to a1c1bc2a2v.
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For part (3), and v4, v5 the apices of the two last squares, we similarly obtain in the
link of d a cycle γ = a1c1bc2a2v4a

′v5, see Figure 28(a). After possibly replacing the vi
by the elements of C, by Corollary 9.5 we obtain that b is a neighbour of a′. Thus
d1, d2 are neighbours of a′ by Definition 9.1(1), as desired. The required 4-cycles are
squares with apices b.
In part (4), we label the boundary 10-cycle of E by d1a1 · · · d5a5. We similarly ob-
tain the indicated 10-cycle c1b1c2a2c3b3c4b4c5a5, see Figure 28(b). By Corollary 9.6,
b1, b3, b4 have a common neighbour a′ in the link of d. By Definition 9.1(1) a′ is a
neighbour of all the ci, see Figure 28(c). Again by Definition 9.1(1), a′ is a neighbour
of all the di, see Figure 28(d). For i = 1, 3, 4, the 4-cycles a′diaidi+1 are squares, since
they have common neighbours c′i, where c

′
i is a common neighbour of ai, bi, di, di+1 in

Figure 28(b). As for the 4-cycle a′d2a2d3, it has either a common neighbour c2, in the
case where c2 = c3, or, in the case where c2 ̸= c3, a common neighbour b2, where b2
is a common neighbour of a′, c2, a2, c3 in the link of d, guaranteed by Remark 9.3(i).
Analogously, the 4-cycle a′d5a5d1 is a square. Part (5) is proved analogously. □

9.3. Stability and contractibility.

Lemma 9.8. Let ∆ be a wide 353-simplicial complex. Then the relation < on ∆0

is a partial order that is bowtie free. Furthermore, P = A∪B ∪C is bowtie free and
upward flag. Moreover, if in K ⊂ P each pair has an upper bound in P, then K has
the join in P.

Proof. By Corollary 8.6 and Theorem 9.2, each embedded 4-cycle ada′d′ in ∆ has
a common neighbour in B ∪ C. Thus the first assertion of the lemma follows from
[Hua24a, Lem 8.1]. In particular, P is also bowtie free.
Now we show that P is upward flag. Let u1, u2, u3 ∈ P be pairwise upper bounded.
We can assume that none of them are neighbours. For each i, let ai be a neighbour
of or equal to ui. Since ∆ is wide, we have that ai are pairwise close in X, and so,
by Corollary 8.7, there is a common neighbour d of a1, a2, a3.
We claim that each ui is also a neighbour of d. To justify the claim for, say, u1 = b1,
let b1, u2 ≤ c2 and b1, u3 ≤ c3. Applying the bowtie freeness of ∆0 to da1ciai, for
i = 2, 3, we obtain that either ci is a neighbour of d or da1ciai have a common
neighbour bi. In each case, d, c2, c3 are pairwise lower bounded in lk(a1,∆)0, hence
they have a common lower bound b′ by Definition 9.1(2). Considering the cycle
c2b1c3b

′, we obtain b1 = b′, justifying the claim.
Since ∆0 is bowtie free, u1, u2, u3 are pairwise upper bounded in lk(d,∆)0. By
Definition 9.1(2), they have a common upper bound in lk(d,∆)0, as desired.
The last assertion of the lemma follows from Lemma 2.5 and [Hae24, Lem 6.2]. □

Lemma 9.9. Let ∆ be a wide 353-simplicial complex and let X be its 353-square
complex constructed in Theorem 9.2.
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(1) X is stable.
(2) The vertices of each simplex of X⊠ have a common neighbour b or c in ∆.
In particular, X is wide.

Proof. For (1), assume without loss of generality S = A ⊂ A and |A| = ∞. Then
A is pairwise upper bounded in P . By Lemma 9.8, A has a join u ∈ B ∪ C in P .
Hence u is also the join of A in ∆0.
Suppose first u = b ∈ B. Choose a1 ̸= a2 from A and let S ′ = {a1, a2}. If

a is close to each element of S ′, then a, a1, a2 are pairwise upper bounded in P ,
hence they have a join u′ ∈ P . If u′ ∈ B, then applying the bowtie freeness of
Lemma 9.8 to a1ba2u′ we obtain u′ = b. Then a is a neighbour of b, and so a is close
to each element of A since b has at least two neighbours in D. If u′ = c′ ∈ C, then
applying the bowtie freeness to a1ba2c′ we obtain that b is a neighbour of c′. Then,
by Definition 9.1(1), each element of A is a neighbour of c′. Thus a is close to each
element of A. If d is a neighbour of each element of S ′, then applying the bowtie
freeness to a1ba2d, we obtain that b is a neighbour of d, and by Definition 9.1(1) d
is a neighbour of each element of A.
Second, suppose u = c ∈ C. Assume first that the join of each three element
subset of A belongs to B. Then for each A1, A2 ⊂ A with |A1| = |A2| = 3 and
|A1 ∩ A2| = 2, the joins of A1, A2 are equal. Consequently, u ∈ B, which is a
contradiction. Finally, suppose that there is S ′ ⊂ A with |S ′| = 3 and join c′ ∈ C.
Since c′ ≤ c, we have c′ = c. If d is a neighbour of each element of S ′, then c < d,
and so d is a neighbour of each element of A. If a is close to each element of S ′, then
Lemma 9.8 implies that S ′ ∪ {a} has a join u′ ∈ P . Since c ≤ u′, we have u′ = c
and so a is a neighbour of c. Hence a is close to each element of A.
Part (2) is proved similarly. □

A 353-simplicial complex ∆ is non-degenerate if for each edge bc there is d ∈
lk(b,∆)0 that is not a neighbour of c, and there is a ∈ lk(c,∆)0 that is not a
neighbour of b.

Proposition 9.10. Let ∆ be a wide non-degenerate 353-simplicial complex. Then
X⊠ is homotopy equivalent to ∆.

Proof. For each u ∈ B ∪ C, let ϕ(u) be the simplex of X⊠ spanned by all the
neighbours of u in A ∪ D. Note that ϕ(u) is a maximal simplex in X⊠. Indeed,
otherwise by Lemma 9.9(2) we would have ϕ(u) ⊊ ϕ(u′). Then u and u′ would
be neighbours contradicting the non-degeneracy for the edge uu′. Similarly, the
function u → ϕ(u) is a bijection from B ∪ C to the family of the maximal simplices
of ∆.
We claim that for any subset U ⊂ B ∪ C, the intersection

⋂
u∈U St(u,∆) is empty

or contractible. Indeed, if v ∈
⋂

u∈U St(u,∆)0, then v is a lower bound or an upper
bound for U , say the latter. By Lemma 2.5 and Lemma 9.8, U has a join M ,
which belongs to

⋂
u∈U St(u,∆). Furthermore, any vertex of

⋂
u∈U St(u,∆) is ≤ M ,

justifying the claim.
Thus for any U ⊂ B∪C,

⋂
u∈U St(u,∆) ̸= ∅ if and only if

⋂
u∈U ϕ(u) ̸= ∅. Since ∆

is covered by the closed stars of the vertices in B ∪ C, and X⊠ is covered by its
maximal simplices, it remains to invoke the Nerve Theorem [Bor48], see also the
version in [Bjö03, Thm 6]. □

By Lemma 9.9, Theorems 9.2 and 1.3, and Proposition 9.10, we have the following.

Corollary 9.11. Let ∆ be a non-degenerate wide 353-simplicial complex. Then ∆
is contractible.
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9.4. 353 Artin complex.

Theorem 9.12. Let Λ = abcd be the Coxeter diagram that is the linear graph with
mab = mcd = 3 and mbc = 5. Then the Artin complex ∆ = ∆Λ is a wide non-
degenerate 353-simplicial complex.

As usual, we denote by A the set of vertices of type â, etc.

Proof. The simple connectedness of ∆ follows from [CMV20, Lem 4]. By Re-
mark 2.1, we have Definition 9.1(1). By [CMV20, Lem 6], we can identify each
lk(a,∆), lk(d,∆), with the Artin complex for the Coxeter subdiagram bcd or abc.
Hence Definition 9.1(2) follows from Theorem 2.9, Definition 9.1(3) follows from
Proposition 6.3, and Definition 9.1(4) follows from Proposition 7.2. Thus ∆ is a
353-simplicial complex.
Each vertex in B ∪ C has infinitely many neighbours in A and in D, and so ∆ is
wide.
Let x ∈ ∆0 be a vertex of type b̂. Then, by Remark 2.1, lk(x,∆) is a join K1 ∗K2

where K1 is the full subcomplex spanned by the vertices of type â, and K2 is the
full subcomplex spanned by the vertices of type ĉ and d̂. By [CMV20, Lem 6], we
have K2

∼= ∆Λ′ , where Λ′ ⊂ Λ is the edge cd. By considering the simplicial map π
from the Artin complex ∆Λ′ to the Coxeter complex CΛ′ , which is a circle formed of
6 edges, we obtain that for each vertex z of type ĉ in K2, there is a vertex of type d̂
in K2 that is not a neighbour of z. This confirms the first part of the definition of
the non-degeneracy of ∆. The second part is analogous. □

10. Relative Artin complexes and related background

10.1. Relative Artin complexes.

Definition 10.1 ([Hua24b]). Let Λ′ ⊂ Λ be an induced subdiagram. The (Λ,Λ′)-
relative Artin complex ∆Λ,Λ′ is the induced subcomplex of the Artin complex ∆Λ

spanned by vertices of type ŝ with s a vertex of Λ′.

Lemma 10.2 ([Hua24b, Lem 6.2] and [CMV20, Lem 4]). If |Λ′| ≥ 3, then ∆Λ,Λ′ is
simply connected (in particular, it is connected).

Note that ∆Λ,Λ′ is a simplicial complex of type S (see Section 2.2) with S =
{ŝ}s∈Λ′ .

Definition 10.3. An induced subdiagram Λ′ of Λ is admissible if for any vertex x
of Λ′, if the vertices x1, x2 of Λ′ are in distinct connected components of Λ′ \ {x},
then they are in distinct connected components of Λ \ {x}.

Lemma 10.4 ([Hua24b, Lem 6.6]). Suppose that Λ′ = s1 · · · sn is an admissible
linear subgraph of a Coxeter diagram Λ. Let ∆′ be the (Λ,Λ′)-relative Artin complex,
with the relation < on its vertex set induced from s1 < · · · < sn or sn < · · · < s1.
Then (∆′0, <) is a weakly graded poset.

Definition 10.5. Let ∆′ be as in Lemma 10.4. We say that ∆′ is bowtie free (resp.,
flag, or weakly flag) if (∆′0, <) is bowtie free, (resp. flag, or weakly flag). Note that
these definitions do not depend on the choice of one or the other total order on Λ′.

Lemma 10.6 ([Hua24b, Lem 6.4(1)]). Let v ∈ ∆′ = ∆Λ,Λ′ be a vertex of type ŝ.
Then there is a type-preserving isomorphism between lk(v,∆′) and ∆Λ\{s},Λ′\{s}.

We have the following consequence.

Lemma 10.7. Let Λ′ ⊂ Λ be an induced subdiagram.
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(1) Let s be a vertex of Λ′. If ∆Λ\{s},Λ′\{s} is contractible, then ∆Λ,Λ′ deformation
retracts onto ∆Λ,Λ′\{s}.

(2) More generally, let T be a subset of the vertex set of Λ′. If ∆Λ\R,Λ′\R is con-
tractible for each non-empty subset R of T , then ∆Λ,Λ′ deformation retracts
onto ∆Λ,Λ′\T .

Proof. Part (1) is [Hua24b, Lem 7.1] in view of Lemma 10.6. We prove part (2)
by induction on |T |. For s ∈ T , by the inductive assumption, ∆Λ,Λ′ deformation
retracts onto ∆Λ,Λ′\T∪{s}. It remains to prove that ∆Λ,Λ′\T∪{s} deformation retracts
onto ∆Λ,Λ′\T . This will follow from part (1) once we verify that ∆Λ\{s},Λ′\T is
contractible. This follows from the assumption that ∆Λ\{s},Λ′\{s} is contractible,
since by the inductive assumption it deformation retracts to ∆Λ\{s},Λ′\T . □

10.2. Properties of some relative Artin complexes.

Lemma 10.8 ([Hua24b, Lem 6.16]). Suppose that Λ is an arbitrary Coxeter dia-
gram. Let ω = x1 · · · x4 be an embedded 4-cycle in ∆Λ of type ŝ1 · · · ŝ4. Suppose
ŝ1 ̸= ŝ3. Then there exists a vertex x′

3 ∈ ∆Λ of type ŝ1 that is a common neighbour
of x2, x3, and x4.

Corollary 10.9. Suppose that Λ is an arbitrary Coxeter diagram with an edge s1s2
such that ∆Λ, s1s2 has girth ≥ 6. Let ω be an embedded 4-cycle in ∆Λ with an edge
of type ŝ1ŝ2. Then ω not induced.

Proof. Let ω = x1 · · ·x4 with xi of type ŝi. Since ω is embedded, the girth hypothesis
implies that we cannot have simultaneously s1 = s3 and s2 = s4. Assume first s1 ̸= s3
and s2 = s4. By Lemma 10.8, there is a vertex x′

3 of ∆Λ of type ŝ1 that is a common
neighbour of x2, x3 and x4. Then x1x2x

′
3x4 is a 4-cycle in ∆Λ, s1s2 . Since x2 ̸= x4, we

must have x1 = x′
3, implying that x1 is a neighbour of x3 and so ω is not induced.

The case s1 = s3 and s2 ̸= s4 is analogous.
Now assume s1 ̸= s3 and s2 ̸= s4. Let x′

3 of type ŝ1 be chosen as before. If
x1x2x

′
3x4 is not embedded, then we deduce that x1 is a neighbour of x3 as before.

If x1x2x
′
3x4 is embedded, then x2 is a neighbour of x4 by the case of s1 = s3 and

s2 ̸= s4. □

Theorem 10.10 ([Hua24b, Thm 8.1]). Let Λ be irreducible spherical, and let Λ′ ⊂ Λ
be a linear subdiagram. Then ∆Λ,Λ′ is bowtie free.

10.3. Haettel contractibility criteria. Let S = {s1, . . . , sn} be a totally ordered
set. Let X be a simplicial complex of type S with the induced relation on its
vertex set, as defined in Section 2.2: for vertices x, x′ ∈ X0 we write x < x′ if
x, x′ are neighbours and Type(x) < Type(x′). The following is a consequence of
[Hae22b, §4.3, Thm B] and [Hae24, Thm 1.15].

Theorem 10.11. Let X be a simplicial complex of type S. Assume that
(1) X is simply connected,
(2) the relation < on X0 is a partial order,
(3) for each x ∈ X0, the collection of vertices ≥ x is bowtie free and upward flag,
and

(4) for each x ∈ X0, the collection of vertices ≤ x is bowtie free and downward
flag.

Then X is contractible.

Proposition 10.12 ([Hua24a, Lem 5.1]). Suppose that X satisfies the assumptions
of Theorem 10.11. Then (X0, <) is bowtie free and flag.
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Now we discuss a variation of Theorem 10.11.

Definition 10.13. Let S be cyclically ordered with s1 < s2 < · · · < sn < s1. For
each vertex x of X of type si, we consider the relation <x on lk(x,X)0 as follows.
The cyclic order induces an order on S \ {si} by declaring si+1 < · · · < sn < s1 <
· · · < si−1. For vertices y, z ∈ lk(x,X)0, define y <x z if y, z are neighbours and
Type(y) < Type(z) in S \ {si}.
We say that X is an Ãn-like complex if
(1) X is simply connected,
(2) for each x ∈ X0, the relation <x on lk(x,X)0 is a partial order, and
(3) for each x ∈ X0, the relation <x on lk(x,X)0 is bowtie free.

For example, the Coxeter complex of type Ãn is an Ãn-like complex.
The following is a consequence of [Hae22b, §4.2, Thm A]. It also follows from
[Bes06, Thm 3.3 and §8] and [Bes99], since Ãn-like complexes are Bestvina complexes
for a certain Garside groupoid.

Theorem 10.14. Each Ãn-like complex is contractible.

Lemma 10.15. Let X be an Ãn-like complex. Then any induced 4-cycle in X1 has
a common neighbour. In particular, X has no embedded cycles of type ŝ1ŝ2ŝ1ŝ2.

Proof. The first assertion is [Hua24b, Lem 4.8]. For the second assertion, if a cycle
had type ŝ1ŝ2ŝ1ŝ2 and common neighbour x, then it would be a bowtie in the link
of x. □

11. Bestvina convexity in Ãn-like complexes

11.1. Garside complexes.

Definition 11.1 ([HH24, Def 4.6]). Let X̂ be a simply connected flag simplicial
complex. Suppose that we have a binary relation < on X̂0 (not necessarily a partial
order) such that vertices x, y are neighbours exactly when x < y or y < x. Fur-
thermore, suppose that the transitive closure of < is a partial order that is weakly
graded with rank function r. We write x ≤ y when x < y or x = y.
Assume that we have an automorphism φ of (X̂0, <) such that

• r ◦ φ = t ◦ r, for a translation t : Z → Z, and
• x ≤ y if and only if y ≤ φ(x), for all x, y ∈ X̂0, and
• the interval [x, φ(x)] = {z ∈ X̂0 | x ≤ z and z ≤ φ(x)} is a lattice for all
x ∈ X̂0 (in particular, the relation < restricted to [x, φ(x)] is transitive).

We then call X̂ a Garside flag complex.

Let X be an Ãn-like complex of type S, with cyclic order s1 < s2 < · · · < sn < s1.
Consider the type function τ : X0 → Z/nZ defined by τ(x) = i for x of type si. We
define a following simplicial complex structure on X̂ = X × R. The vertex set X̂0

of X̂ is
{(x, i) ∈ X0 × Z | τ(x) = i},

The vertices (x, i) and (x′, j) are neighbours if x and x′ are equal or neighbours
in X, and |i − j| ≤ n. Let X̂ be the flag simplicial complex with that 1-skeleton.
Note that any maximal simplex of X̂ has vertices

(xi, kn+ i), (xi+1, kn+ i+ 1), . . . , (xn, kn+ n), (x1, kn+ n+ 1), . . . , (xi, kn+ n+ i),

where k ∈ Z, 1 ≤ i ≤ n, and x1, x2, . . . , xn are vertices of a maximal simplex of X
with τ(xi) = i.
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Note that the map X̂0 → X0 sending (x, i) to x extends to a simplicial map,
denoted by π : X̂ → X. Define r : X̂0 → Z by r(x, i) = i, and φ : X̂0 → X̂0 by
φ(x, i) = (x, i+ n).
We define a binary relation < on X̂0 by requiring (x, i) < (y, j) exactly when these
two vertices are neighbours in X̂ and i < j. Note that the transitive closure ≤t of ≤
on X̂0 is a partial order. The following shows that X̂ is a Garside flag complex with
the automorphism φ.

Lemma 11.2. For each (x, i) ∈ X̂0, the interval [(x, i), (x, i+ n)] is a lattice.

Below, the partial order <x on lk(x,X)0 was introduced in Definition 10.13.

Proof. Note that the poset [(x, i), (x, i + n)] is isomorphic with the poset obtained
from (lk(x,X)0, <x) by adding the smallest and the greatest element. This poset is
a lattice by Lemma 2.5. □

By [HH24, Thm 1.3], given x ∈ X̂0, the poset {w ∈ X̂0 | w ≥t x} is a lattice,
and so we can discuss the meet ∧ in that poset. By [HH24, Thm 4.7], a Garside
flag complex X̂ is an instance of a homogeneous categorical Garside structure. We
decided not to give here the definition, since we will be only using [HH24, Prop 4.2] on
the Deligne normal form (term introduced in [CMW04]), which is more convenient
for us to state directly in the terms of X̂:

Theorem 11.3. For each x, y ∈ X̂0, there is a unique edge-path x1 · · ·xl · · ·xn from
x1 = x to xn = y such that

• xi < xi+1 ̸= φ(xi) for 1 ≤ i < l, and
• xi = xi+1 ∧ φ(xi−1) for 1 < i < l in [xi, φ(xi)], and
• xi = φ±(i−l)(xl) for l ≤ i ≤ n, with all signs positive or all signs negative.

Note that, as all the notions in this section, the Deligne normal form depends on
the cyclic order on the set of the types of X0.

11.2. Bestvina-convexity.

Definition 11.4. Given an edge-path P = x1 · · ·xn in X, an admissible lift of P is
an edge-path P̂ = x̂1 · · · x̂n in X̂ such that π(x̂i) = xi, for 1 ≤ i ≤ n, and x̂i < x̂i+1,
for 1 ≤ i ≤ n−1. Note that for each edge-path P in X, once a lift x̂1 of x1 has been
chosen, there is a unique admissible lift of P starting at x̂1. Different admissible
lifts of P differ by the translation by φk for some k ∈ Z.
Let a, b ∈ X0. Following [Bes99, CMW04], we say that an edge-path P from a

to b is a geodesic, (or B-geodesic) if some (hence all) admissible lift of P to X̂ has
Deligne normal form with n = l.

Lemma 11.5. For any a, b ∈ X0, there is a unique B-geodesic in X from a to b.

Proof. Let â and b̂ be lifts of a and b, respectively, i.e. π(â) = a and π(b̂) = b. Let
P = â · · ·xl · · ·xn be the path in X̂ from â to b̂ that has Deligne normal form. Then
π(xl) = π(xn) = b, and so π(x1) · · · π(xl) is a B-geodesic from a to b, which proves
the existence.
Suppose that there are two B-geodesics P1 and P2 from a to b. Let P̂1 and P̂2 be
admissible lifts of P1 and P2 starting at the same point. Then the endpoints b̂i of P̂i

differ by φk for some k ∈ Z. Since P̂1 has Deligne normal form, we have that the
concatention of P̂1 with b̂1φ(b̂1) · · ·φk(b̂1) also has Deligne normal form. But since
the Deligne normal form is unique (Theorem 11.3), the latter path equals P̂2, and
so k = 0 and P̂1 = P̂2, hence P1 = P2. □
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Lemma 11.6. Let P = x1 · · ·xn be an edge-path in X. Then P is a B-geodesic if
and only if for each 2 ≤ i ≤ n− 1, the vertices xi−1 and xi+1 do not have a common
lower bound in (lk(xi, X)0, <xi

).

Proof. Let P̂ = x̂1 · · · x̂n be an admissible lift of P . By the definition of the Deligne
normal form, P is a B-geodesic if and only if x̂i = x̂i+1∧φ(x̂i−1) for 1 < i < n. This
means exactly that x̂i+1 and φ(x̂i−1) have meet x̂i in the interval [x̂i, φ(x̂i)]. Under
the isomorphism of [x̂i, φ(x̂i)] with the augmented (lk(xi, X)0, <xi

) from the proof
of Lemma 11.2, this means that xi−1 and xi+1 have only a trivial lower bound, as
desired. □

Definition 11.7. Let X be an Ãn-like complex as before, of type S with given
cyclic order. Let Y ⊂ X be a full subcomplex that is also a simplicial complex of
type S with the induced type function from X. We say that Y is locally B-convex
if for each vertex y ∈ Y 0 and any vertices y1, y2 of lk(y, Y ), if the meet y1∧ y2 in the
poset (lk(y,X)0, <y) exists, then y1 ∧ y2 ∈ lk(y, Y )0.

The property of being locally B-convex depends on the choice of the cyclic order on
the set of types of X̂0. Reversing the cyclic order gives a different Ãn-like complex
structure on X, with simplicially isomorphic X̂, but with different collection of
locally B-convex subcomplexes.

Proposition 11.8. Let X be an Ãn-like complex, and let Y ⊂ X be a connected lo-
cally B-convex subcomplex. Then Y is simply connected, and for any pair of vertices
y1, y2 ∈ Y 0, the B-geodesic in X from y1 to y2 is contained in Y .

Proof. Let Ỹ be the universal cover of Y . We first show that Ỹ is an Ãn-like complex.
We induce the type function and the cyclic order on the types from X. It suffices to
show for each y ∈ Y 0, the restriction of the relation <y to the vertex set of lk(y, Y )
satisfies conditions (2) and (3) of Definition 10.13. Condition (2) holds since Y is a
full subcomplex of X. To check Condition (3), let x1y1x2y2 be a bowtie in lk(y, Y ).
Since y1, y2 have a lower bound in lk(y,X)0, they have a meet z ∈ lk(y,X)0 by
Lemma 2.5. Then xi ≤ z ≤ yj for i, j ∈ {1, 2}. By the local B-convexity, we have
z ∈ lk(y, Y )0, as desired.
Let θ : Ỹ → Y be the covering map. We claim that if P̃ is a B-geodesic in Ỹ

from ỹ1 to ỹ2, then P = θ(P̃ ) is the B-geodesic in X from y1 = θ(ỹ1) to y2 = θ(ỹ2).
Let us assume the claim for the moment and finish the proof of the proposition.
We first justify that Y is simply connected and Ỹ = Y . Otherwise, we have distinct
lifts ỹ, ỹ′ ∈ Ỹ of a vertex y ∈ Y . By Lemma 11.5, there is a B-geodesic P̃ from ỹ

to ỹ′ in Ỹ . By the claim, θ(P̃ ) is a nontrivial B-geodesic in X from y to y. This
contradicts the uniqueness of the B-geodesic in Lemma 11.5. Thus Y is simply
connected. The remaining assertion of the proposition follows from the claim and
the uniqueness of B-geodesics in X.
It remains to prove the claim. Let ỹi−1, ỹi, ỹi+1 be three consecutive vertices in P̃
with yi−1, yi, yi+1 their images under θ. Since P̃ is a B-geodesic in Ỹ , Lemma 11.6
implies that ỹi−1 and ỹi+1 do not have a common lower bound in lk(ỹi, Ỹ )0. Since
lk(ỹi, Ỹ ) ∼= lk(yi, Y ), we have that yi−1 and yi+1 do not have a common lower bound
in lk(yi, Y )0. By the local B-convexity of Y , yi−1 and yi+1 do not have a common
lower bound in lk(yi, X)0. Hence P is a B-geodesic in X by Lemma 11.6, and the
claim follows. □

Corollary 11.9. Let X be an Ãn-like complex. Let Y1 and Y2 be connected locally
B-convex subcomplexes of X. If Y1 ∩ Y2 ̸= ∅, then Y1 ∩ Y2 is connected.
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Proof. Let y and y′ be vertices in Y1 ∩ Y2, and let P be a B-geodesic in X from y
to y′. By Proposition 11.8, we have that P is contained in Y1 ∩ Y2. □

12. 3-dimensional Artin groups

Definition 12.1. We say that a Coxeter diagram Λ satisfies the girth condition if
for each edge st of Λ, the graph ∆Λ, st has girth ≥ 6.

The goal of this section is to prove the following.

Theorem 12.2. Let AΛ be an Artin group of dimension ≤ 3. Then Λ satisfies the
girth condition. If Λ is non-spherical, then its Artin complex ∆ is contractible.

A vertex of a graph is isolated if it has no neighbours. An n-cycle is the graph
with vertices s1, . . . , sn and edges s1s2, . . . , sn−1sn, sns1. Thus what we called an
‘embedded n-cycle’ in a graph Λ is a subgraph isomorphic to an n-cycle. Given a
simplicial graph Λ, let Λc denote the complement graph, i.e. the graph with the same
vertex set as Λ and st an edge exactly when there is no edge st in Λ. Note that if AΛ

is 3-dimensional with Coxeter diagram Λ, then Λc has no embedded 4-cycles (though
the converse might not be true). So Theorem 12.2 follows from the following.

Theorem 12.3. Let AΛ be an Artin group such that Λc has no embedded 4-cycles.
Then Λ satisfies the girth condition. If Λ is non-spherical, then its Artin complex ∆
is contractible.

Corollary 12.4. Let AΛ be an Artin group such that Λc has no embedded 4-cycles.
Then AΛ satisfies the K(π, 1) conjecture. In particular, each Artin group of dimen-
sion ≤ 3 satisfies the K(π, 1) conjecture.

Proof. This follows from Theorems 12.3 and 1.7, by induction on the number of the
vertices of Λ (recall that all spherical Artin groups satisfy the K(π, 1) conjecture
[Del72]). □

It remains to prove Theorem 12.3. As a preparation, we establish the following
graph-theoretic result. Below Kk,l denotes the complete bipartite graph with the
parts of size k and l, and K−

k,l denotes Kk,l with one edge removed.

Lemma 12.5. Let Λ be a simplicial graph with at least 5 vertices, no isolated ver-
tices, no embedded 3-cycles, and such that Λc has no embedded 4-cycles. Then Λ
equals the 5-cycle, K2,3, K−

2,3, K3,3, or K−
3,3.

Proof. Assume first that Λ is not bipartite. Let γ be the shortest odd embedded
cycle in Λ. If γ has length ≥ 7, then γc contains an embedded 4-cycle, which is
a contradiction. Consequently, γ is an induced 5-cycle. We will prove Λ = γ.
Assume for contradiction that Λ has a vertex s outside γ. Since Λ has no embedded
3-cycles, s is a neighbour of at most two (non-adjacent) vertices of γ. Then the
remaining vertices of γ together with s form an embedded 4-cycle in Λc, which is a
contradiction.
Second, assume that Λ is bipartite with parts V,W . Since Λc has no embedded

4-cycles, we have |V |, |W | ≤ 3. It remains to prove that there is at most one edge
in Λc from V to W . Suppose that there are two such edges v1w1, v2w2. Then
they must intersect, since otherwise v1w1w2v2 would be an embedded 4-cycle in Λc.
Suppose without loss of generality w1 = w2. Then V = {v1, v2, v3}, since otherwise
w1 would be isolated in Λ. But then v1w1v2v3 is an embedded 4-cycle in Λc, a
contradiction. □

We will verify Theorem 12.3 gradually, starting from the simplest Λ. We set
∆ = ∆Λ.
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Remark 12.6. By [AS83, Lem 6], if Λ is an edge labelled by m, then ∆Λ has girth
≥ 2m. In particular, Λ satisfies the girth condition.
Thus if Λ is a 3-cycle, then by Lemma 10.6 all vertex links of ∆ have girth ≥ 6.
Since ∆ is simply connected (Lemma 10.2), it satisfies the definition of a systolic
complex [JŚ06, page 9]. In particular, ∆ is contractible [JŚ06, Thm 4.1(1)] and all
∆Λ, st have girth ≥ 6 [JŚ06, Prop 1.4].
If Λ is a length 2 linear graph, then ∆ is bowtie free by [Cha04, Lem 4.1] (or
Theorem 10.10), when both labels are equal to 3, and [Hua24a, Lem 11.5] otherwise.
In particular, Λ satisfies the girth condition. The contractibility of ∆ for non-
spherical Λ follows from [CD95b, Thm B].
If Λ is a 4-cycle, then by Remark 2.1 the relation <x on each vertex link of ∆
described in Definition 10.13 is a partial order. By the previous paragraph, <x is
bowtie free. Thus, by Lemma 10.2, ∆ is an Ã3-like complex. By Theorem 10.14, ∆
is contractible. By Lemma 10.15, we have that Λ satisfies the girth condition.

Remark 12.7. Let Λ be a length 2 linear graph with labels m,n such that m,n ≥ 4
or m ≥ 6. Then equipping each triangle of ∆ with the Euclidean metric of angles
π
4
, π
2
, π
4
, or π

6
, π
2
, π
3
, respectively, ∆ is a CAT(0) metric space. Indeed, by Remark 12.6

the vertex links of ∆ have girth ≥ 2π. Thus by the Cartan–Hadamard theorem
[BH99, Thm 4.1(2)], we obtain that ∆ is CAT(0).

Corollary 12.8. Let Λ = stp be a length 2 linear diagram with mst ≥ 4. Then
∆stp, st has girth ≥ 8.

Proof. Ifmtp = 3 andmst = 4 or 5, then the lemma follows from Theorems 2.8 or 2.9.
If mtp ≥ 4 or mst ≥ 6, then, by Remark 12.7, we have that ∆stp is CAT(0), with
triangles of angles π

4
, π
2
, π
4
or π

6
, π
2
, π
3
. Then the lemma follows from Lemma 2.12(iii)

or (ii). □

Lemma 12.9. Let Λ be a length 3 linear graph. Then ∆ is bowtie free. In particular,
Λ satisfies the girth condition. If Λ is not spherical, then ∆ is contractible.

Proof. If Λ is spherical, then the lemma follows from Theorem 10.10, so we can
assume that Λ is not spherical. If all proper induced subdiagrams of Λ are spher-
ical, then its consecutive edges have labels 353, 434, 435, or 535. In the 353 case,
the lemma follows from Theorem 9.12, Lemma 9.8, and Corollary 9.11. In the re-
maining cases, the lemma follows from Proposition 10.12 and Theorem 10.11, whose
hypotheses are satisfied by Theorems 2.8 and 2.9.
Otherwise, Λ = stpr contains a non-spherical subdiagram, say Λ′ = stp. We have
either mst,mtp ≥ 4, or mst ≥ 6,mtp = 3, or mst = 3,mtp ≥ 6. Let ∆′ = ∆Λ,Λ′ . By
Lemma 10.7 and Remark 12.6, we have that ∆ deformation retracts onto ∆′, and
so ∆′ is simply connected.
Assume first mst,mtp ≥ 4. By Corollary 12.8, we have that ∆tpr, tp has girth

≥ 8. By Lemma 10.6, the complex ∆tpr, tp is the link of a vertex of type ŝ in
∆′ = ∆stpr, stp. The vertex of type p̂ in ∆′ has link ∆str, st = ∆st, which has girth ≥ 8
by Remark 12.6. Consequently, equipping each triangle of ∆′ with the Euclidean
metric of angles π

4
, π
2
, π
4
, the complex ∆′ is a locally CAT(0) metric space. By

the Cartan–Hadamard theorem, we obtain that ∆′ is CAT(0), in particular ∆ is
contractible.
By Lemma 2.12(i), each induced 4-cycle in ∆′ has type ŝp̂ŝp̂ and has a common
neighbour of type t̂. This shows that there are no bowties without vertices of type r̂.
Let v be a vertex of type r̂ and let Cv = lk(v,∆) ⊂ ∆′. We claim that Cv is
convex in ∆′. By Lemma 10.6, we have that Cv is isomorphic to ∆Λ′ , which is
connected. Thus to justify the claim we only need to prove that Cv is locally convex
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[BH99, Prop 4.14]. Suppose first that we have w ∈ Cv of type ŝ with neighbours
u1, u3 ∈ Cv connected in lk(w,∆′) ∼= ∆tpr, tp by a path γ of length d < π, that is,
d ≤ 3π

4
. Note that if one of u1, u3 has type p̂, then its neighbour on γ is also a

neighbour of v, so we can assume that both u1, u3 are of type t̂ and γ has only one
interior vertex u2, which has type p̂. By Remark 12.6 and Corollary 10.9 applied
to ∆tpr we have that u2 ∈ Cv, as desired. If w has type t̂, then the local convexity
condition is empty. If w has type p̂, then Cv contains all the neighbours of w by
Remark 2.1, and again there is nothing to prove. This justifies the claim.
Consider now a possible bowtie vu1u2u3 with only v of type r̂ and u2 > u1, u3,
where r̂ > p̂ > t̂ > ŝ. If u2 lies in the simplicial span of the CAT(0) convex hull of
u1, u3 in ∆′, then by the convexity of Cv we obtain that v and u2 are neighbours, as
desired. If u2 lies outside the span of the convex hull of u1, u3, then since St(u2,∆

′)
is convex in ∆′, we obtain that the CAT(0) geodesic α = u1u3 lies in the boundary
of that star. Thus α consists of edges u1w and wu3 with w a neighbour of u2 of
type t̂. Then w ∈ Cv and so v, u2 > w > u1, u3, as desired.
Finally, consider a possible bowtie v1u1v2uk with both vi of type r̂. Since Cvi are
convex, we have that C = Cv1 ∩Cv2 is convex as well. In particular, C is connected,
and we denote by u1u2 · · ·uk an edge-path from u1 to uk in C with the least number
of edges. If some ui with 2 ≤ i ≤ k has type p̂, then i = 2, since otherwise the 4-
cycle v1ui−2v2ui in lk(ui−1,∆) would contradict Corollary 10.9 (because lk(ui−1,∆)
satisfies the girth condition by Remark 12.6). Analogously we have i = k − 1 and
so k = 3. Thus v1, v2 > u2 > u1, uk are as desired. If there is no ui of type p̂, there
must be ui of type t̂. Then we have i ≤ 2 since otherwise the 4-cycle v1ui−2v2ui in
lk(ui−1,∆) ∼= ∆tpr, which is not a bowtie by Remark 12.6, would allow us to replace
ui−1 by a vertex of type p̂ and to proceed as before. Analogously we have i ≥ k − 1
and so k = 3 and again v1, v2 > u2 > u1, uk.
Consider now the second case, where mst ≥ 6 and mtp = 3. By Remark 12.6,
the vertex links in ∆′ of the vertices of types ŝ and p̂ have girth 6 and 2mst ≥
12, respectively. Consequently, equipping each triangle with the Euclidean metric
of angles π

3
, π
2
, π
6
, the complex ∆′ is a CAT(0) metric space as before. Again, by

Lemma 2.12(i), there are no bowties without vertices of type r̂. The proof of the
convexity of Cv and that there are no bowties with vertices of type r̂ is the same as
before.
Finally, the case mst = 3 and mtp ≥ 6 follows from [Hua24b, Cor 9.14 and
Lem 6.14]. □

Corollary 12.10. If Λ is a 5-cycle, then ∆ is contractible, and Λ satisfies the girth
condition.

Proof. By Theorem 10.14 and Lemma 10.15, it is enough to show that ∆ is an Ã4-
like complex. By Lemma 10.2, it suffices to prove that the vertex links of ∆ satisfy
the partial order condition and are bowtie free. By Lemma 10.6, each such link is
isomorphic to ∆Λ′ , where Λ′ is a linear diagram of length 3. Thus the partial order
condition follows from Remark 2.1. Bowtie freeness follows from Lemma 12.9. □

Definition 12.11. Consider a decomposition of the vertex set of Λ into a disjoint
union

⊔
i Si. Let ∆∗ be the subdivision of ∆ obtained by subdividing each simplex σ

of type Ŝi into a cone over ∂σ with apex at the barycentre of σ, and by subdividing
each join ∗iσi of simplices of type Ŝi into the join of the subdivisions of Ŝi. We
call ∆∗ the S-subdivision, where the collection S is obtained from {Si}i be removing
all the elements of size 1. For example, if S = {{s, t}}, then ∆∗ is obtained from ∆
by subdividing each edge of type ŝt̂, and each simplex containing it, into two. We
denote this, shortly, {s, t}-subdivision.
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Lemma 12.12. Let Λ = K1,3 and let L ⊂ Λ be a length 2 linear subdiagram.
Then ∆Λ, L is bowtie free. In particular, Λ satisfies the girth condition. If Λ is not
spherical, then ∆ is contractible.

Proof. The contractibility of∆ follows from [Hua24a, Thm 10.3] and [GP12b, Thm 3.1].
Suppose that α is a bowtie in ∆Λ, L. Let L = stp and let s′ be the remaining ver-
tex of Λ. We define ∆∗ to be the {s, s′}-subdivision of ∆. Let m be the type
of the new vertices, and identify the types ŝ and ŝ′. We order the types so that
ŝ = ŝ′ < m < t̂ < p̂, which gives rise to a relation on the vertex set of ∆∗ by
Definition 2.3. By [Hua24a, Prop 11.34], we have that ∆∗ is bowtie free. Thus there
is a vertex x of ∆∗ that is a common neighbour of α. But x cannot have type m
since then α would have two equal vertices of type ŝ. Thus x belongs to ∆Λ, L, as
desired. □

By Lemma 12.12 and [Hua24b, Lem 6.14 and Prop 6.17], we have the following.

Corollary 12.13. Let Λ = K1,3 with parts {s1, s2, s3} and {t}. Then each induced
cycle of type ŝ1ŝ2ŝ1ŝ2 or ŝ1ŝ2ŝ1ŝ3 in ∆ has a common neighbour of type t̂.

Lemma 12.14. If Λ = Kk,l with k, l ≥ 2, then ∆ is contractible and Λ satisfies the
girth condition.

Proof. Let {s1, . . . , sk}, {t1, . . . , tl} be the parts of Λ. To prove the girth condition for
the edge s1t1, consider the {{s2, . . . sk} , {t2, . . . , tl}}-subdivision ∆∗ of ∆. Let m,m′

be the types of the barycentres of the simplices of types s2 · · · sk, t2 · · · tl. By [Hua24a,
Lem 11.10] (which relies on [Hua24c, Theorem 1.4]), the subcomplex ∆∗

s1t1mm′ of ∆∗

spanned on the vertices of types ŝ1, t̂1,m, and m′ is an Ã3-like complex. Thus, by
Lemma 10.15, the complex ∆∗ has no cycles of type ŝ1t̂1ŝ1t̂1. The contractibility
of ∆ can be deduced from [Hua24a, Lem 11.11]. □

Lemma 12.15. Let Λ = K2,3 with parts {s1, s2, s3} and {t1, t2}. Then each induced
cycle of type ŝ1ŝ2ŝ1ŝ2 in ∆ has common neighbours of type t̂1 and t̂2.

Proof. Let ∆∗ be the {s2, s3}-subdivision of ∆. Let m be the type of the new
vertices. By [Hua24a, Lem 11.10], the subcomplex ∆∗

s1t1mt2
of ∆∗ spanned on the

vertices of types ŝ1, t̂1,m, t̂2, is an Ã3-like complex. We fix any of the two cyclic
orders on s1t1mt2 to be able to discuss meets and joins in the links.
Let v be a vertex of type ŝ2 and let Cv = lk(v,∆∗) ⊂ ∆∗

s1t1mt2
. We claim that

Cv is B-convex in ∆∗
s1t1mt2

. Note that Cv is connected, since it is isomorphic to
lk(v,∆), which, by Lemma 10.6, is in turn isomorphic to ∆s1t1s3t2 . For the local
B-convexity, let w ∈ Cv, and let u1, u2 ∈ Cv be neighbours of w. Assume that the
meet u of u1 and u2 in lk(w,∆∗

s1t1mt2
)0 exists and is distinct from u1, u2. We need

to show u ∈ Cv, so we can assume that none of w, u1, u2 has type m. If u1 or u2

has type t̂i, and u is not of type m, then this follows immediately from applying
Corollary 10.9 to the 4-cycle vu1uu2 in lk(w,∆), which satisfies the girth condition
by Lemmas 12.12 and 12.14. If u1 or u2 has type t̂i, and u is the midpoint of an
edge u+u− of ∆ of type ŝ2ŝ3, then applying as before Corollary 10.9 to the 4-cycle
vu1u

+u2, we obtain u+ = v, and so u is a neighbour of v. It remains to assume
that u1 and u2 are of type s1. Again by Corollary 10.9, we can assume that u is
not of type ti, so it is the midpoint of an edge u+u− in ∆ of type ŝ2ŝ3. Applying
Corollary 12.13 to vu1u

+u2 in lk(w,∆), we obtain that u+ = v as before or there is
a common neighbour of type t̂i of u1, u2 in lk(w,∆), contradicting the assumption
that u = u1 ∧ u2 in lk(w,∆∗

s1t1mt2
)0.

Let u1v1ukv2 be a cycle of type ŝ1ŝ2ŝ1ŝ2 in ∆. By Corollary 11.9, we have that
C = Cv1 ∩ Cv2 is connected. Let u1 · · ·uk be an edge-path in C from u1 to uk with
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the least number of edges. None of the ui can have type m, since v1 ̸= v2. Thus one
of the ui has type t1 or t2, and then by the girth condition in the links of ui−1, ui+1,
(see Lemmas 12.12 and 12.14) and Corollary 10.9, we have that ui is a neighbour
of u1 and uk. Then the lemma follows from Corollary 12.13 applied to the link
of ui. □

Proposition 12.16. If Λ = K−
2,3, then ∆ is contractible and Λ satisfies the girth

condition.

Proof. Denote the parts to be {s, p}, {t1, t2, r} with missing edge sr. Let ∆′ = ∆Λ,Λ′

with Λ′ = st1pt2. By Lemma 10.7 and Remark 12.6, we have that ∆ deformation
retracts onto ∆′, and so the latter is simply connected. Note that ∆′ is an Ã3-like
complex. In other words, the links ∆t1st2r, t1st2 = ∆t1st2 ,∆t1pt2r, t1pt2 , and ∆st1pr, st1p

satisfy the partial order condition and are bowtie free. The partial order condition
follows from Remark 2.1. The bowtie freeness of the first link follows from Re-
mark 12.6. For the middle one, this is Lemma 12.12. For the last one, this follows
from Lemma 12.9. By Theorem 10.14, we have that ∆′ is contractible, and so is ∆.
We fix any of the two cyclic orders on st1pt2 to be able to discuss meets and joins
in the links.
By Lemma 10.15, each induced 4-cycle in ∆′ is contained in the link of a vertex,
and so the girth condition for the edges in Λ′ follows from the girth condition in
Lemmas 12.9 and 12.12.
It remains to consider a 4-cycle with vertices of types p̂ and r̂. First we justify
the following.

Claim. For v of type r̂, the subcomplex Cv = lk(v,∆) ⊂ ∆′ is B-convex.

Note that Cv is isomorphic to∆Λ′ and so it is connected. For the local B-convexity,
let w ∈ Cv, and let u1, u2 ∈ Cv be neighbours of w. Assume that u = u1 ∧ u2 exists
in lk(w,∆′)0 and is distinct from u1, u2. We need to show u ∈ Cv. If w has type p̂,
then this is immediate, so without loss of generality we only need to consider the
cases where w has type t̂1 and ŝ.
In the first case, the link of w is isomorphic to ∆st2pr. If the 4-cycle u1uu2v
contains an edge whose type lies on the path ŝt̂2p̂r̂, then uv is an edge by the girth
condition in Lemma 12.9 and Corollary 10.9. Otherwise, the type of the cycle is
ŝp̂ŝr̂. Since the link of w is bowtie free by Lemma 12.9, we have that u is a neighbour
of v, or there is a common neighbour of type t̂2 of all w, u1, u, u2, v. But then it is
this vertex and not u that is the meet of u1, u2, contradiction.
Now consider the case, where w has type ŝ. If the 4-cycle u1uu2v contains an edge
whose type lies in the Coxeter diagram of t1t2pr, then uv is an edge by the girth
condition in Lemma 12.12 and Corollary 10.9. Otherwise, without loss of generality,
the type of the cycle is t̂1t̂2t̂1r̂. By Corollary 12.13, we have that u is a neighbour
of v, or there is a common neighbour of type p̂ of all w, u1, v, u2, u, which contradicts
the assumption that u is the meet of u1, u2. This ends the proof of the claim.

Let v1u1v2uk be a cycle with both vi of type r̂ and u1, uk of type p̂. By the B-
convexity of Cvi and Corollary 11.9, we have that C = Cv1 ∩ Cv2 is connected. Let
u1u2 · · ·uk be an edge-path in C from u1 to uk with the least number of edges. By
the girth condition in the link of u2 (see Lemmas 12.9 and 12.12), and Corollary 10.9
applied to the 4-cycle u1v1u3v2, we obtain that u1 is a neighbour of u3, contradiction.

□

Proposition 12.17. If Λ = K−
3,3, then ∆ is contractible and Λ satisfies the girth

condition.
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Proof. Denote the parts of Λ by {s1, s2, s3}, {t1, t2, t3} with the missing edge s3t3.
Consider the {t1, t2}-subdivision ∆∗ of ∆. Let m be the type of the new vertices.
We claim that the subcomplex ∆∗

s1t3s2m
of ∆∗ spanned on the vertices of types

ŝ1, t̂3, ŝ2, and m is an Ã3-like complex. The partial order condition follows from
Lemma 2.2. The bowtie freeness of the link of a vertex of type m in ∆∗

s1t3s2m

follows from Remark 12.6, since such link is isomorphic to ∆s1t3s2 . To obtain the
bowtie freeness of the link lk(z,∆∗

s1t3s2m
) of a vertex z of type ŝ1 (or ŝ2), for all the

possible bowties except for the type t̂3mt̂3m, it suffices to use Proposition 12.16 and
Corollary 10.9.
Consider now a possible bowtie vev′e′ of type t̂3mt̂3m, where e, e′ are midpoints
of edges uw, u′w′ of type t̂1t̂2. Our goal is to find a vertex of type ŝ2 in L = lk(z,∆)
that is a neighbour of all z, u, w, u′, w′, v, v′. Let

∆′ = lk(z,∆Λ, s1s2t1s3t2)
∼= ∆t3s2t1s3t2, s2t1s3t2 ,

which was studied in Proposition 12.16. Let Cv = lk(v,∆) ∩ ∆′. By the Claim in
the proof of Proposition 12.16 and Corollary 11.9, we have that Cv ∩ Cv′ ⊂ ∆′ is
connected. Let α be an edge-path in Cv∩Cv′ from uw to u′w′ with the least number
of edges.
If α is a single vertex, say u = u′, then by Lemma 12.9 applied to lk(u, L), the
cycle vwv′w′ has a common neighbour of type ŝ2 that is also a neighbour of z and
u = u′, as desired. If α is a single edge, say uw′, then analogously the cycle vwv′w′

has a common neighbour y of type ŝ2 that is also a neighbour of z and u. By
Corollary 10.9, applied to the cycle vyv′u′ in lk(w′, L), we obtain that y is also a
neighbour of u′, as desired. We can now assume that α has at least two edges.
If α contains a vertex of type ŝ2, then by Corollary 10.9 it is a neighbour of

u, u′, w, w′, as desired. Otherwise, if α contains a subpath xyx′ with y of type ŝ3,
then applying Corollary 12.13 to xvx′v′ in lk(y, L), we can replace y by a vertex of
type ŝ2 and we conclude as before. Otherwise, let x0x1x2 be any subpath of α. By
Lemma 12.9 applied to lk(x1, L), which is isomorphic to ∆t3s2tis3 , for i = 1 or 2, we
have that there is a common neighbour of type ŝ2 of x0vx2v

′ and we conclude as
before.
To obtain the bowtie freeness of the link of a vertex of type t̂3, we apply Lem-
mas 12.14, 12.15, and Corollaries 12.13 and 10.9. This finishes the proof of the
claim.
Note that ∆∗

s1t3s2m
is obtained from ∆Λ, s1t3s2t1t2 by removing the disjoint stars

in ∆∗ of the vertices of type t̂1 and t̂2. These stars are isomorphic to the stars of
the vertices of type t̂1 and t̂2 in ∆Λ, s1t3s2t1t2 , and hence they are cones over links iso-
morphic to ∆′ whose contracibility we established in the proof of Proposition 12.16.
Consequently, ∆∗

s1t3s2m
is a deformation retract of ∆Λ, s1t3s2t1t2 , and thus of ∆ by

Lemma 10.7. In particular, since ∆ is simply connected, this completes the proof of
the claim that ∆∗

s1t3s2m
is an Ã3-like complex.

By Theorem 10.14, we have that ∆∗
s1t3s2m

is contractible, and so is ∆.
The girth condition for the edges s1t3 and s2t3 follows from Lemma 10.15 applied
to ∆∗

s1t3s2m
. Using a symmetry of Λ, we also obtain the girth condition for the edges

t1s3 and t2s3.
Using a symmetry again, it remains to verify the girth condition for s1t2. Let v be
a vertex of type t̂2 and let Dv = lk(v,∆∗)∩∆∗

s1t3s2m
. We claim that Dv is B-convex.

Note that Dv is isomorphic to ∆t1s1t3s2s3, t1s1t3s2 and so it is connected. For the
local B-convexity, all the cases follow from Corollary 10.9 and the girth conditions
for smaller Coxeter diagrams, except for the case where w has type ŝ1 or ŝ2, say ŝ1,
with u1uu2 of type t̂3mt̂3, where u = u1 ∧ u2 in lk(w,∆∗

s1t3s2m
)0. Then, as in the
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verification of the bowtie freeness in the second, third and fourth paragraph of the
proof, there is a vertex of type ŝ2 in lk(w,∆) that is a neighbour of u1 and u2, which
contradicts the assumption that u is the meet of u1, u2. This justifies the claim.
Consider an induced 4-cycle v1u1v2uk with vi of type t̂2 and u1, uk of type ŝ1.
Since Dvi are B-convex, by Corollary 11.9 we have that D = Dv1 ∩Dv2 is connected.
Let α = u1u2 · · ·uk be an edge-path from u1 to uk in D with the least number of
edges. None of the ui has type m, since otherwise v1 = v2. Since α is not a single
vertex, we obtain a contradiction by applying Proposition 12.16 or Lemma 12.14 to
lk(u2,∆), and Corollary 10.9.

□

Proposition 12.18. Let C be a class of Coxeter diagrams closed under taking in-
duced subdiagrams. Suppose that we have C1 ⊂ C such that each diagram in C − C1
contains a triangle. Then
(1) if each diagram in C1 satisfies the girth condition, then each diagram in C
satisfies the girth condition, and

(2) if in addition for each nonspherical Λ1 ∈ C1 the Artin complex ∆Λ1 is con-
tractible, then for each nonspherical Λ ∈ C the Artin complex ∆Λ is con-
tractible. In particular, each diagram in C satisfies the K(π, 1) conjecture.

Proof. We prove assertion (1) by induction on the number of the vertices of Λ ∈ C.
We can assume that Λ contains a triangle stp. By the inductive hypothesis, the
vertex links of ∆′ = ∆Λ, stp have girth ≥ 6. We have that ∆′ is simply connected by
Lemma 10.2, and so it is systolic. In particular, ∆Λ, st,∆Λ, tp,∆Λ, sp have girth ≥ 6

[JŚ06, Prop 1.4], which verifies part of assertion (1) for Λ. Furthermore, equipping
each triangle with the Euclidean metric of an equilateral triangle, ∆′ is CAT(0).
Consider now an edge pq of Λ with q ̸= s, t. We will justify that ∆Λ, pq has girth

≥ 6. Let v be a vertex of ∆ of type q̂.
We claim that Cv = lk(v,∆) ∩ ∆′ is convex in ∆′ with respect to the CAT(0)
metric. We have that Cv is isomorphic to ∆Λ\{q}, stp, which is connected. Thus to
justify the claim we only need to prove that Cv is locally convex [BH99, Prop 4.14].
Suppose that we have w ∈ Cv with neighbours u1, u2 ∈ Cv and u ∈ ∆′ such that
u1u, uu2 are edges but u1 and u2 are not neighbours. Then vu1uu2 is a 4-cycle in the
link of w, to which we can apply Corollary 10.9 by the inductive hypothesis. Thus
u ∈ Cv, which justifies the claim.
Suppose for contradiction that v1u1v2uk is a 4-cycle in∆Λ, pq with both vi of type q̂.
Then u1, uk ∈ Cv1 ∩Cv2 , which is convex in ∆

′. In particular, Cv1 ∩Cv2 is connected.
Consider an edge-path u1u2 · · ·uk from u1 to uk in Cv1 ∩Cv2 with the least number
of edges. Note that we have k ≥ 3. The 4-cycle u1v1u3v2 in the link of u2 violates
Corollary 10.9 by the inductive hypothesis.
Consider now an edge qr of Λ with q, r /∈ {s, t, p}. We will justify that ∆Λ, qr has
girth ≥ 6. Suppose for contradiction that v1u1v2u2 is a 4-cycle in ∆Λ, qr with both vi
of type q̂ and both ui of type r̂. Consider disc diagrams D → ∆′ with boundary
cycle α0α1α2α3 such that α0 ⊂ Cv1 , α1 ⊂ Cu1 , α2 ⊂ Cv2 , α3 ⊂ Cu2 . Choose D of
minimal area, and among such D, choose D with minimal perimeter. Then the
boundary cycle of D is a concatenation of paths Ii embedded in D that are the
domains of αi, and the intersections xi = Ii ∩ Ii+1 (mod 4) are single vertices by
the minimality assumption. We can assume that D is not a single vertex, since
then we would obtain a contradiction with the inductive hypothesis. In particular,
two consecutive Ii cannot be trivial. Thus, up to a symmetry, we have one of the
following:

• all xi are distinct, and so all Ii are nontrivial,
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• x0 = x1, x2, x3 are distinct, and so only I1 is trivial,
• x0 = x1 ̸= x2 = x3, and so only I1, I3 are trivial.

The xi equal to xj for i ̸= j are called singular. We apply Theorem 2.11 to D. Since
∆′ is CAT(0), the curvature at each interior vertex of D is non-positive. Consider
now an interior vertex y of one of the Ii, with αi ⊂ Cv. If the curvature at y
was positive, then y would be contained in exactly one or two triangles of D. By
the convexity of Cv, the images in ∆′ of these triangles would be contained in Cv.
Consequently, we could alter αi be removing these triangles from D, which would
contradict the minimality of the area of D. Thus the curvature is non-positive also
at each interior vertex of Ii. Consequently, the curvature can be positive only at
the xi, and it then equals π

3
, 2π

3
, or π. Since their sum equals 2π, there must be

(i) a non-sigular xi with curvature ≥ 2π
3
, or

(ii) a singular xi with curvature π.
In case (i), xi is contained in only one triangle od D. Thus if, say, xi = x2, then we
have a 4-cycle in the link of x2 containing v2u2. By the inductive hypothesis and
Corollary 10.9, this 4-cycle has a diagonal, which contradicts the minimality of D.
In case (ii), xi is not contained in any trangle od D. Thus if, say, xi = x0 = x1, then
we have a 4-cycle in the link of x0 containing v1u1v2 and contradicting the minimal
perimeter assumption on D in view of Corollary 10.9 and the inductive hypothesis.
This finishes the proof of assertion (1).
For assertion (2), we first show by induction on the number of the vertices of

Λ ∈ C that ∆Λ is contractible whenever Λ is not spherical. Indeed, we can assume
that Λ contains a triangle stp. Let ∆′ be as in the proof of assertion (1). We proved
that ∆′ is CAT(0), and so it is contractible. By Lemma 10.7, and the inductive
hypothesis, we have that ∆ deformation retracts onto ∆′, and so ∆ is contractible.
The last part of assertion (2) follows from Theorem 1.7. □

Proof of Theorem 12.3. If Λ has multiple connected components, then the asso-
ciated Artin complex is a join of several smaller Artin complexes, one for each
connected component of Λ. Thus it suffices to consider the case where Λ is con-
nected. If |S| ≤ 4, then the theorem follows from Remark 12.6, and Lemmas 12.9
and 12.12. Otherwise, if Λ is complete bipartite, then the theorem follows from
Lemma 12.14. Consequently, the theorem follows from Lemma 12.5, Corollary 12.10,
Propositions 12.16, 12.17, and 12.18. □

By Theorem 1.7, we have the following consequences.

Corollary 12.19. Suppose that all non-spherical Λ without triangles satisfy the
girth condition and have contractible ∆Λ. Then all Artin groups satisfy the K(π, 1)
conjecture.

Theorem 12.20. Let C be a class of Coxeter diagrams closed under taking induced
subdiagrams. Suppose that each Λ ∈ C not containing a triangle satisfies at least
one of the following conditions:
(1) AΛ is spherical, or more generally Λ satisfies the assumption of [Hua24b,
Thm 1.1],

(2) Λc does not contain embedded 4-cycles,
(3) Λ is locally reducible.

Then each AΛ with Λ ∈ C satisfies the K(π, 1) conjecture.

Proof. By Theorem 1.7, and Proposition 12.18, it suffices to show that each Λ in one
of the above classes satisfies the girth condition and, if it is not spherical, then ∆Λ

is contractible. For class (2), this is Theorem 12.3. For class (1), this follows from
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[Hua24b, Prop 9.11 and 9.12]. For class (3), this follows from [Hua24b, Cor 9.14]
(as stated, this result only treats the case where Λ is a locally reducible tree, but
the same argument works for any locally reducible diagram, and it also gives the
contractibility of ∆Λ). □
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