CHAMPLAIN COLLEGE ST.-LAMBERT

MATH 201-NYB: Calculus II
Review Questions for Test # 3

Instructor: Dr. Ming Mei

1. Test the convergence or divergence of the sequence. If it is convergent, find its limit.
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2. Determine whether the series is convergent or divergent.
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3. Find the interval of convergence for the power series.
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4. Find Maclaurin series for the function f(z) = M



Solutions
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So, it is convergent, and the limit is —21-

B).
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So, it is convergent, and the limit is 0.

C). Since sinn is bounded by —1 < sinn < 1, we have

7 nsinn n
n?2+1"n24+1 " n24+1°

Taking the limit as n — oo to the above inequalities, and noting that lim, o WT—AFT = (), then
by using the Squeeze theorem, we have
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So, it is convergent, and the limit is 0.
D). By using the L’Hospital’s Rule, we otain
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So, it is divergent.
Q2.
A). Note that g < = #, and > 27, -7;15 is convergent, because it is a p-series with
p =2 > 1, then by applying the Comparison Test, the series Y o ; n_??"_:q is also convergent.

Another method is the Limit Comparison Test. Note that Egl‘ﬁ ~ = ;12— Let ap, = gg’i—l—,

b, = ?117 Since
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by the Limit Comparison Test, both the series Y02, an = Y 02 g and Y02 1 by =Y 02 5
have the same convergence or divergence. Note that > - | n% is the p-series with p = 2, and is
convergent, therefore, > > is also convergent.
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B). Yoo, \/ﬁ— is an alternating series, and the general term a,, = v,—;l—ﬁ, obviously, is decreas-
ing to 0, then by using the Alternating Test, it is convergent.

C). Let a, = Applying the Root Test,
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so it is convergent.

D). Let a, = Ca

—4=— Applying the Ratio Test,
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so it is divergent.
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Q3. .
A). Obviously, the series is equivalent to > -0 - _ %Z?ﬂ (z"é) . Let ap = 22
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(2:—1) . Using the Root Test,
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the series Y -0, @—?)— is convergent for all z, so is Y oo ; (Z—%L. Thus, the convergence interval
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is I = (—o00,00).

B). Let a,, = &1l = E21°

. Applying the Ratio Test,
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if L= Lm-%ﬂ <1, i.e., —1 < z < 3, the series is convergent.
On the hand, for x = —1, the series becomes
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which is alternating. Note that = ig decreasing and hmn_>OO = 0, then the Alternating Test
implies that the series is convergent for z = —1.
For x = 3, the series becomes
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which is divergent, because it is the p-series with p = 1.

Therefore, the convergent interval is I = [-1, 3).
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