CHAMPLAIN COLLEGE ST.-LAMBERT

MATH 201-NYB: Calculus II

Review Questions for Test # 3

Instructor: Dr. Ming Mei

1. Test the convergence or divergence of the sequence. If it is convergent, find its limit.

A).
$$a_n = \frac{2+n^3}{1+2n^3}$$
,

B).
$$a_n = \frac{9^{n+1}}{10^n}$$
,
D). $a_n = \frac{n}{\ln n}$.

C).
$$a_n = \frac{n \sin n}{n^2 + 1}$$
,

$$D). \ a_n = \frac{n}{\ln n}.$$

2. Determine whether the series is convergent or divergent.

$$A). \quad \sum_{n=1}^{\infty} \frac{n}{n^3 + 1},$$

B).
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$$
,

C).
$$\sum_{n=0}^{\infty} \frac{n^{2n}}{(1+2n^2)^n}$$
,

D).
$$\sum_{n=1}^{\infty} \frac{(-5)^{2n}}{n^2 2^n}.$$

3. Find the interval of convergence for the power series.

A).
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{4n^{\frac{n}{2}}}$$
, B). $\sum_{n=1}^{\infty} \frac{(x-1)^n}{4^{\frac{n}{2}}n}$.

B).
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{4^{\frac{n}{2}}n}$$

4. Find Maclaurin series for the function $f(x) = \frac{\ln(1+x)}{x}$.

Solutions

Q1.

A).

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2 + n^3}{1 + 2n^3} = \lim_{n \to \infty} \frac{(2 + n^3)/n^3}{(1 + 2n^3)/n^3} = \lim_{n \to \infty} \frac{\frac{2}{n^3} + 1}{\frac{1}{n^3} + 2} = \frac{1}{2}.$$

So, it is convergent, and the limit is $\frac{1}{2}$.

B).

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{9^{n+1}}{10^n}=\lim_{n\to\infty}\frac{9\cdot 9^n}{10^n}=9\lim_{n\to\infty}\left(\frac{9}{10}\right)^n=9\cdot 0=0.$$

So, it is convergent, and the limit is 0.

C). Since $\sin n$ is bounded by $-1 \le \sin n \le 1$, we have

$$-\frac{n}{n^2+1} \le \frac{n\sin n}{n^2+1} \le \frac{n}{n^2+1}.$$

Taking the limit as $n \to \infty$ to the above inequalities, and noting that $\lim_{n \to \infty} \frac{n}{n^2+1} = 0$, then by using the Squeeze theorem, we have

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n \sin n}{n^2 + 1} = 0.$$

So, it is convergent, and the limit is 0.

D). By using the L'Hospital's Rule, we otain

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{n}{\ln n} = \lim_{n\to\infty} \frac{(n)'}{(\ln n)'} = \lim_{n\to\infty} \frac{1}{\frac{1}{n}} = \lim_{n\to\infty} n = \infty.$$

So, it is divergent.

 $\mathbf{Q2}$.

A). Note that $\frac{n}{n^3+1} \leq \frac{n}{n^3} = \frac{1}{n^2}$, and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent, because it is a *p*-series with p=2>1, then by applying the Comparison Test, the series $\sum_{n=1}^{\infty} \frac{n}{n^3+1}$ is also convergent.

Another method is the Limit Comparison Test. Note that $\frac{n}{n^3+1} \sim \frac{n}{n^3} = \frac{1}{n^2}$. Let $a_n = \frac{n}{n^3+1}$, $b_n = \frac{1}{n^2}$. Since

$$c = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{n^3 + 1} / \frac{1}{n^2} = \lim_{n \to \infty} \frac{n^3}{n^3 + 1} = 1,$$

by the Limit Comparison Test, both the series $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{n}{n^3+1}$ and $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ have the same convergence or divergence. Note that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is the *p*-series with p=2, and is convergent, therefore, $\sum_{n=1}^{\infty} \frac{n}{n^3+1}$ is also convergent.

- B). $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ is an alternating series, and the general term $a_n = \frac{1}{\sqrt{n+1}}$, obviously, is decreasing to 0, then by using the Alternating Test, it is convergent.
- C). Let $a_n = \frac{n^{2n}}{(1+n^2)^n}$. Applying the Root Test,

$$L = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{n^{2n}}{(1 + 2n^2)^n}} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n^2}{1 + 2n^2}\right)^n} = \lim_{n \to \infty} \frac{n^2}{1 + 2n^2} = \frac{1}{2} < 1,$$

so it is convergent.

D). Let $a_n = \frac{(-5)^{2n}}{n^2 2^n}$. Applying the Ratio Test,

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-5)^{2(n+1)}}{(n+1)^2 2^{n+1}} \middle/ \frac{(-5)^{2n}}{n^2 2^n} \right| = \lim_{n \to \infty} \left| \frac{(-5)^{2(n+1)}}{(n+1)^2 2^{n+1}} \cdot \frac{n^2 2^n}{(-5)^{2n}} \right|$$
$$= \lim_{n \to \infty} \frac{(-5)^2}{2} \cdot \frac{n^2}{(n+1)^2} = \frac{25}{2} > 1,$$

so it is divergent.

Q3

A). Obviously, the series is equivalent to $\sum_{n=1}^{\infty} \frac{(x-1)^n}{4n^{\frac{n}{2}}} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{(x-1)^n}{n^{\frac{n}{2}}}$. Let $a_n = \frac{(x-1)^n}{n^{n/2}} = \left(\frac{x-1}{\sqrt{n}}\right)^n$. Using the Root Test,

$$L = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\left|\left(\frac{x-1}{\sqrt{n}}\right)^n\right|} = \lim_{n \to \infty} \frac{|x-1|}{\sqrt{n}} = |x-1| \lim_{n \to \infty} \frac{1}{\sqrt{n}} = |x-1| \cdot 0 = 0 < 1, \quad \text{for all } x \in \mathbb{R}$$

the series $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^{\frac{n}{2}}}$ is convergent for all x, so is $\sum_{n=1}^{\infty} \frac{(x-1)^n}{4n^{\frac{n}{2}}}$. Thus, the convergence interval is $I = (-\infty, \infty)$.

B). Let $a_n = \frac{(x-1)^n}{4^{n/2}n} = \frac{(x-1)^n}{2^n n}$. Applying the Ratio Test,

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-1)^{n+1}}{2^{n+1}(n+1)} \middle/ \frac{(x-1)^n}{2^n n} \right| = \lim_{n \to \infty} \left| \frac{(x-1)^{n+1}}{2^{n+1}(n+1)} \cdot \frac{2^n n}{(x-1)^n} \right|$$
$$= \lim_{n \to \infty} \frac{|x-1|n}{2(n+1)} = \frac{|x-1|}{2} \lim_{n \to \infty} \frac{n}{n+1} = \frac{|x-1|}{2},$$

if $L = \frac{|x-1|}{2} < 1$, i.e., -1 < x < 3, the series is convergent. On the hand, for x = -1, the series becomes

$$\sum_{n=1}^{\infty} \frac{(-1-1)^n}{4^{n/2}n} = \sum_{n=1}^{\infty} \frac{(-2)^n}{2^n n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n},$$

which is alternating. Note that $\frac{1}{n}$ is decreasing and $\lim_{n\to\infty}\frac{1}{n}=0$, then the Alternating Test implies that the series is convergent for x=-1.

For x = 3, the series becomes

$$\sum_{n=1}^{\infty} \frac{(3-1)^n}{4^{n/2}n} = \sum_{n=1}^{\infty} \frac{(2)^n}{2^n n} = \sum_{n=1}^{\infty} \frac{1}{n},$$

which is divergent, because it is the p-series with p = 1.

Therefore, the convergent interval is I = [-1, 3).

Q4. Since

$$\frac{1}{1-x} = 1 + x + x^2 + \dots = \sum_{n=0}^{\infty} x^n,$$

then

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n,$$

and

$$\ln(1+x) = \int \frac{1}{1+x} dx = \int \sum_{n=0}^{\infty} (-1)^n x^n dx = \sum_{n=0}^{\infty} (-1)^n \int x^n dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1}.$$

Therefore,

$$\frac{\ln(1+x)}{x} = \frac{\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1}}{x} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^n.$$