Champlain College – St.-Lambert

MATH 201-203: Calculus II

Review Questions for Test # 1

Instructor: Dr. Ming Mei

Questions

1. Let f(x) be

$$f(x) = \begin{cases} \sqrt{1 - x^2}, & \text{if } -1 \le x \le 1, \\ 1 - x, & \text{if } 1 < x \le 2. \end{cases}$$

- (a) Sketch the graph of f(x).
- (b) Evaluate $\int_{-1}^{2} f(x)dx$ by interpreting it in terms of area.
- 2. Find integrals
 - (a) $\int \frac{1}{x\sqrt{\ln x}} dx$
 - (b) $\int \frac{x^2+x}{x+1} dx$
 - (c) $\int \frac{x}{e^{x^2+3}} dx$
 - (d) $\int (2x+1)\sqrt[3]{x^2+x} \, dx$
- 3. The quantity demanded x (in units of a hundred) of the Mikado miniature cameras/week is related to the unit price p (in dollars) by $p = -0.2x^2 + 80$, and the quantity x (in units of a hundred) that the supplier is willing to make available in the market is related to the unit price p (in dollars) by $p = 0.1x^2 + x + 40$. If the market price is set at the equilibrium price, find the consumers' surplus and the producers' surplus.
- 4. Let A be a region completely enclosed by two curves $y = x^2$ and $y = 2x x^2$, and V_1 and V_2 be the solids obtained by rotating the region A about the x-axis and the line y = 1, respectively.
 - (a) Find the area of A;
 - (b) Find the volume of V_1 ;
 - (c) Find the volume of V_2 .

Solutions to Review Questions

1(a).

1(b).

$$\int_{-1}^{2} f(x)dx = A_1 - A_2 = \frac{1}{2} \cdot \pi \cdot 1^2 - \frac{1}{2} \cdot 1 \cdot 1 = \frac{1}{2}(\pi - 1).$$

2(a). Substitute $u = \ln x$, then $du = \frac{1}{x}dx$. Thus, we have

$$\int \frac{1}{x\sqrt{\ln x}} dx = \int \frac{1}{\sqrt{u}} du = \int u^{-1/2} du = 2u^{1/2} + C = 2\sqrt{\ln x} + C.$$

2(b).

$$\int \frac{x^2 + x}{x + 1} dx = \int \frac{x(x + 1)}{x + 1} dx = \int x dx = \frac{x^2}{2} + C.$$

2(c).

$$\int \frac{x}{e^{x^2+3}} dx = \int \frac{1}{e^u} \frac{du}{2} = \frac{1}{2} \int e^{-u} du$$
 [substitute: $u = x^2 + du = 2dx$]
$$= \frac{1}{2} \int e^v (-dv)$$
 [substitute: $v = -u, dv = -du$]
$$= -\frac{1}{2} \int e^v dv = -\frac{1}{2} e^v + C$$

$$= -\frac{1}{2} e^{-u} + C = -\frac{1}{2} e^{-x^2-3} + C.$$

2(d). Substitute $u = x^2 + x$, then du = (2x + 1)dx. Thus, we have

$$\int (2x+1)\sqrt[3]{x^2+x}dx = \int \sqrt[3]{u} \ du = \int u^{1/3} \ du = \frac{3u^{4/3}}{4} + C = \frac{3(x^2+x)^{4/3}}{4} + C.$$

3. The demanded function is $p = -0.2x^2 + 80 =: D(x)$, and the supply function $p = 0.1x^2 + x + 40 =: S(x)$. The equilibrium price \bar{p} and the equilibrium quantity \bar{x} satisfy the following system of equations

$$\begin{cases} p = -0.2x^2 + 80, \\ p = 0.1x^2 + x + 40, \end{cases}$$

which can solved as $(\bar{x}, \bar{p}) = (10, 60)$. So, the consumers' surplus is

$$CS = \int_0^{\bar{x}} [D(x) - \bar{p}] dx = \int_0^{10} [(-0.2x^2 + 80) - 60] dx$$
$$= \int_0^{10} [-0.2x^2 + 20] dx = [-0.2\frac{x^3}{3} + 20x] \Big|_0^{10} = \frac{400}{3} \text{ dollars},$$

and the producers' surplus is

$$PS = \int_0^{\bar{x}} [\bar{p} - S(x)] dx = \int_0^{10} [60 - (0.1x^2 + x + 40)] dx$$
$$= \int_0^{10} [20 - 0.1x^2 - x] dx = [20x - 0.1\frac{x^3}{3} - \frac{x^2}{2}] \Big|_0^{10} = \frac{350}{3} \text{ dollars.}$$

4(a). It can easily solved that the intersection points of the two curves $y = x^2$ and $y = 2x - x^2$ are (0,0) and (1,1)

The enclosed region A is shown in the above Figure 1, and its area can be calculated as

$$A = \int_{a}^{b} [Y_{top} - Y_{bottom}] dx = \int_{0}^{1} [(2x - x^{2}) - x^{2}] dx = \int_{0}^{1} [2x - 2x^{2}] dx = \left[x^{2} - \frac{2x^{3}}{3}\right] \Big|_{0}^{1} = \frac{1}{3}.$$

4(b). The solid of V_1 is shown as in Figure 2 below.

Its volume can be evaluated as follows.

$$V_1 = \pi \int_0^1 (2x - x^2)^2 dx - \pi \int_0^1 (x^2)^2 dx$$
$$= \pi \int_0^1 (4x^2 - 4x^3 + x^4) dx - \pi \int_0^1 x^4 dx$$
$$= \pi \int_0^1 (4x^2 - 4x^3) dx = \pi \left(\frac{4x^3}{3} - x^4\right) \Big|_0^1 = \frac{\pi}{3}.$$

4(c). The solid of V_2 is shown as in Figure 3 below.

Yadius = $I = I - (2x - x^2)$ Its volume can be evaluated as follows.

$$V_2 = \pi \int_0^1 (1 - x^2)^2 dx - \pi \int_0^1 [1 - (2x - x^2)]^2 dx$$

$$= \pi \int_0^1 (1 - 2x^2 + x^4) dx - \pi \int_0^1 [1 - 4x + 6x^2 - 4x^3 + x^4] dx$$

$$= \pi \int_0^1 (4x - 8x^2 + 4x^3) dx = \pi \left(2x^2 - \frac{8x^3}{3} + x^4\right) \Big|_0^1 = \frac{\pi}{3}.$$