CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	$\mathbf{Section}(\mathbf{s})$
Mathematics	203	All
Examination	Date	Pages
Final	April 2007	3
Instructors		Course Examiner
B. Brown, J. Hayes, R. Mearns, M. Mei, D. Sevilla-Gonzalez		H. Proppe
Special Instructions		
> Calculators are not :	allowed.	

MARKS

- [8] 1. (a) Let $f(x) = x^2 + 1$ and $g(x) = \sin x$. Find $f \circ g$ and $g \circ f$.
 - (b) Find the inverse of the function $f(x) = e^{2x} 1$. Determine the domain and range of f and f^{-1} .
- 2. Evaluate the limits:

(a)
$$\lim_{x \to 7} \frac{x^2 - 6x - 7}{\sqrt{x+2} - 3}$$

(a)
$$\lim_{x \to 7} \frac{x^2 - 6x - 7}{\sqrt{x + 2} - 3}$$
 (b) $\lim_{x \to -\infty} \frac{4x^2 \sqrt{9x^6 + 2x^2}}{x^5 + 3}$

Do not use l'Hopital's rule.

[12] **3.** (a) Consider the function $f(x) = \frac{|x+1|}{r^2-1}$.

Calculate both one-sided limits at the point(s) where the function is undefined.

(b) Find parameters a and b such that the function

$$f(x) = \begin{cases} 1 - \frac{x^2 - x}{x^2 - 1}, & \text{if } 0 \le x < 1 \\ a, & \text{if } x = 1 \\ x + b, & \text{if } x > 1 \end{cases}$$

will be continuous at every point. Sketch the graph of this function.

[12] 4. Find derivatives of the functions (do not simplify the answer):

(a)
$$f(x) = e^{-x^2} (\cos x + \tan x)^2$$
;

(b)
$$f(x) = \frac{\ln(1+x^2)}{1+\arctan(2x)}$$
;

(c)
$$f(x) = \sec^3(\sqrt{1+x^2});$$

- (d) $f(x) = (\sin(5x))^{x^3}$ (use logarithmic differentiation).
- [12] 5. Given the function $f(x) = \sqrt{3x+1}$,
 - (a) Use appropriate differentiation rules to find the derivative of the function.
 - (b) Use the definition of derivative to verify (a).
 - (c) Find the differential of the function at x = 1.
 - (d) Use the differential above with the appropriate choice of $dx = \Delta x$ to estimate $\sqrt{5}$.
- [10] 6. (a) A curve called a lemniscate is defined implicitly by the equation $2(x^2 + y^2)^2 = 25(x^2 y^2)$. Verify that the point (3, 1) belongs to the curve. Find an equation of the tangent line to the curve at this point.
 - (b) Use l'Hopital's rule to evaluate $\lim_{x\to 0} \frac{1-\cos x}{(\ln(x+1))^2}$.
- [8] 7. (a) Let $f(x) = \arcsin(x^2)$. Find f''(x).
 - (b) Let $f(x) = 3x^2 + 2x + 5$. Find a number c that satisfies the Mean Value Theorem for the function f(x) on [-1,1].

- [12] 8. (a) A particle is moving along the curve $y = 4\sqrt{x}$. As the particle passes the point (9, 12) its x-coordinate is increasing at a rate of 3 cm/sec. How fast is the distance from the particle to the origin changing at this instant?
 - (b) Find the area of the largest rectangle that has its base on the x axis and its other two vertices above the x axis and lying on the parabola $y = 12 x^2$.
- [16] 9. Given the function $f(x) = \frac{e^x}{x}$,
 - (a) Find the domain and check for symmetry. Find asymptotes (if any).
 - (b) Calculate f'(x) and use it to determine interval(s) where the function is increasing, interval(s) where the function is decreasing, and local extrema (if any).
 - (c) Calculate f''(x) and use it to determine interval(s) where the function is concave upward, interval(s) where the function is concave downward and inflection point(s) (if any).
 - (d) Sketch the graph of the function.

[5] Bonus Question

Let f(x) = x|x|. Use the definition of the derivative to show that f'(0) exists, then find f'(x) for any x.