Single Variable Calculus -Early Transcendentals, 5th ed. by J. Stewart

Department of Mathematics & Statistics

Course	Number	Section(s)
Mathematics	203/4	All
Examination	Date	Pages
Final	April 2004	3
Instructors		Course Examiner
M. Beg, M. Bertola, A. Boyarsky, R. Mearns, B. Rhodes, A. Saikia		Y. Khidirov
Special Instructions	**************************************	
▷ Calculators are not	allowed.	

MARKS

- [10] 1. (a) Suppose $f(x) = \sqrt{1-x^2}$ and $g(x) = \cos x$. Find $f \circ g \circ f$ and $g \circ f \circ g$. Simplify.
 - (b) Find the inverse of the function $f(x) = \sqrt{3^x 1}$. Determine the domain and range of f and f^{-1} .
- [10]Evaluate the limits:

(a)
$$\lim_{x \to 3} \frac{\sqrt{2x-5}-1}{9-x^2}$$

(a)
$$\lim_{x \to 3} \frac{\sqrt{2x-5}-1}{9-x^2}$$
 (b) $\lim_{x \to \infty} \frac{(2x-1)^2(x^2+1)}{(x+1)^3(2-3x)}$

Do not use l'Hopital's rule.

3. (a) Consider the function $f(x) = \frac{|x+1|}{x^2 - 2x - 3}$.

Calculate both one-sided limits at the point(s) where the function is undefined.

(b) Find parameters a and b such that the function

$$f(x) = \begin{cases} x+1, & \text{if} & x \le 0\\ ax^2 + b, & \text{if} & 0 < x \le 1\\ x-1, & \text{if} & x > 1 \end{cases}$$

will be continuous at every point. Sketch the graph of this function.

[15] 4. Find derivatives of the functions (do not simplify the answer):

(a)
$$f(x) = \frac{2\sqrt{x} - x^2 + 3x}{x\sqrt{x}}$$
;

(b)
$$f(x) = \left(x^3 - \frac{1}{x}\right)\sqrt{\cos x};$$

(c)
$$f(x) = \ln(1 + \sin^2(3x))$$
;

(d)
$$f(x) = \frac{\arctan(x^2)}{x^2 + 1}$$
;

- (e) $f(x) = x^{\sin x}$ (use logarithmic differentiation).
- [12] 5. Given the function $f(x) = \frac{1}{\sqrt{2x}}$,
 - (a) Use appropriate differentiation rules to find the derivative of the function.
 - (b) Use the definition of derivative to verify (a).
 - (c) Find the differential of the function.
 - (d) Use the differential above (with appropriate choice of x_0 and Δx) to approximate $\frac{1}{\sqrt{4.1}}$.
- [15] **6.** (a) The equation of a curve defined implictly is $2e^{x+y} = x^2y^2 \frac{x}{y}$. Verify that the point (1,-1) belongs to the curve. Find an equation of the tangent line to the curve at this point.

(b) Let
$$f(x) = \frac{3x^2 + 5}{x^2}$$
. Find $f^{(3)}(x)$; $f^{(33)}(x)$.

(c) Use l'Hopital's rule to evaluate $\lim_{x\to 0} \frac{e^{x^2}-1}{x\sin x}$.

- [10] 7. (a) A particle is moving along the plane curve $xy^3 = 8$. At the moment when x = 1 the x-coordinate is increasing at a rate of 3 cm/sec. Is the y-coordinate increasing or decreasing at this moment? How fast?
 - (b) Find the point(s) x at which the tangent line to the graph of function $f(x) = x^5 10x^2 + 10$ has minimum slope (do not graph).
- [16] 8. Given the function $f(x) = \frac{x}{x^2 + 4}$,
 - (a) Find the domain and check for symmetry. Find asymptotes (if any).
 - (b) Calculate f'(x) and use it to determine interval(s) where the function is increasing, interval(s) where the function is decreasing, and local extrema (if any).
 - (c) Calculate f''(x) and use it to determine interval(s) where the function is concave upward, interval(s) where the function is concave downward and inflection point(s) (if any).
 - (d) Sketch the graph of the function.
- [5] Bonus Question

Given the equation $x^5 - 3x^3 - 1 = 0$,

- (a) Use the Intermediate Value Theorem to show that there is a root between −1 and 0.
- (b) Use the Mean Value Theorem to show that the equation has exactly one root in this interval.