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1. Introduction

In this paper, we consider the diffusive Nicholson’s blowflies equation with Dirichlet boundary

ug — DAu+ du = f(u(t —r,x)), (t,z) € Ry x 2,
'LL(S,.’E) = 7—’*0(871')3 (va) € [_Tv 0] X “Qv (11)
uloo =0, t>0.

where u(t, ) represents the matured population of Australian blowflies at time ¢ and location . D > 0
is the spatial diffusion coefficient, § > 0 is the death rate. f(u(t — r,z)) == pu(t — r,2)e**(=") is the
birth rate function with the birth rate coefficient p > 0 (the maximum per capita daily egg production
rate), and the number a > 0, where % stands for the size at which the flies population reproduces at the
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maximum rate. r > 0 is the time-delay, the time required for a newborn to become matured. {2 is a bounded
open domain with smooth boundary 9f2 in the space R™ with the dimension n > 1. ug(s,z) > 0 for
(s,z) € [—r,0] x 2 with ug(0,z) > 0 for x € §2 is the given initial data, which satisfies the compatibility
conditions for the Dirichlet boundary as uglan = 0 for s € [—r,0].

Clearly, Eq. (1.1) has two constant equilibria u— = 0 and uy = %hl%. When 0 < £ < 1, then
uy < u_ = 0; and when £ > 1, then uy > u_ = 0. Eq. (1.1) may also possess non-trivial steady-states

when £ > 1.

For the Dirichlet boundary problem, So and Yang [1] first obtained the threshold convergence results
when the physical quantities ¢, p and D satisfy certain conditions. Let ¢(x) be a steady-state solution to
(1.1), namely,

{—DAqb +8¢ = f((a)), z€, 1.2)

Plon = 0.

Clearly, ¢ = 0 is a trivial steady-state of (1.2). As showed in [1], when DA; + ¢ > p, (1.2) possesses a
unique trivial steady-state ¢(z) = 0, and when DA + § < p, (1.2) possesses a unique positive (non-trivial)
steady-state 0 < ¢(x) < %111% for x € {2, where Ay is the principal eigenvalue to the following eigenvalue
problem
(1.3)
Ylog = 0.
When DA; 4+ 6 > p, So and Yang [1] proved the global convergence of the solution of (1.1) to the trivial
steady-state ¢ = 0 by the energy method. When DAy + § < p, So and Yang [1] further obtained the
convergence of the solution u(t,z) to the non-trivial steady-state by the technical but complex domain-

{—mp =X\, z€N,

decomposition method. The nonlocal equations with Dirichlet boundary were further generalized in [2-5],
and the degenerate diffusion case was studied in [6]. But, no convergence rates were showed in all mentioned
cases due the technical reasons by their adopted methods.

For the studies of the Nicholson’s blowflies equations with Neumann boundary, the convergence of the
solutions to their steady-states were extensively investigated in [7—10]. For the Cauchy problem, Nicholson’s
blowflies equation (1.1) possesses traveling waves u = ¢(x + ct) connecting two constant states u_ = 0 and
Uy = %ln% in [11-16], with the wave speed ¢ > ¢, > 0, where ¢, is the minimal wave speed. These waves
are proved to be globally stable in [17-23]. For the recent developments on Nicholson’s blowflies equations
involving patch structure, we refer to [24-26].

For e < & < e?, the equation of (1.1) is non-monotone, and the positive steady-state ¢(z) will be non-
monotone, and in some part of {2 it satisfies 0 < ¢(z) < % and in the other part it holds ¢(z) > % Let us
decompose the domain (2 in to two parts:

1 1
2 ={zeR0<g(z) < a}a and 2p = {z € 2[¢(z) > a}-
As we show below, since ¢(z) is a O2-differentiable cone for = in 2, cutting-off ¢(x) by the plane ¢ = 1

yields that the level set

g ={x € N|o(z) = %} (1.4)

is a C2-closed-curve for n = 2 or a C?-closed-surface for n > 3. See the example Fig. 1 for the structure of
.

Here, we are interested in investigating the convergence to the non-trivial steady-state in the region (25,
because in this region the solution may be oscillating when the time-delay is big. We observe that, after
taking perturbation of u for (1.1) around the steady-state ¢(x), the integration for the energy estimates
on the boundary 0f25 will be vanishing automatically. This guarantees us to derive a new exponential
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Fig. 1. The image of ¢(x) and the structure of the region Q2p.

convergence by the basic but efficient energy method as follows:
ut, ") = ()llL2(2y) < Ce M'  for some pp > 0.

This is the main target in the short note.

2. Main result and proof

We first recall the existence, uniqueness and boundedness of the non-trivial steady-state 0 < ¢(z) < uy =
LIn & (see [1] for details). For the existence and uniqueness of the solution (1.1), it has been proved in [1]
that u € C’i’HO‘([O, +00) X §2). Here, we give a better regularity of the solution, once the initial data is with
a better regularity.

Lemma 2.1. When 0 < & < e? with r > 0, once the initial data satisfies ug € C_lf([—r,
IBVP (1.1) possesses a unique smooth solution u € C’i’z([(], +00) X £2), and 0 < u(t,z) <
and t > 0.

0] x 2), then the
L for allx € 2

Proof. The proof is obvious. In fact, when ¢t € [0,7], namely t — r € [—r,0], which implies f(u(t —
r,x)) = f(ug(t — r,x)), so (1.1) is a linear parabolic equation with the initial-boundary value conditions
in [0,¢] x £2, hence it possesses a unique smooth solution u € Ci’z([O, r] X {2) once the initial data satisfies
ug € Ci’z([—n 0] x £2). Similarly, when ¢ € [r,2r], we may prove that u € C}F’Q([r, 2r] x {2). Repeating the
same procedure to each interval ¢ € [mr, (m + 1)r], we can finally prove u € C’_lgg([(), +o0) x 2). O

Next we are going to prove the boundary 025 as a closed curve in the 2-D case and a closed surface in
the higher dimensional case of n > 3.

Lemma 2.2. Let DA\; + 6 < p. Then the non-trivial steady-state ¢(z) of the stationary problem (1.2) is a
C? convex cone on 2, and the boundary 025 = {x € 2|¢p(x) = é} is a unique C?-closed-curve forn = 2, or
a unique C?-closed-surface for n > 3.

Proof. It has been proved in [1] that the stationary problem (1.2) exists a unique steady-state ¢ € C?(§2)
satisfying 0 < ¢(z) < uy = LInZ for z € £2. We now prove that ¢(z) is a C* convex cone on £2. In fact,
note that 0 < ¢(z) < uy = L—iln% for x € {2, one can verify

p ap p au
= —e" > = -t =0.
o 0
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which can guarantee (1.2) to yield
~ DAY = f(d(x)) — 66 = phe=® — 56 = bpe* (%’ - e“¢) >0, for z € Q. (2.1)

Namely, it proves that all intersection curves ¢(x) are concave downward in any vertical sliding plans
(space) of (w1,..., @i 1,Tit1,. - Tn) = (b1,...,bi_1,bix1,...,b,) € R"1 NN with a given constant vector
(biy .. bi—1,bix1,...,by), for i = 1,...,n. Therefore, ¢(x) is a C? convex cone on 2 (see Fig. 1). This
immediately guarantees that the level set 025 = {z € 2|¢(z) = 1} is a closed-curve for n = 2, or a
closed-surface for n > 3. [

Now we state our main theorem of the exponential convergence of the solution to the steady-state for the
Dirichlet boundary problem (1.1).

Theorem 2.3. Let the initial data satisfy ug € C([—r,0] X 2). In the case of e < & < e?, it holds:
lu(t,-) = o)l L2(0y) < Cre™ (2.2)

where C; = C1(ug, @) > 0 is a constant dependent on the initial perturbation ug — ¢, and p1 > 0 is a small

number such that

21 + (27 —1) < §(2 —In §)~ (2.3)

Proof. When e < £ < e? and z € g, namely ¢(x) > L, we use the energy method to prove the

a’
exponential convergence (2.2) in £25. The key observation is that, the integration on the boundary of d{25
can be disappeared.
Let us define v(t,x) := u(t, z) — ¢(x), which satisfies, from (1.1) and (1.2), that

vy — DAv+ v =F(t—r,x), (t,x) € Ry X 2,
vlogg = [u(t,z) — o(x)]|ons = g(t,z) t>0,2 € 02, (2.4)
V|t=s = vo(8, x) = uo(s,x) — ¢(x), (s,z) € [-r,0] x 25,

where
Pt —r,2) = f(olt — 1,2) + 6(2)) — F(6(2)) = F/(6(@)o(t — r,2) + f(B()?(t - 7, 2)
for some function ¢(t, ) between ¢(z) and u(t,z), due to the Taylor’s formula.
Multiplying (2.4) by e?*1to(t, z), we have
1
{562“1t’l}2} — DM (uV0) + D21Vl + (6 — py)o?
t

= 1 f(@(@))o(t, 2)u(t — r,x) + 21 (D)o (t, x)o?(t — 1, ). (2.5)

Integrating the above equation over {2 with respect to x, we obtain

1d 2pat 2 2 t/
-= — De2m
2 dt {e Ilv(t)”LQ(QB)} € o V(UVU)dx

+De Vo (t)l[72gp) + (0 = p)e (b |72 gy

= 62””/ F(o@)v(t,z)v(t —r,x)dx
2p

+e?H1t ; 1 (d)ot, £)v? (t — r,x)dz. (2.6)
4
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Noting from Lemma 2.2 that the boundary 0{25 is close and smooth, which makes the boundary integral to
be disappeared (even the boundary value is non-zero):

D
~D | V(Vv)dr=-D vWodr = —— V(v?)dz = 0. (2.7)
Qg o02p a0p

Substituting (2.7) to (2.6), we further get

1d

th{e2“1tHv( )2, 93)} + De2t| Vot )||L2 o) T (6 — /il)teJlt”v(t)H%z(QB)

=t [ f(p())o(t,2)o(t — rx)de + et [ f(@)o(t, )o? (t — 1, x)da. (2.8)
2B ]

Notice that, it has been showed in [1] that lim, o u(t, )|, = ¢|a,. Namely, for any given small number
€ > 0, there exists a large number ¢, > 1 such that, when ¢ > t,, then

max |v(t,x)| = max lu(t,z) — p(x)| <e, fort>t.. (2.9)
reNp zeN

Integrating (2.8) over [t.,t] with respect to ¢ yields

t t
e2u1t||v(t)||i2(93) + 2D/ eQmSHV'U(S)HQL?(QB)dS +2(0 — Ml)/ 62“18||U(5)||2L2(QB)d5
L ts

t
= oy 2 0 [ St = radods

t
+2/ ers " (d)v(s, )0 (s — r,x)dzds. (2.10)
t g

For the right hand side of (2.10), we first note the fact |f'(¢(x))| < |f'(uy)| = 0(In§ — 1), for all 2 € 2,
due to % <¢(x)<uy forzefpande< i < €2, which leads to, by using the Cauchy inequality and the
variable change s — r — s, that

‘2/:62”15 ., f'((b(x))v(s,;v)v(s—r,x)dxds}

< If'(us)] / 215 [0(s) 22 + 1005 — )22, I
t—r

= £ (uy) / P o(s) 2oy ds + 1 @)l [ PO u(s) 20 ds

ta—1T

t
< F ) (14 e27) / 1 [0(5)|125 . 5
t*
T

+\f’(u+)|ez“”/ 62“15||v(s)||2LQ(QB)ds. (2.11)

ts—1T

For the nonlinear term of (2.10), from (2.9) it can be estimated as
¢
‘2/ s " (P)v(s, x)v2(s — r,x)dds
tx ‘QB
¢
< C/ 1% max |v(s,z)| V2 (s — r,x)dxds
by IGQB QB

t
< Cs/ 62“15/ v?(s — r,x)drds [ change of variable: s — r — ]
tx ‘QB

t—r
:C'e/ 62“1(S+T)/ v2(s, x)dxds
te—1 ‘QB

5
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t—r
 Ceetmr / 1 u(s)|22, g, d
t

*—T

t—r b
_ 0662/117"/ 62/115“1)(8)”%2(QB)CZ8 + O€e2u1r/ €2M15‘|U(5)”12(93)d5
ta b=

T

t tx
SCEeQ”“"/ 62“13||U(S)H%2(93)d8+Cae2“1r/ 1% [o(s) 22, - (2.12)
Ty t

*«—T

Substituting (2.11) and (2.12) to (2.10), we further have

t t
62u1tHU(t)”2Lz(QB)+2D/ 62u1s”Vv(s)H2LQ(QB)d5+Bﬂl/ 62”15||v(5)||iz(93)d5
tx tx
t*
= 0 fo(t) Eagay + 1)l + et [ (o), ds. (2.13)
*—T
where

Byt =26 = 2p1 — | f'(ug)|(1 + €¥17) — Cee??
= 95— 2 ()| — Ce — 21 — (I (uy)] + Ce) (@17 — 1)
- 25(2 - 1n§) — Ce =21 — (| (up)| + Ce) (2™ — 1) (2.14)
Here, we used |f/(uy)] = d(In & —1). Since e < & < e? (ie.,2—1In& > 0), and 0 < ¢ < 1, then we may take

£ as

_ 1 p
€= 05(2—1115),

such that

25(2—111%)) —Cazé(Q—ln%)) > 0.

This ensures that, there exists a small number 0 < u; < 1, such that

B, = 25(2 ~In %’) — Ce—2u1 — (| (uy)| + Ce) (e — 1)

— _m?)_ — §(e2mar _
= 6(2 In 5) 2u1 —d(e 1)
> 0.

Since t. = t.(e) is a fixed number as ¢ is given, and v(¢, x) is bounded in the finite region [t. — r,t.] x 2,
then we finally prove

tx

o) gy + 1 ()] + CEIET [ 1 o(s) B ds < €. (2.15)

te—1

Substituting (2.15) to (2.13), and noting B,,, > 0, we immediately obtain (2.2). This completes the proof. [

Remark 2.1. Here we proved the exponential convergence to the steady-state in the region of {25. This
is the first attempt to show the convergence rate to the steady-state in the bounded domain {25. But for
the convergence in the region {24, we could not get any kind of convergence rate by the existing methods.
Moreover, for the critical case ¥ = 2, it is quite not clear to show the convergence, so far. We expect that
the linear convergence could be held when the time delay r is sufficiently small, and the dynamic system
would be periodically oscillating when the time delay is bigger than the Hopf bifurcation point » = ry. These
will be somewhat interesting topics for future targets.
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