Champlain College — St.-Lambert
MATH 201-203: Calculus II
Review Questions for Test # 3

Instructor: Dr. Ming Me:

1. Test the convergence or divergence of the following sequence, if it is convergent, find
its limit.
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2. Test convergence or divergence of the following series.
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3. Find an exact fraction number to 1.121121--- = 1.121.
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4. Find the interval of convergence of the power series ) >, —
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5. Find Maclaurin series of the following function:

(a) In(1+ x), (b)




Solutions to Review Questions for Test # 3

1(a).
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It converges to %

1(b).
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It diverges to +o0.

1(c). When n is even, then (—1)" =1, and
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When n is odd, then (—1)" = —1, and
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Since the limits of a,, for even n and odd n are different, the limit lim,,_ ., a,, doesn’t exit.
So, the sequence is divergent.
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by using the squeeze theorem, lim,, % = 0. So, it is convergent.
2(a)[Method 1: Limit Comparison Test]. Let a,, = 3= and b, = % = L. Since
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by the limit comparison test, the series > °" a, = > oo 757 and > oo by = > 00 | L
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both have the same convergence or divergence. Since S °°° . b, = > °° L ig divergent
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ecause 1t 1s a p-series wi =1, we know tha ® a, =Y "2 _igalso divergent.
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2(a)[Method 2: Integral Test].
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[substitute: u = 42 — 1, du = 8du,

new limits: v = 3 for z = 1, and u = oo for x = 0]
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So it diverges.
2(b). Since
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by the test for divergence, the series is divergent.
2(c). Let a, = 45’—:1 and b, = 3= = (2)". Notice that,
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by the limit comparison test, the series Y7 an = Y07 7o and Y02 by = > 07 (5)"
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both have the same convergence or divergence. Since >~ | b, = > > ()™ is convergent,
because it is a geometric series with r = 5 < 1, we know that " a, = > 7| 777 is

also convergent.




2(d).
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So, it converges.
3.
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So, the series > > | e

(—2,0). Furthermore, at the endpoint x
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convergent, because it is a p-series with p = 2 (> 1). While, at the other endpoint z = —2,
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the series becomes > 7 , which is absolutely convergent, because ‘ ,

1
and > > — is the p-series with p = 2 (> 1). Therefore, the interval of convergence for
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