
NA 334 and 354, Midterm 1, FALL 2003

Solutions and Discussions

1. Problem 1: Let f(x) = 1
1+x

and x0 = 0.

a) Approximate f(1/4) by T2(1/4), where T2 is the second Taylor polynomial
for f about x0. Estimate the error.

b) Use four-digit rounding arithmetic to calculate T2(1/4) and the actual
value f(1/4). Compute the absolute error and the relative error of the approx-
imation.

Solution. a)

Tn(x) =
n
∑

k=0

f (k)(x0)

k!
(x − x0)

k

and

f(x) = Tn(x) +
f (n+1)(ξx)

(n + 1)!
(x − x0)

n+1 .

So, n = 2 in our case and we have to calculate f
′

, f
′′

, and f
′′′

:

f(x) = (1+x)−1, f
′

(x) = −(1+x)−2, f
′′

(x) = 2(1+x)−3, f
′′′

(x) = −6(1+x)−4 .

From here: ¿

f(0) = 1, f
′

(0) = −1, f
′′

(0) = 2, f
′′′

(x) = −6(1 + x)−4

and
T2(x) = x2 − x + 1

and

f(x) = T2(x) +
−6 (1 + ξx)−4

3!
(x − 0)3

and in view of this:

T2(0.25) = 0.8125, f(0.25) = 0.8,

|f(0.25) − T2(0.25)| ≤ (0.25)3 = 0.015625 ≈ 10−1 × 0.15625

b) Absolute Error:

|f(1/4) − T2(1/4)| = |0.8 − 0.8125| = 0.0125 = 10−1 × 0.125

Relative Error:

|f(1/4) − T2(1/4)|
|f(1/4)| =

|0.8 − 0.8125|
|0.8| = 0.0156252 ≈ 10−1 × 0.1563

by using four-digit rounding arithmetic.
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Problem 2.

a) Let p = 3
√

9 ∈ [2, 2.5] (please check). Compare the following three
fixed-point iterative methods with p0 = 2 to approximate p :

a) pn =
1

2

(

pn−1 +
9

p2
n−1

)

;

b) pn =
2p3

n−1 + 9

3p2
n−1

;

c) pn = 2 +
1

p2
n−1 + 2 pn−1 + 4

.

Order the three methods according to their fastness. What is the order of
convergence of each of the methods ?

b) By using the fastest method compute (find an approximation of) p with
accuracy 10−4.

Solution. a) Obviously, 3
√

9 = 2.080083 ∈ [2, 2.5]. First we denote by
g1, g2, and g3 the iterative functions of the methods a), b), and c), respectively.
Then,

g1(x) =
x

2
+ 4.5 x−2, g2(x) =

2 x3 + 9

3 x2
= , g3(x) = 2 +

1

x2 + 2 x + 4

and
f(x) = x3 − 9, f(x) = 0 .

Second, we calculate the first derivatives of g1, g2, and g3 at p by using that
p3 = 9 and p ∈ [2, 2.5]. We obtain

g
′

1(p) =
1

2
− 9 p−3 = 0.5 − 1 = −0.5 6= 0

so, the first method possesses a linear order of convergence. For the second
method, given by b) we can compute directly

g
′

2(p) =
2 p4 − 18 p

3 p4
=

(2p) × (9) − 18 p

3p4
= 0

and from here it follows that the iterative method b) has at least quadratic
order of convergence. For this method we can proceed also in the following
way: First we observe that the method b) is in fact Newton’s method:

g2(x) = x − f(x)

f ′(x)
= x − x3 − 9

3 x2
=

2 x3 + 9

3 x2

so, to conclude in this way that b) has at least quadratic order of
convergence we must check

f
′

(p) = 3 p2 6= 0 .
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( Note that if f
′

(p) = 0, then Newton’s method has no quadratic
order of convergence and that is because we have considered in class
its modifications.)

Now, to establish the exact order of convergence of b) we have to check the
second derivatives of g2. We have

g
′′

2 (p) =

(

f(p)f
′′

(p)

[f ′(p)]2

)
′

=
(f

′

(p)f
′′

(p) + f(p)f
′′′

(p))[f
′

(p)]2 − f(p)f
′′

(p)(2f
′

(p)f
′′

(p))

[f ′(p)]4

=
f

′′

(p)

f ′(p)
=

6 p

3 p2
=

2

p
6= 0

so, the order of convergence of b) is exactly 2 (a quadratic order of
convergence).

Now, we consider the method c). We have

g
′

3(x) = − 2(x + 1)

(x2 + 2x + 4)2

which is obviously 6= 0 for x = p so, the iterative method c) has linear
order of convergence.

Now, we can conclude immediately that b) is the fastest one. To
compare a) and c) we can proceed in two ways:

One of them is to calculate approximately (by using the approximate value
of 3

√
9 which practically is not always possible:

|g′

3(p)| =

∣

∣

∣

∣

− 2(p + 1)

(p2 + 2p + 4)2

∣

∣

∣

∣

= | − 2(p + 1)(p − 2)2| < 0.03951 < 0.5

and from here c) is faster than a).
On the other hand practically we can estimate

|g′

3(x)| =

∣

∣

∣

∣

2(x + 1)

(x2 + 2x + 4)2

∣

∣

∣

∣

<
2(2.5 + 1)

(12)2
< 0.04862 < 0.5

and from here also follows that c) is faster than a). On the other hand, we saw
that a) and c) have linear order of convergence and b) has a quadratic order of
convergence.

However, the solution is not complete. We have to proof that the
three methods a), b), and c) are convergent in [2, 2.5] with an initial
approximation p0 = 2

We consider again the first method a) with

g1(x) =
x

2
+ 4.5 x−2, g

′

1(x) =
1

2
− 9 x−3, g

′′

1 (x) = 27 x−4 > 0 x ∈ [2, 2.5] .
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and g
′

1(2) = −0.625, g
′

1(2.5) = −0.076 and g
′

1 is increasing so,

max
x∈ [2,2.5]

|g′

1(x)| = 0.625 < 1

and from here the function g1 is contractive in [2, 2.5] with coefficient of construc-
tiveness k1 = 0.625. What is left is to prove that all other approximations pn

where pn = g1(pn−1) will belong to [2, 2.5]. It can be done in many ways by using
the materials that we have considered in class and you have copies of these mate-
rials. Take the midpoint of [2, 2.5] which is (a = 2, b = 2.5) and (a+b)/2 = 2.25.
Now it is obvious that a = p0 = 2 < p = 3

√
9 < (a + b)/2 = 2.25. Then, g1

being contractive we have that all next approximations pn, n ≥ 1 will belong
to the interval [2, 2.5]. Another method is by using the fact that g

′

1(x) < 0
in [2, 2.5] starting from p0 < p = 3

√
9 we are sure that the next approximation

p1 will be grater than p. So, it is sufficient to check that p1 belongs to [2, 2.5].
From the theory we expect p1 > p and this is the case:

p1 = g(p0) = 2.125 > p =
3
√

9.

Let us calculate few more approximations by using a):

p0 = 2 < p2 = g1(p1) = 2.05903979 < p =
3
√

9 = 2.080083823 .

p1 > p3 = g1(p2) = 2.090929554 > p =
3
√

9 = 2.080083823

p4 = 2.074745198, p5 = 2.082773759, p6 = 2.078744064, p7 = 2.080754998,

p8 = 2.07974856 .

and this confirms our theoretical conclusions (please, see the materials that you
have):

p0 < p2 < p4 < p6 < · · · < p =
3
√

9

and
p1 > p3 > p5 > p7 > · · · > p =

3
√

9

and in this particular case the following stopping rule can be very
useful:

|pn − p| < |pn − pn−1| (1)

that can replace very efficiently the standard general estimates given by
the coefficient of constructiveness k1 = 0.625 from which I would like to mention
the following general stopping rule for fixed-point iterative methods that
can be found in your materials:

|pn − p| <
k1

1 − k1
|pn − pn−1| (k1 = 0.625) (2).

Applying (1) we obtain

|p8 − p| < |p8 − p7| = |2.07974856 − 2.080754998| = 0.001006437
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but applying (2)

|p8 − p| <
k1

1 − k1
|p8 − p7| =

0.625

1 − 0.625
|2.07974856 − 2.080754998|

= (1.6666) × 0.001006437 = 0.001677395.

Now we consider the Newton’s method b) which is the fastest one
between a), b) and c). Here we perform the solution of b) from Prob-
lem 2. First we prove that the method is convergent with p0 = 2. This can be
done at least by two ways. The first one is to consider Newton’s method as a
particular (special) case of fixed-point method with

g2(x) =
2

3
x +

9

3
x−2, g

′

2(x) =
2

3

(

1 − 9

x3

)

, g
′′

2 (x) = 18 x−4 > 0 x ∈ [2, 2.5] .

Hence, g
′

2(x) is increasing in [2, 2.5], g
′

2(p) = 0, g
′

2(2) = −0.083, g
′

2(2.5) =
0.282666, and from here

k2 = max
x∈ [2,2.5]

|g′

2(x)| < 0.2827 < 1

to conclude that g2 is contractive in [2, 2.5].
Note that here g

′

2(x) is negative in [2, p) and g
′

2(x) is positive in (p, 2.5]
so, we can not make the same conclusions for monotone behavior of
the consecutive approximations pn = g2(pn−1. However, the geometric
interpretation of Newton’s method by using the fact that f(x) = x3 −
9 is convex on [2, 2.5] gives very clear picture about the monotone
behavior of the approximations pn:

p0 < p, p < p1 = g2(p0) = 2.0833333 < b = 2.5

and all other approximations must satisfy:

p1 > p2 > p3 > p4 > · · · > p =
3
√

9

so, they all are in [2, 2.5]. So, the method is convergent.
Another way to see that all pn are inside [2, 2.5] is to observe (as it was done

with the method a)) that p belongs to the interval [p0, (a + b)/2] where a = 2
and b = 2.5 are the end point of the interval [2, 2.5] under consideration. From
here and by the fact that g2 is contractive follows that all other approximations
will belong to the interval [2, 2.5]. So, the method b) is convergent.

Now we shall use the method b) to calculate p = 3
√

9 with accuracy (error)
10−4. This can be done in many ways. We shall consider three of them:

1. First following the following well known estimates for a fixed-point iter-
ative methods:

|pn − p| <
kn
2

1 − k2
|p1 − p0| (3)
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or
|pn − p| < kn

2 max(|b − p0|, |p0 − a|) (4)

where k2 = 0.2827, p = 3
√

9, a = 2 and b = 2.5. Let us apply (3). We must
have

kn
2

1 − k2
|p1 − p0| =

(0.2827)n

1 − 0.2827
|p1 − p0| =

(0.2827)n

1 − 0.2827
|2.0833333 − 2|

= 0.116176 × (0.2827)n < 10−4 .

For n = 6 we have

0.116176 × (0.2827)6 < 0.0000594 < 10−4

and for n = 5
0.116176 × (0.2827)5 = 0.000209 > 10−4

to conclude that p6will give the desired accuracy.

2. By using the stopping rule for fixed-point iterative methods (as it was
done in method a) estimating the error of p8)

|pn − p| <
k2

1 − k2
|pn − pn−1| (k2 = 0.2827) (2)

or
|pn − p| < 0.3941 |pn − pn−1| .

We calculate:

p0 = 2, p1 = 2.0833333, p2 = 2.080088911, p3 = 2.080083823 .

So, we have

|p2 − p| < 0.3941 |p2 − p1| = 0.3941 |2.080088911− 2.0833333| = 0.00127 > 10−4.

|p3 − p| < 0.3941 |p3 − p2| = 0.3941 |2.080083823 − 2.080088911|
= 0.000002005 < 10−4

and from here p3 approximates p with error 10−4. Note that here we obtain
that we need only 3 approximations not 6 as it was in 1.

3. Here we shall use the best stopping rule (error estimate) concern-
ing Newton’s method:

|pn − p| <
M2

2 m1
|pn − pn−1|2 (4)

where M2∗ is an upper bound for the maximum of |f ′′

(x)| on the interval [a, b]
(a = 2, b = 2.5, and f(x) = x3 − 9 in our case) and m1 is a lower bound for the
minimum of |f ′

(x)| on the interval [2, 2.5]. In other words for M2 can serve any

6



number such that such that |f ′′

(x)| ≤ M2 on [2, 2.5] and for m1 any number
such that |f ′

(x)| ≥ m1 on the interval [2, 2.5]. We have

f(x) = x3 − 9, f
′

(x) = 3 x2 ≥ 12, f
′′

(x) = 6x ≤ 15

so, (4) takes the form

|pn − p| <
15

2 × 12
|pn − pn−1|2 = 0.625 |pn − pn−1|2 . (5)

Now, by using (5) we calculate (p0 = 2, p1 = 2.0833333, p2 = 2.080088911, p3 =
2.080083823):

|p2 − p| < 0.625 |p2 − p1|2

= 0.625 |2.080088911 − 2.0833333|2 = 0.000006578 < 10−4

so, we obtain that p2 give also the desired approximation of 3
√

9 = 2.080083823
with error 10−4. Note that we got by the method 2. that p3 will give the
desired approximation but not p2. This shows also that the way 3. is
optimal concerning the Newton’s method because it is using the fact
that Newton has a quadratic order of convergence. The ways 1. and
2. have used only that Newton’s method is a special case, fixed-point
method that in particular has at least linear order of convergence.

c) The method c) can be studied the same way as we studied method a).
Here,

g3(x) = 2 +
1

x2 + 2x + 4
, g

′

3(x) = − 2(x + 1)

(x2 + 2x + 4)2
, k3 = 0, 048611 < 1

and because the first derivative of g
′

3(x) < 0 is negative on [2, 2.5] we have the
same monotone behavior as it was in a):

p0 < p2 < p4 < p6 < · · · < p =
3
√

9

and
p1 > p3 > p5 > p7 > · · · > p =

3
√

9

with p0 = 2 and p1 = g3(p0) = 2.08333333 ∈ [2, 2.5] and for the same reasons
all other approximations will belong to [2, 2.5]. We obtained in the first
part of our discussions that this method, being convergent, is faster
than a), but slower than b).
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Problem 4. At year 1225, Leonardo de Pisa found that the number p̃ =
1.3688081 is a root of the equation f(x) = 0, where f(x) = x3 +2x2 +10x− 20.
The method to obtain the above approximation of the root is not known.

a) Prove that f(x) = 0 has only one real root.

b) Obtain the above approximation of the unique real root of f(x) = 0 by
using a fixed point iterative scheme (NOT Newton’s method and not secant
method).

Solution. a) We calculate f(0) = −20 < 0 and f(1.5) = 2.875 > 0 to
conclude by the I.V.T. that f(x) at least one real root. On the other hand,
f

′

(x) = 3x2 + 4x + 10 > 0 and assuming that f has at least two real roots
we arrive to a contradiction by using Rolle’s Theorem. We may use also the
fact that f is increasing function on the x-axis, the first derivative of f(x) being
positive on the x-axis.

Solution 1 of b) We can obtain the above approximation by using the
following fixed-point method:

x = g1(x), g1(x) =
20

x2 + 2x + 10

on the interval [1, 1.5]. We calculate

|g′

1(x)| =

∣

∣

∣

∣

−40
x + 1

(x2 + 2x + 10)2

∣

∣

∣

∣

<
40× 2.5

132
= 0.59172 < 1

so, k1 = 0.59172. On the other hand the first derivative of g1 is negative and
if we started with p0 = 1.5 we shall have

p0 > p2 > p4 > p6 > · · · > p

and
p1 < p3 < p5 < p7 < · · · < p ,

where p is the the only real root of f(x) = 0. Also, because the midpoint
of the interval [1, 1.5] namely, 1.25 satisfies p > 1.25 the we are sure that all
other approximations will belong to the interval [1, 1.5]. Let us calculate few
approximations:

p0 = 1.5, p1 = 1.31147541, p2 = 1.394416339, p3 = 1.357475621 .
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Solution 2 of b). Now we shall obtain faster than the above method by
introducing a real parameter α (as it was done in class when studding iterative
methods for x2 = 2).
The nonlinear equation of Leonardo is equivalent to the equation:

x(x2 + 2 x + 10 + α) = 20 + α x

so,

gα(x) =
20 + α x

x2 + 2 x + 10 + α

and

g
′

α(x) =
−α x2 + 10α + α2 − 40(x + 1)

(x2 + 2 x + 10 + α)2

Denoting by
rα(x) = −α x2 + 10α + α2 − 40(x + 1)

the nominator of g
′

α(x) we obtain

r
′

α(x) = −2 αx − 40 < 0

for x ∈ [1, 1.5] and α > 0 so, r(x) is decreasing. Now

rα(1) = 9 α + α2 − 80, r(1.5) = 7.75 α + α2 − 90 .

Take now α = 5 to obtain

r5(1) = 45 + 25 − 80 = −10, r(1.5) = 38.75 + 25 − 90 = −26.25

and by using the fact that r5 is decreasing in [1, 1.5] we obtain

max
x∈ [1,1.5]

|g′

5(x)| ≤ 26.25

182
= 0.08101

and from here
kg5

= 0.08101 .

We can make even better. Solving the quadratic equation

9 α + α2 − 80 = 0

we obtain α0 = 5.5124 and rα0
(5.5124) = −16.89163 so,

max
x∈ [1,1.5]

|g′

α0
(x)| ≤ 16.89163

(13 + 5.5124)2
= 0.04929

kgα0
= 0.04929 .

so we shall calculate by using g5 and gα0
, where α0 = 5.5124.

Calculations by using

g5(x) =
20 + 5 x

x2 + 2 x + 15
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p0 = 1.5, p1 = 1.06217, p2 = 1.386721009, p3 = 1.367435383,

p4 = 1.368911948, p5 = 1.368800245, p6 = 1.368808703, p7 = 1.368808063,

p8 = 1.368808111, p9 = 1.368808108, p10 = 1.368808108 .

Calculations by using

g5(x) =
20 + 5.5124 x

x2 + 2 x + 15.5124

p0 = 1.5, p1 = 1.361528532, p2 = 1.36915689, p3 = 1.368791246,

p4 = 1.368808923, p5 = 1.368808068, p6 = 1.36880811, p7 = 1.368808108.

Problem 3. By the Newton’s iterative method b):

p0 = 2, p1 = 2.0833333, p2 = 2.080088911, p3 = 2.080083823

so,
∆ p0 = p1 − p0 = 0.0833333, [∆ p0]

2 = 0.006944438

∆2 p0 = p2 − 2 p1 + p0 = −0.08657769

and

p̂0 = p0 − [∆ p0]
2

∆2 p0
= 2.080210489 .

Then

p
(1)
1 = g2(p

(1)
0 ) = g2(p̂0) = 2.080083831 (

3
√

9 = 2.080083823) .
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