
MATH 334 and 354. Midterm 2 – Fall 2003/2004.

Solutions.

Problem 1. Neville’s method is used to interpolate a function using points

x0 = 0, x1 = 1, x2 = 2, x3 = 3

and it is known that

P0,1(1.5) = −2, P1,2(1.5) = −3/2, P0,1,2,3(1.5) = −31/16 .

Find P1,2,3(1.5).

Solution. Neville’s cone gives the value of Lagrange polynomial at a given
point x∗ = 1.5 . Given P0,1(x

∗) and P1,2(x
∗) we can find by Neville’s formula

P0,1,2(x
∗) =

(x∗ − x0) P1,2(x
∗) − (x∗ − x2) P0,1(x

∗)

x2 − x0

=
(1.5 − 0) (−3/2) − (1.5 − 2) (−2)

2 − 0
=

−13

8
= −1.625

so, we conclude that

P0,1,2(1.5) =
−13

8
= −1.625 .

Again by using Neville’s formula we have

−
31

16
= P0,1,2,3(x

∗) =
(x∗ − x0) P1,2,3(x

∗) − (x∗ − x3) P0,1,2

x3 − x0

=
1

3

(

(1.5 − 0) P1,2,3(1.5) − (1.5 − 3)
−13

18

)

and from here

P1,2,3(1.5) = −
9

4
= −2.25.

Problem 2. We interpolate a function f by using nodes

x0 = −2, x1 = −1, x2 = 0, x3 = 1, x4 = 2, x5 = 3

and Newton’s divided difference formula method. The interpolation by using
the nodes

{x0, x1, x2, x3 }

is

P3(x) = 4 − 2(x + 2) +
1

2
(x + 2)(x + 1) +

1

6
(x + 2)(x + 1)x .
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(a) Find interpolation P5 using all the points if

f [x1, x2, x3, x4] = f [x2, x3, x4, x5] = −
1

3
.

(b) Estimate the interpolation error at x = 2.5 if it is known that

sup
−2≤x≤ 3

|f (5)(x)| ≤ 17 and sup
−2≤x≤ 3

|f (6)(x)| ≤ 25 .

(c) If f(2) changes by +1 and f(3) changes by −3 how will the interpolation
value of f(2.5) change ?

Solution. (a) The basic idea here is that if we construct Lagrange inter-
polating polynomial in Newton’s divided difference form, then: If we like to
add an additional interpolation node, we have to add only an additional term
to the interpolating polynomial previously obtained. Here we have to add two
more nodes x4 and x5 so we need f [x0, x1, x2, x3, x4] and f [x0, x1, x2, x3, x4, x5] .
Note that this the main numerical advantage of Newton’s divided difference
formula compared to the Lagrange’s formula of the unique interpolating poly-
nomial. We have

f [x0] = 4, f [x0, x1] = −2, f [x0, x1, x2] = 1/2,

f [x0, x1, x2, x3] = 1/6 .

By using the cone of divided differences we calculate

f [x0, x1, x2, x3, x4] = −
1

8

and
f [x1, x2, x3, x4, x5] = 0 .

Then applying the recursion formula for the divided differences

f [x0, x1, x2, x3, x4, x5] =
1

40
.

Hence, the interpolation polynomial of degree at most 5 based on 6 interpolation
nodes (conditions) x0, x1, x2, x3, x4, x5 in Newton’s form is:

P5(x) =

(

4 − 2(x + 2) +
1

2
(x + 2)(x + 1) +

1

6
(x + 2)(x + 1)x

)

+

(

−
1

8
(x + 2)(x + 1)x(x − 1) +

1

40
(x + 2)(x + 1)x(x − 1)(x − 2)

)

.

The second row of the above formula contains the two additional terms that
we add to the interpolating polynomial P3(x), based on the interpolation nodes
{x0, x1, x2, x3}, in order to obtain the interpolating polynomial P5(x), based on
the interpolation nodes {x0, x1, x2, x3, x4, x5}..
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(b) An upper bound for the interpolating error is

sup−2≤ x≤3 |f (6)(x)|

6 !
(2.22 − 4)(2.52 − 1)(2.5)(3− 2.5)

≤
25

6 !
(2.52 − 4)(2.52 − 1)(2.5)(3 − 2.5) = 0.5126953125 .

(c) To solve (c) we observe that the interpolation nodes are equally
spaced with a starting node x0 = −2, and a step h = 1 so, we can
use Newton’s forward finite difference formula. Denote by f̃ the changed
(perturbed) function. Then

f̃(x0) − f(x0) = 0, f̃(x1) − f(x1) = 0, f̃(x2) − f(x2) = 0,

f̃(x3) − f(x3) = 0, f̃(x4) − f(x4) = 1, f̃(x5) − f(x5) = −3 .

After we calculate the cone of finite differences for f̃ − f at the points
x0.x1, x2, x3, x4, x5 and use it to construct Newton’s forward finite difference
formula:

N(f̃ − f ; x0 + th) = ∆4 (f̃ − f)0

(

t

4

)

+ ∆5 (f̃ − f)0

(

t

5

)

where
∆4 f0 = 1 and ∆5 f0 = −8 .

Here h = 1, x0 = −2 and to x∗ = 2.5 corresponds t∗ = 4.5:

x0 + t∗ h = 2.5 = x∗ → t∗ = 4.5 .

Finally, (t∗ = 2.5) by using the linear property of the interpolating polyno-
mial:

N(f̃ ; 2.5) − N(f ; 2.5) = N(f̃ − f ; 2.5) = N(f̃ − f ; x0 + t∗ h)

= N(f̃ − f ;−2 + 4.5 · 1) = 1

(

t∗

4

)

− 8

(

t∗

5

)

=
t∗(t∗ − 1)(t∗ − 2)(t∗ − 3)

4!
− 8

t∗(t∗ − 1)(t∗ − 2)(t∗ − 3)(t∗ − 4)

5!

= 2.4609375 − 1.96875 = 0.4921875 .

Second solution by using Newton’s divided difference formula and
the cone of divided difference for f̃ − f . We have

(f̃ − f)[x0] = 0, (f̃ − f)[x0, x1] = 0, (f̃ − f)[x0, x1, x2] = 0,

(f̃ − f)[x0, x1, x2, x3] = 0, (f̃ − f)[x0, x1, x2, x3, x4] =
1

24
,

(f̃ − f)[x0, x1, x2, x3, x4, x5] = −
1

15
.
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Hence, (x∗ = 2.5)

N5(f̃ ; 2.5) − N5(f ; 2.5) = N(f̃ − f ; 2.5)

=
1

24
(x∗ + 2)(x∗ + 1)x∗(x∗ − 1) −

1

15
(x∗ + 2)(x∗ + 1)x∗(x∗ − 1)(x∗ − 2)

=
1

24
(2.5 + 2)(2.5 + 1)2.5(2.5− 1) −

1

15
(2.5 + 2)(2.5 + 1)2.5(2.5− 1)(2.5 − 2)

= 2.4609375 − 1.96875 = 0.4921875 .

Note that in the case of equally spaced nodes Newton’s finite dif-
ference formulas are much more simpler than Newton’s divided dif-
ference formula. The finite difference cone is easier to be calculated
than the corresponding divided difference cone!

Problem 3. Solve the equation x3 + 3 x = 5 using Neville’s method in
inverse interpolation based on the data:

x -1 0 1 2
x3 + 3x -4 0 4 14

Solution. We start with organizing the data for the inverse function of the
function y(x) = x5 + 3x − 5. The first derivative

y
′

(x) = 3 x2 + 3 > 0 ( x ∈ (−∞,∞))

so f is one-to-one, i.e., the inverse function is well defined. Also, y(1) = −1 < 0
and y(2) = 9 > 0 so f(x) = 0 has precisely one root on (−∞,∞) by the
Intermediate Value Theorem and the fact that y(x) is increasing function. We
have:

y = x3 + 3x − 5 -9 -5 -1 9
x(y) -1 0 1 2

and the equation x∗ = x(0) is equivalent to y(x∗) = 0 so, to get an approx-
imation for the unique root of y(x) = 0 we have to calculate the interpolating
polynomial for the inverse function x(y) at the point y = 0. Then

P0(0) = −1, P1(0) = 0, P2(0) = 1, P3 = 2 .

P0,1(0) =
−x0 P1 + x1 P0

x1 − x0
=

5

4
.

P1,2(0) =
−x1 P2 + x2 P1

x2 − x1
=

5

4
.

4



P2,3(0) =
−x2 P3 + x3 P2

x3 − x2
=

11

10
.

P0,1,2(0) =
−x0 P1,2 + x2 P0,1

x2 − x0
=

9(5/4)− 1(5/4)

−1 + 9
=

5

4
.

P1,2,3(0) =
−x1 P2,3 + x3 P1,2

x3 − x1
=

5(11/10) + 9(5/4)

14
=

67

56
.

P0,1,2,3(0) =
−x0 P1,2,3 + x3 P0,1,2

x3 − x0
=

9(67/56) + 9(5/4)

18
=

137

112
.

Hence, an approximation by inverse interpolation of the unique root x∗ of
the equation y(x) = 0 based on the given discrete data is

x̃ =
137

112
= 1.223214 ≈ x∗ .

Problem 4. Hermite interpolating polynomial is constructed using New-
ton’s divided difference table. We know that f

′

(0) = −1 and f
′

(1) = 1. Some
entries from the table has been erased:

a) Find all values replaced by ?#.
b) Estimate the interpolation error at x = 1.5 if it is known that

sup
x∈ [0,2]

|f (6)(x)| ≤ 7 and sup
x∈ [0,2]

|f (7)(x)| ≤ 13 .

Solution. a) Let x0 = 0, x1 = 1, x2 = 2. This is Hermite interpolation
based on 6 interpolation data:

f(x0), f
′

(x0), f(x1), f
′

(x1), f(x2), f
′

(x2)

so, the Hermite interpolating polynomial is of degree at most 5. From the cone
of divided differences we have:

f [x0, x1] = −1 f [x1, x1] = f
′

(1) = 1.

Also

f [x1,x2,x2] =
f
′

(x2) − f [x1,x2]

x2 − x1

or
2 = f

′

(x2) − (−2) ⇒ f
′

(x2) = f [x2,x2] = 0 .

f [x0, x0, x1] =
f [x0, x1] − f [x0, x0]

x1 − x0
= (−1 − (−1))/(1 − 0) = 0 .

f [x0, x0, x1, x1] =
f [x0, x1, x1] − f [x0, x0, x1]

x1 − x0
= (2 − 0)/(1− 0) = 2
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and

f [x0, x0, x1, x1, x2, x2] =
f [x0, x1, x1, x2, x2] − f [x0, x0, x1, x1, x2]

x2 − x0

= (15/4− (−9/4))/(2− 0) = 3 .

b) The Hermite interpolant is based 6 interpolation conditions and it is a
polynomial of degree 5. So, according to the error analysis concerning Hermite
Interpolation Formula, for x∗ = 1.5 we have:

|f(x∗) − H5(f ; x∗)| =
|f (6)(ξ)|

6!
(x∗ − x0)

2(x∗ − x1)
2(x∗ − x2)

2,

where the point ξ belongs to the interval [0, 2]. Hence,

|f(1.5) − H5(f ;1.5)| ≤
7

6!
1.52 0.54 = 0.001367188 .

Problem 5. In determining a free cubic spline interpolant S(x) on

a = x0 < x1 < x2 < · · · < xn = b

which of the following must be true?
I. S(xj) = f(xj) for each j = 0, 1, . . . , n.

II. S
′

j(xj+1) = S
′

j+1(xj) for each j = 0, 1, . . . , n − 1.

III. S
′′

(xj) = f
′′

(xj) for each j = 0, 1, . . . , n.

Solution. Of course I must hold because the unique cubic free spline interpol
ant interpolates f at the interpolation nodes xj for j = 0, . . . , n.

As we know, Sj(x) denotes the free spline interpolant on the interval [xj , xj+1]
and Sj+1(x) denotes the free spline interpolant on the interval [xj+1, xj+2] and
we must have

S
′

j(xj+1) = S
′

j+1(xj+1)

because the free cubic spline interpolant is two times continuously differentiable
but this not the condition given by II. There is also one technical reason
which shows that II is not a property of the unique cubic free spline interpolant.
We have no part denoted by Sn(x). As we mentioned the free cubic spline
interpolant on n + 1 nodes consists of n cubic polynomials Sj(x) for [xj , xj+1])
and j = 0, 1, . . . , n − 1. So, there is no Sn(x).

The third III is also not a property of the unique free cubic spline
interpolant: The unique free cubic spline interpolant on n + 1 nodes consists
of n cubic polynomials (Sj(x) for [xj , xj+1]) and j = 0, 1, . . . , n − 1 which are
smoothly connected up to second derivative so,

S
′′

j (xj+1) = S
′′

j+1(xj+1) j = 0, 1, . . . , n − 2
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and in general the second derivative of S is not equal to the second derivative of
f . Moreover, the function f could be only continuous (moreover only bounded)
on [a, b]. In other words the unique free cubic spline interpolant needs and uses
only the functional value of f on [a, b]. Moreover, at the end points x0 = a and
xn = b we have free boundary conditions:

S
′′

(a) = S
′′

(b) = 0

which evidently are not the conditions given by III.
So, the correct answer is E) I only.

Problem 6. Given a function f(x) = a x2 + b x + c and interpolation
nodes

0 = x0 < x1 < · · · < xn−1 < xn = 1 .

a) For which a, b, c the unique clamped cubic interpolant of f based on the
data (xi, f(xi)) i = 0, 1, . . . , n coincides with f .

b) For which a, b, c the unique natural (free) cubic spline interpolant of f
based on the data (xi, f(xi)), i = 0, 1, . . . , n coincides with f .

Solution. First we observe that the data

(xi, f(xi)) i = 0,1, . . . ,n (1)

belong to the polynomial of degree at most 2, or in other words to the graph of
the function f(x) = ax2 + bx + c.

a) Then the unique clamped cubic spline interpolant Scl,f (x) for
(to) f(x) = ax2 + bx + c based on the interpolating data (1) coincides
with the function (is the function by itself) for each real numbers
a, b, c . So, the answer is: For each a, b, c real and f(x) = ax2 + bx + c
we have

Scl,f (x) = f(x) .

To show this we have only to prove that each polynomial of degree
two is a cubic spline. However this is trivial because: In each interval
[xi,xi+1] the function f(x) = ax2 + bx + c is a cubic (polynomial of
degree at most 3). Also, being infinitely many time differentiable, in
particular, it has second continuous derivative on [x0,xn]. And what
is left to check that the cubic spline Scl,f (x) defined by

Scl, f(x) = f(x) x ∈ [x0,xn] (2)

satisfies the boundary conditions:

S
′

(x0) = f
′

(x0), S
′

(xn) = f
′

(xn) .

However this is trivially obtained by differentiating both sides of the
equality (2).
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b) Analogously, we have that the function

f(x) = ax2 + bx + c

is a CUBIC SPLINE by itself. So, it is also a spline interpolant for
(to) f because it is passing true the points

(xi, f(xi)) i = 0,1, . . . ,n

In order
SN,f (x) = f(x)

to be the UNIQUE FREE (NATURAL) SPLINE INTERPOLANT
to (for) f we must have that

S
′′

N,f (x0) = 0 and S
′′

N,f (xn) = 0

which is equivalent to

f
′′

(x0) = 2a = f
′′

(xn) = 0 .

So, the answer is: Only for a = 0 and each real numbers b and c,
the UNIQUE NATURAL CUBIC SPLINE INTERPOLANT TO

f(x) = ax2 + bx + c = bx + c

coincides with (is the function) f .

Please, try to understand the above solution. It will give you more
information and more confidence to WHAT IS A SPLINE INTER-
POLANT.

Problem 7. Construct linear and quadratic least square approximation for
the given data:

xi 3001 3002 3003 3004 3005
yi -2 0 1 -1 0

Solution. Let xi = 3001 + i, i = 0, 1, 2, 3, 4. In order to minimize
computational complexity we shall look for the solution in the form of a Taylor’s
basis about the point a:

A (x − a) + B ,

where

a =
x0 + x1 + x2 + x3 + x4

5
= 3003 .
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For convenience we write a new data table:

xi − a -2 -1 0 1 2
yi -2 0 1 -1 0

and calculate:
5

∑

i=0

(xi − a) = 0,

5
∑

i=0

yi = −2,

5
∑

i=0

(xi − a)2 = 10,

5
∑

i=0

(xi − a) yi = 3

and the system to determine the coefficient A and B is:

0 A + 5 B = −2

10 A + 0 B = 3

and from here

B =
−2

5
and A =

3

10
.

Hence, the unique discrete least squares approximant to y of degree 1 is:

3

10
(x − 3003) −

2

5
.

Analogously, looking for the unique discrete least square approximant to y
by polynomials of degree 2 we use Taylor’s representation about the point a:

C (x − a)2 + B (x − a) + A .

We calculate
5

∑

i=0

(xi − a)3 = 0,

5
∑

i=0

(xi − a)4 = 34,

5
∑

i=0

(xi − a)2 yi = −9

and the linear system to determine the unique discrete least squares approximant
of degree 2 is:

10 C + 0 B + 5 A = −2

0 C + 10 B + 0 A = 3

34 C + 0 B + 10 A = −9 .

Hence,

C = −
5

14
, B =

3

10
, A =

11

35
and the unique least squares approximant has the form:

−
5

14
(x − 3003)2 +

3

10
(x − 3003) +

11

35
.
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