Department of Mathematics & Statistics Concordia University

MAST 219

Multivariable Calculus II Winter 2005

Instructor: Dr. M. Mei, Office: LB 541-1 (SGW), Phone: 848-2424, Ext. 3236

Email: mei@mathstat.concordia.ca

Office Hours:

Prerequisites: Concordia MAST 218 or equivalent.

Text: *Multivariable Calculus*, 5th Edition, by J. Stewart.

Tests & Exams: A one-hour midterm test will be given in week 7 weighing 40%.

Final Grade: Final examination 100%

or

Mid-Term 40% Final examination 60%

Assignments: Assignments are very important as they indicate the level of difficulty of

the problems that the student is expected to solve. Therefore, every effort should be made to do with them. Solutions are available (after the

assignments are returned) at the Copy Centre.

Week	Sections	Topics	Assignments
1	16.1 - 16.3	Double Integral	P. 1024: 3
		Iterated Integrals	P. 1030: 2, 6, 8, 11, 12, 19, 29
			P. 1038: 9, 13, 18, 25, 26, 43, 46
2	16.4 - 16.5	Double Integrals in Polar Coordinates	P. 1044: 10, 12, 13, 17, 24, 25, 36(a)
		Applications	P. 1054: 5
3	16.7 - 16.8	Triple & Iterated Integrals, Applications	P. 1066: 3, 9, 17, 31, 33
		Integration in Cylindrical and Spherical	P. 1073: 7, 11, 13, 18, 20, 29, 36, 38
		Coordinates	
4	16.9	Change of Variables	P. 1084: 7, 12, 14, 18, 19
			P. 1087: 31, 41
5	17.1 - 17.3	Vector Integrals, Line Integrals,	P. 1107: 1, 7, 10, 14, 31, 37
		The Fundamental Theorem	P. 1117: 8, 17, 20
6	17.4 - 17.5	Green's Theorem	P. 1124: 4, 9, 10, 11, 18, 19
		Curl and Divergence	P. 1132: 3, 15, 20, 25, 31
7	17.6 & 17.7	Parametric Surfaces, Tangent Planes and	P. 1142: 6, 12, 21, 24, 31, 40, 43
		Normal Vectors, Surface Area, Surface	P. 1155: 4, 6, 16, 23
		Integrals	
8	17.8	Stokes Theorems	P. 1161: 2, 3, 8, 10, 20(b)
9	17.9	Divergence Theorem	P. 1168: 3, 8, 11, 15, 27
10	Only in the	First Order Differential Equations (D.E.),	From the lecture notes
	lecture	Exact Solution Methods, Applications	
	notes		
11	18.1	Second Order Linear Equations	P. 1138: 4, 13, 18, 23, 28
		(Non-Homogeneous	
12	18.2	Second Order Linear Equations	P. 1190: 1, 2, 3, 9, 10, 22
		(Non-Homogeneous), Methods of Variation	
		of Parameters & Undetermined Coefficients	
13		REVIEW	