Champlain College – St.-Lambert

MATH 201-103-RE: Calculus I

Review Questions for Test # 3

Instructor: Dr. Ming Mei

Questions

1. Let f(x) be a function satisfying:

$$f(-2) = 3$$
, $f(-1) = 2$, $f(0) = 1$, $f(2) = -2$,

$$f'(-2) = 0, \quad f'(0) = 0, \quad f''(-1) = 0$$

$$f'(x) > 0$$
 in $(-\infty, -2) \cup (0, 1) \cup (1, \infty)$, $f'(x) < 0$ in $(-2, 0)$,

$$f''(x) < 0 \text{ in } (-\infty, -1) \cup (1, \infty), \quad f''(x) > 0 \text{ in } (-1, 1).$$

Sketch the graph of f(x).

2. Let
$$f(x) = \frac{2x}{x+1}$$
.

- (a) Find the domain of f;
- (b) Find the horizontal asymptotes and vertical asymptotes, if any;
- (c) Find the critical numbers, if any;
- (d) Find the intervals where f(x) is increasing and where it is decreasing;
- (e) Find the relative extrema;
- (f) Find the intervals where f(x) is concave upward and where it is concave down-
- (g) Point out the inflection points, if any;
- (h) Sketch the graph of f(x).
- 3. The estimated monthly profit (in dollars) realizable by Cannon Precision Instruments for manufacturing and selling x units of its model M1 digital camera is

$$P(x) = -0.04x^3 + 1200x - 10,000.$$

To maximize its profit, how many cameras should Cannon produce each month?

4. A box with an open top is to be constructed from a square piece of cardboard, 10 inches wide, by cutting out a square from each of the four corners and bending up the sides. What is the maximum volume of such a box?

X	$\mathbf{f}'(\mathbf{x})$	f''(x)	$\mathbf{f}(\mathbf{x})$	
$(-\infty, -2)$	+	_	/ ∩⇒	
x = -2	0		f(-2) = 3 relative maximum	
(-2, -1)	_	_	$\setminus \cap \Longrightarrow$	
x = -1	_	0	inflection point	
(-1,0)	_	+	\setminus U \Longrightarrow	
x = 0	0	+	f(0) = 1 relative minimum	
(0,1)	+		/ U⇒	
$(1,\infty)$	+		/ ∩⇒	

Table 1: Table for Question 1

Solutions to Review Questions

Q.1. Since $\lim_{x\to 1^-} f(x) = +\infty$, $\lim_{x\to 1^+} f(x) = -\infty$, and $\lim_{x\to\infty} f(x) = 0$, we know that x = 1 is the vertical asymptote and y = 0 is the horizontal asymptote. From the given conditions, we collect the information as a table (see Table 1: Table for Question 1), and sketch the graph of f(x) as follows.

Q.2. (a). The domain of f(x) is

$$D = \{x | x + 1 \neq 0\} = \{x | x \neq -1\} = (-\infty, -1) \cup (-1, \infty).$$

(b). The vertical asymptote is x = -1, because it is the zero of the denominator such that $\lim_{x\to -1^-} f(x) = \infty$ and $\lim_{x\to -1^+} f(x) = -\infty$). On the other hand,

$$\lim_{x \to \pm \infty} \frac{2x}{x+1} = \lim_{x \to \pm \infty} \frac{2x/x}{(x+1)/x} = \lim_{x \to \pm \infty} \frac{2}{1 + \frac{1}{x}} = 2,$$

X	f'(x)	f''(x)	f(x)
$(-\infty, -1)$	+	+	/ ∪ ⇒
$(-1,\infty)$	+	_	$\nearrow \cap \Longrightarrow$

Table 2: Table for Question 2

then the horizontal asymptote is y = 2.

(c). About the critical numbers, since

$$f'(x) = \left(\frac{2x}{x+1}\right)' = \frac{(2x)'(x+1) - 2x(x+1)'}{(x+1)^2} = \frac{2}{(x+1)^2} > 0,$$

there is no critical number.

- (d). As shown before, f'(x) > 0 in the domain $(-\infty, -1) \cup (-1, \infty)$, so the graph of f is increasing in $(-\infty, -1) \cup (-1, \infty)$.
- (e). No relative extrema, because there is no critical numbers.
- (f). Notice that,

$$f''(x) = \left(\frac{2}{(x+1)^2}\right)' = \left(2(x+1)^{-2}\right)' = -4(x+1)^{-3} = -\frac{4}{(x+1)^3}.$$

When x > -1, i.e., x + 1 > 0, $(x + 1)^3 > 0$, we have $f''(x) = -\frac{4}{(x+1)^3} < 0$. So, f is concave downward in $(-1, \infty)$; While, when x < -1, i.e., x + 1 < 0, $(x + 1)^3 < 0$, we have $f''(x) = -\frac{4}{(x+1)^3} > 0$. So, f is concave upward in $(-\infty, -1)$;

- (g). Since $f''(x) = -\frac{4}{(x+1)^3} \neq 0$ in the domain $(-\infty, -1) \cup (-1, \infty)$, there is no inflection point.
- (h). Collect all information as shown above, we first have a table (see Table 2: Table for Question 2), and based on this, we can sketch the graph of f as follows.

Q.3. From the profit function

$$P(x) = -0.04x^3 + 1200x - 10,000,$$
 for $x > 0$,

we have

$$P'(x) = -0.12x^2 + 1200 = -0.12(x^2 - 10,000) = -0.12(x - 100)(x + 100),$$

and

$$P''(x) = (-0.12x^2 + 1200)' = -0.24x.$$

So, x = 100 and x = -100 both are the critical numbers of P(x) (i.e., P'(x) = 0). Since we need to restrict $x \ge 0$, there is only one critical number x = 100. Calculating $P''(100) = -0.24 \times 100 = -24 < 0$, by the second derivative test, we can verify that $P(100) = -0.04 \cdot (100)^3 + 1200 \cdot (100) - 10,000 = $70,000$ is the maximum profit.

Q.4. Let x be the width of the side of the four corner squares, then the left side from the big square piece of cardboard is 10 - 2x:

then the volume of the box is

$$V(x) = x(10 - 2x)(10 - 2x) = 4x^3 - 40x^2 + 100x$$

for $x \ge 0$ and $10 - 2x \ge 0$, namely, $0 \le x \le 5$. From

$$V'(x) = (4x^3 - 40x^2 + 100x)' = 12x^2 - 80x + 100 = 4(3x^2 - 20x + 25) = 4(3x - 5)(x - 5) = 0$$

we find two critical numbers: $x_1 = \frac{5}{3}$ and $x_2 = 5$. Since $V''(x) = (12x^2 - 80x + 100)' = 24x - 80$ and $V''(\frac{5}{3}) = -40 < 0$ and V''(5) = 40 > 0, by the second derivative test, $V(\frac{5}{3}) = \frac{5}{3}(10 - \frac{10}{3})^2 = \frac{2000}{27}$ is the relative maximum and V(5) = 0 is the relative minimum. On the other hand, V(0) = 0, comparing with $V(\frac{5}{3}) = \frac{2000}{27}$, the maximum volume of the box is $V(\frac{5}{3}) = \frac{2000}{27}$ by cutting out the four small squares with the side $x = \frac{5}{3}$ inches.