Champlain College — St.-Lambert
MATH 201-203: Calculus II
Review Questions for Test # 1

Instructor: Dr. Ming Mes

Questions
. Let f(z) be
1-— 2, if 1<z<2.

f(r):{\/l—:ﬁ, e 1<yl

(a) Sketch the graph of f(z).
(b) Evaluate 7, f(z)dz by interpreting it in terms of area.

. Find integrals
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. The quantity demanded z (in units of a hundred) of the Mikado miniature cam-
eras/week is related to the unit price p (in dollars) by p = —0.2z% + 80, and the
quantity z (in units of a hundred) that the supplier is willing to make available in
the market is related to the unit price p (in dollars) by p = 0.1z* + z + 40. If the
market price is set at the equilibrium price, find the consumers’ surplus and the

producers’ surplus.

. Let A be a region completely enclosed by two curves y = 22 and y = 2z — %, and
v, and V, be the solids obtained by rotating the region A about the z-axis and the

line y = 1, respectively.

(a) Find the area of A;
(b) Find the volume of Vi;
(c) Find the volume of V5.




Solutions to Review Questions
A,
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2(a). Substitute u = Inz, then du = dz. Thus, we have
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2(d). Substitute u = z* + z, then du = (2z + 1)dz. Thus, we have
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3. The demanded function is p = —0.22% + 80 =: D(z), and the supply function p =
0.1z%2 + 2 + 40 =: S(z). The equilibrium price p and the equilibrium quantity 7 satisfy
the following system of equations

'p = —0.222 + 80,
p = 0.12% + z + 40,




which can solved as (Z,p) = (10,60). So, the consumers’ surplus is
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and the producers’ surplus is

BB i /;[p - S(z)]|dz = /010[60 — (0.1z% + = + 40)]dz

3 210 350

10
= 20 — 0.122 — zldz = [20z — 0.1=— — =|| = — .
fo [ z* — z]dz = [20z 3 2]0 3 dollars

4(a). It can easily solved that the intersection points of the two curves y = z” and
y = 2z — z* are (0,0) and (1,1)y

The enclosed region A is shown in the above Figure 1, and its area can be calculated as
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4(b). The solid of V; is shown as in Figure 2 below.
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Tts volume can be evaluated as follows.
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4(c). The solid of V; is shown as in Figure 3 below.
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Its volume can be evaluated as follows.

Vo= 7 [ -2 [ 1 20— P

1 1

= W/(1—2$2+x4)dm~7r/[1—4$+6$2-—4$3+x4]d:1:
0 0

3

1
= W/ (4x—8:c2+4:c3)da::7r(2x2 s
0




