Math 198-141C: Final Examination (2001/2002)

Notice:

- 1. No calculators allowed.
- 2. No textbooks, classnotes or integral formulas allowed.
- 3. Show all your work.
- 1. (16 pts, 4 pts for each) Evaluate integrals:

a).
$$\int_0^{\pi/2} \cos^3 \pi x \, dx;$$
 b). $\int x \ln x \, dx;$ c). $\int \frac{x+1}{x^2-x} \, dx;$ d). $\int \frac{x^2}{\sqrt{1-x^2}} \, dx.$

2. (8 pts, 4 pts for each) For each of the following integrals, determine whether it is convergent or divergent. If it is convergent, find its value.

a).
$$\int_0^\infty \sin x \, dx$$
; b). $\int_0^3 \frac{1}{(x-1)^{4/5}} \, dx$.

3. (8 pts, 4 pts for each) For each of the following sequences, determine whether it is convergent or divergent. If it is convergent, find its value.

a).
$$\left\{ n \sin \frac{\pi}{n} \right\}$$
; b). $\left\{ 2^n e^{-n} \right\}$.

4. (8 pts, 4 pts for each) For each of the following series, determine whether it is convergent or divergent, conditionally convergent and/or absolutely convergent.

a).
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{2^n}$$
; b). $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+2} - \sqrt{n})$.

5. (10 pts) Find the area that is inside the circle $r = 3\cos\theta$ and outside the curve $r = 2 - \cos\theta$.

6. (10 pts) For the curve given parametrically by $x = 2t^3 + t^2$ and $y = 2 - t^2$, determine

- a). the equation of the tangent line at the point (x, y) = (3, 1);
- b). the value of $\frac{d^2y}{dx^2}$ at the point (x,y)=(3,1).

7. (40 pts, 10 pts for each sub-question) For the arc of the parabola $y = x^2$ from A(0,0) to B(1,1), use the methods of the calculus to find

- a). the length of the arc; (**Hint**: $\int \sqrt{a^2 + x^2} dx = \frac{1}{2} x \sqrt{a^2 + x^2} + \frac{a^2}{2} \ln(x + \sqrt{a^2 + x^2}) + C$)
- b). the area of the region bounded by the arc, the x-axis and the line x=1;
- c). the volume of the solid obtained by rotating the region specified in (b) about the x-axis;

1

d). the surface area of the solid obtained in (c).

(Hint:
$$\int x^2 \sqrt{a^2 + x^2} dx = \frac{x}{8} (a^2 + 2x^2) \sqrt{a^2 + x^2} - \frac{a^4}{8} \ln(x + \sqrt{a^2 + x^2}) + C$$
)

Solutions to Final Examination of Math 141C (2001-2002)

1. Solution.

a). Let $u = \sin \pi x$, then $du = \pi \cos \pi x dx$ and u = 0 for x = 0, $u = \sin \frac{\pi^2}{2}$ for $x = \frac{\pi}{2}$. By the substitution rule, we have

$$\int_0^{\pi/2} \cos^3 \pi x dx = \int_0^{\pi/2} \cos^2 \pi x \cos \pi x dx = \int_0^{\pi/2} (1 - \sin^2 \pi x) \cos \pi x dx$$
$$= \frac{1}{\pi} \int_0^{\sin \frac{\pi^2}{2}} (1 - u^2) du = \frac{1}{\pi} \left(u - \frac{u^3}{3} \right) \Big|_0^{\sin \frac{\pi^2}{2}}$$
$$= \frac{1}{\pi} \left(\sin \frac{\pi^2}{2} - \frac{1}{3} \sin^3 \frac{\pi^2}{2} \right).$$

b). We integrat it by parts to have

$$\int x \ln x dx = \frac{1}{2}x^2 \ln x - \int \frac{1}{2}x^2 \cdot \frac{1}{x} dx = \frac{1}{2}x^2 \ln x - \frac{1}{2}\int x dx = \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C.$$

c). Since $x^2 - x = x(x-1)$, then the integrand can be expressed in the form

$$\frac{x+1}{x^2 - x} = \frac{A}{x} + \frac{B}{x-1}$$

for some constants A and B. Multiplying both sides of the above equation by x(x-1) yields

$$x + 1 = (A + B)x - A.$$

Comparing the coefficients gives

$$A + B = 0, -A = 1,$$

which solves A = -1 and B = 2. Thus

$$\int \frac{x+1}{x^2 - x} dx = \int \left(\frac{-1}{x} + \frac{2}{x-1}\right) dx = -\ln|x| + 2\ln|x-1| + C.$$

d). Let $x = \sin \theta$ for $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, which gives $\theta = \arcsin x$ and $dx = \cos \theta d\theta$. Then we have

$$\int \frac{x^2}{\sqrt{1-x^2}} dx = \int \frac{\sin^2 \theta}{\sqrt{1-\sin^2 \theta}} \cos \theta d\theta = \int \sin^2 \theta d\theta$$
$$= \frac{1}{2} \int (1-\cos 2\theta) d\theta = \frac{1}{2}\theta - \frac{1}{4}\sin 2\theta + C$$
$$= \frac{1}{2}\arcsin x - \frac{1}{2}x\sqrt{1-x^2} + C.$$

2. Solution.

a). Since $\cos t$ is oscillative and $\lim_{t\to\infty}\cos t$ doesn't exist, we see that

$$\int_0^\infty \sin x dx = \lim_{t \to \infty} \int_0^t \sin x dx = \lim_{t \to \infty} (1 - \cos t)$$

doesn't exist, too. Hence the improper integral is divergent.

b). Since 1 is the singular point of $\frac{1}{(x-1)^{4/5}}$, we then have

$$\begin{split} \int_0^3 \frac{1}{(x-1)^{4/5}} dx &= \lim_{t \to 1^+} \int_t^3 \frac{1}{(x-1)^{4/5}} dx + \lim_{t \to 1^-} \int_0^t \frac{1}{(x-1)^{4/5}} dx \\ &= \lim_{t \to 1^+} \int_t^3 \frac{1}{(x-1)^{4/5}} dx + \lim_{t \to 1^-} \int_0^t \frac{1}{(1-x)^{4/5}} dx \\ &= \lim_{t \to 1^+} 5(x-1)^{1/5} \big]_t^3 - \lim_{t \to 1^-} 5(1-x)^{1/5} \big]_0^t \\ &= 5 \lim_{t \to 1^+} \big[2^{1/5} - (t-1)^{1/5} \big] - 5 \lim_{t \to 1^-} \big[(1-t)^{1/5} - 1 \big] \\ &= 5(2^{1/5} + 1). \end{split}$$

So, this improper integral is convergent to $5(2^{1/5} + 1)$.

- 3. Solution.
- a). Since

$$\lim_{n\to\infty} n \sin\frac{\pi}{n} = \lim_{n\to\infty} \frac{\sin\frac{\pi}{n}}{\frac{\pi}{n}} \pi = \pi \cdot 1 = \pi,$$

 ${n \sin \frac{\pi}{n}}$ is convergent to π . **b).** Since $\frac{2}{e} < 1$, we have

$$\lim_{n \to \infty} 2^n e^{-n} = \lim_{n \to \infty} \left(\frac{2}{e}\right)^n = 0.$$

So, the sequence $\{2^n e^{-n}\}$ is convergent to 0.

- **4.** Solution. [The solutions to a) and b) are not unique. We present here only one solution to each sub-question.]
- a). Since

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} \frac{(n+1)^2}{2^{n+1}}}{(-1)^n \frac{n^2}{2^n}} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{2^{n^2}} = \frac{1}{2} \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^2 = \frac{1}{2},$$

by the Ratio Test, we prove that it is absolutely convergent.

b). Since

$$a_n := \sqrt{n+2} - \sqrt{n} = \frac{(\sqrt{n+2} - \sqrt{n})(\sqrt{n+2} + \sqrt{n})}{\sqrt{n+2} + \sqrt{n}} = \frac{2}{\sqrt{n+2} + \sqrt{n}} > 0,$$

the series $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+2} - \sqrt{n})$ is the alternating seires. Furthermore, noticing that

$$a_{n+1} = \frac{2}{\sqrt{n+3} + \sqrt{n+1}} < \frac{2}{\sqrt{n+2} + \sqrt{n}} = a_n$$

and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2}{\sqrt{n+2} + \sqrt{n}} = 0,$$

we apply the Alternating Series Test to obtain the convergence of $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+2} - \sqrt{n})$. On the other hand, let $b_n = \frac{1}{\sqrt{n}}$, since

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2}{\sqrt{n+2} + \sqrt{n}} / \frac{1}{\sqrt{n}} = \lim_{n \to \infty} \frac{2}{\sqrt{1 + \frac{2}{n} + 1}} = 1$$

and $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is divergent (*p*-series with $p = \frac{1}{2}$), by the Comparison Limit Test, we prove that $\sum_{n=1}^{\infty} |(-1)^n (\sqrt{n+2} - \sqrt{n})| = \sum_{n=1}^{\infty} \frac{2}{\sqrt{n+2} + \sqrt{n}}$ is divergent. Hence, $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+2} - \sqrt{n})$ is conditionally convergent.

5. Solution. Notice that

$$3\cos\theta = 2 - \cos\theta$$

gives $\theta = \pm \frac{\pi}{3}$. So, the inserction points are $(\frac{3}{2}, \frac{\pi}{3})$ and $(\frac{3}{2}, -\frac{\pi}{3})$. The area of the region inside of $r = 3\cos\theta$ and outside $r = 2 - \cos\theta$ is

$$A = \int_{-\pi/3}^{\pi/3} \frac{1}{2} [(3\cos\theta)^2 - (2-\cos\theta)^2] d\theta$$

$$= 2 \int_{-\pi/3}^{\pi/3} [2\cos^2\theta - 1 + \cos\theta] d\theta$$

$$= 2 \int_{-\pi/3}^{\pi/3} [\cos 2\theta + \cos\theta] d\theta$$

$$= 2 \left(\frac{\sin 2\theta}{2} + \sin\theta\right)_{-\pi/3}^{\pi/3} = 3\sqrt{3}.$$

6. Solution.

a). Since

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{(2-t^2)'}{(2t^3+t^2)'} = -\frac{1}{3t+1},$$

so, the tangent at the point (3,1), i.e., t=1, is

$$\left. \frac{dy}{dx} \right|_{(3,1)} = -\frac{1}{3t+1} \Big|_{t=1} = -\frac{1}{4}.$$

The tangent line is

$$\frac{y-1}{x-3} = -\frac{1}{4}$$
, i.e., $y = -\frac{1}{4}x + \frac{7}{4}$.

b). Since

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dt})}{\frac{dx}{dt}} = \frac{(-\frac{1}{3t+1})'}{(2t^3+t^2)'} = \frac{3}{(3t+1)^2(6t^2+2t)},$$

we have

$$\left. \frac{d^2y}{dx^2} \right|_{(3,1)} = \frac{3}{(3t+1)^2(6t^2+2t)} \right|_{t=1} = \frac{3}{128}.$$

7. Solution.

a). Since $y=x^2$, i.e., $\frac{dy}{dx}=2x$, we adopt the given integral formula to have

$$L = \int_0^1 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_0^1 \sqrt{1 + 4x^2} dx$$

$$= \frac{1}{2} \int_0^2 \sqrt{1 + u^2} du \qquad \text{(substitute } u = 2x\text{)}$$

$$= \frac{1}{4} (u\sqrt{1 + u^2} + \ln|u + \sqrt{1 + u^2}|)]_0^2$$

$$= \frac{\sqrt{5}}{2} + \frac{1}{4} \ln(2 + \sqrt{5})$$

b).

$$A = \int_0^1 x^2 dx = \frac{1}{3}.$$

c).

$$V = \int_0^1 \pi(x^2)^2 dx = \pi \int_0^1 x^4 dx = \frac{\pi}{5}.$$

d).

$$S = \int_0^1 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = 2\pi \int_0^1 x^2 \sqrt{1 + 4x^2} dx$$

$$= \frac{\pi}{4} \int_0^2 u^2 \sqrt{1 + u^2} du \qquad \text{(substitute } u = 2x\text{)}$$

$$= \frac{\pi}{4} \left[\frac{u}{8} (1 + 2u^2) \sqrt{1 + u^2} - \frac{1}{8} \ln(u + \sqrt{1 + u^2}) \right]_0^2$$

$$= \frac{18\sqrt{5} - \ln(2 + \sqrt{5})}{32} \pi.$$