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a b s t r a c t

In this paper, we prove the existence, uniqueness and regularity of global solution
to the bistable reaction–diffusion equation with degenerate diffusion and nonlo-
cal time-delay. The adopted approach is the Holmgren’s approximation scheme
combining the compactness analysis.
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1. Introduction

This paper concerns the nonlocal degenerate diffusion equation with time-delay, a model of population
dynamics for single species [1–3]{

ut(x, t) − ∆um(x, t) = g(u(x, t), J ∗ S(u(x, t− r))), t ≥ 0, x ∈ R,
u(x, s) = u0(x, s), s ∈ [−r, 0], x ∈ R,

(1.1)

ith the convolution
J ∗ S(u(x, t− r)) =

∫
R
J(y)S(u(x− y, t− r))dy. (1.2)

ere, u(t, x) denotes the population density of single species at time t and location x, ∆um(x, t) with m > 1
s the degenerate diffusion, and g(·, ·) is the nonlinear function involving the death rate function and the birth
ate function, where r > 0 is the matured age of the single species, the so-called time-delay. Throughout the
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paper, we assume that the kernel J(·) is positive and unit, and Eq. (1.1) satisfies the bistable conditions,
amely,

H1) J(y) ≥ 0 for y ∈ R, and
∫
R J(y)dy = 1;

H2) g(u, v) ∈ C2([0, 1] × [S(0), S(1)],R), g2(u, v) ≥ 0 for (u, v) ∈ [0, 1] × [S(0), S(1)], S(u) ∈ C2([0, 1],R)
and S′(u) ≥ 0 for u ∈ [0, 1];

H3) g(0, S(0)) = g(1, S(1)) = 0, g1(1, S(1)) + g2(1, S(1))S′(1) < 0 and
g1(0, S(0)) + g2(0, S(0))S′(0) < 0.

Here, g1(u, v) = ∂
∂ug(u, v), g2(u, v) = ∂

∂v g(u, v), and S′(w) = d
dwS(w).

The typical models of g(u, v) satisfying (H2) − (H3) are as follows:

• Neural network [4–6] with g(u, v) = −αu+ v for α > 1:

ut(x, t) − ∆um(x, t) = −αu+
∫ ∞

−∞
J(x− y)S(u(y, t− r))dy, (t, x) ∈ R+ × R, r > 0.

• Hodgkin–Huxley [7,8] with g(u, v) = u(1 − u)v, S(u) = u− a for a ∈ (0, 1):

ut(x, t) − ∆um(x, t) = u(1 − u)
∫ ∞

−∞
J(x− y)(u(y, t− r) − a)dy, (t, x) ∈ R+ × R, r > 0.

Eq. (1.1) possesses some challenging features caused by the degenerate diffusion, time-delay and the
onlocal effect, because the degenerate diffusion usually causes the solutions to lose their regularity, the large
ime-delay usually makes the solutions to be oscillating, and the nonlocal effect enhances the complexity
f calculation. So it is worth to investigate the well-posedness of the solutions and the structure of the
olutions, particularly, the traveling wave solutions. In this short note, we study the existence, uniqueness
nd regularity of the global solutions to (1.1), and leave the structure of sharp traveling waves for future.

For the nonlinear porous media equations without time-delay, the properties of the solutions have been
xtensively studied in [3,7–13]. The new phenomenon for sharp traveling waves with critical wave speed was
rst observed by Aronson [14] for Fisher–KPP equations, then further studied by De Pablo and Vazuquez [15]
nd Malaguti and Marcelli [16] for the generalized Fisher–KPP equations with degeneracy of diffusion. The
xact form of sharp traveling waves was obtained by Gilding and Kersner [17] in the case of m = 2. When
hese Fisher–KPP (mono-stable type) equations are affected by the time-delay, the sharp waves with or
ithout oscillations were classified by Xu et al. [3,18,19] based on the sizes of time-delay and the wave

peed, and the global stability of the non-sharp traveling waves were studied by Huang et al. [11] and Liu-
ei-Yang [12], recently. The asymptotic behavior of solutions for the Dirichlet boundary case were studied

n [20–22].
For the regular Huxley (bistable type) reaction–diffusion equations, the smooth and monotone traveling

aves were intensively investigated in [4–6,23–26]. When these bistable reaction–diffusion equations with
egeneracy of diffusion and time-delay, the existence of sharp traveling waves was proved by Jin et al. [7,8].

However, for the case of the bistable reaction–diffusion equations with the effect of degenerate diffusion,
ime-delay and nonlocality, the relevant study is almost nothing as we know. As the first step, we are going
o prove the existence, uniqueness and regularity of global solution for (1.1). This is the main issue of the
resent note. The adopted approach is the Holmgren’s iteration scheme with the help of the compactness
stimates and the monotonic technique. The crucial steps of the Holmgren’s iteration scheme are to denote
monotonic function for constructing an auxiliary equation and establish the estimates for the solutions of
he adjoint equation. Then by upper and lower solutions to iterate.
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2. Main result and proof

Definition 2.1. A function u ∈ L2
loc(R+ × R) is called a weak solution of (1.1) with (1.2) if 0 ≤ u ≤ 1,

∇um ∈ L2
loc(R+ × R), and for any T > 0 and ψ ∈ C∞

0 ((−r, T ) × R),

−
∫ T

0

∫
R
u(x, t)ψtdxdt+

∫ T

0

∫
R

∇um(x, t) · ∇ψdxdt

=
∫
R
u0(x, 0)ψ(0, x)dx+

∫ T

0

∫
R
g(u(x, t), J ∗ S(u(x, t− r)))ψdxdt.

Definition 2.2. A function u is called an upper (lower) solution of (1.1) if the following inequality holds
in the sense of distributions,

ut(t, x) − (um)xx(t, x) − g(u(t, x), J ∗ S(u(t− r, x))) ≥ (≤)0. (2.1)

heorem 2.1. Assume that (H1)–(H3) hold. Let the initial data u0(s, x) ∈ L∞([−r, 0] × R) satisfy

0 < u0(s, x) < 1, (s, x) ∈ [−r, 0] × R, (2.2)

nd
lim

x→−∞
u0(s, x) = 0, lim

x→+∞
u0(s, x) = 1, uniformly in s ∈ [−r, 0]. (2.3)

hen there exists a uniquely global solution of (1.1) with Hölder continuity C
1

2m , 1
4m (R+ ×R) such that u ∈ D,

and
0 < u(t, x) < 1, (t, x) ∈ R+ × R,

and
lim

x→−∞
u(t, x) = 0, lim

x→+∞
u(t, x) = 1, uniformly in t ∈ R+, (2.4)

where

D = {u|u ∈ L∞(R+ × R) ∩ C
1

2m , 1
4m (R+ × R); (um)x ∈ L∞(R+;L2

loc(R));
(um)t ∈ L2

loc(R+ × R)}.

For the local equation{
ut(x, t) − ∆um(x, t) = g(u(x, t), S(u(x, t− r))), t ≥ 0, x ∈ R,
u(x, s) = u0(x, s), s ∈ [−r, 0], x ∈ R,

(2.5)

e have the similar result.

heorem 2.2. Assume that (H2) − (H3) hold. Let the initial data u0(s, x) ∈ L∞([−r, 0] ×R) satisfies (2.2)
nd (2.3). Then there exists a uniquely global solution of (2.5) with Hölder continuity C 1

2m , 1
4m (R+ ×R) such

that u ∈ D and
0 < u(t, x) < 1, (t, x) ∈ R+ × R,

and
lim

x→−∞
u(t, x) = 0, lim

x→+∞
u(t, x) = 1, uniformly in t ∈ R+.
3
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Since the proof of Theorem 2.2 is pretty similar to Theorem 2.1, therefore we just need to prove
Theorem 2.1. Note that Eq. (1.1) is degenerate at u = 0, so we will adopt the Holmgren’s approximation
cheme and compactness method in this section to treat it.

Let us define a sufficiently smooth sequence ul0(s, x) with l ≫ 1 such that 0 < ul0(s, x) < 1 for
s, x) ∈ [−r, 0] × [−l, l] and liml→∞ ul0(s, x) = u0(s, x) uniformly in x and s. Now we consider the
nitial–boundary-value problem as follows:⎧⎪⎨⎪⎩

ut(x, t) − ∆um(x, t) = g(u(x, t), J ∗ S(u(x, t− r))), t ≥ 0, x ∈ [−l, l],
u(−l, t) = 1

l , u(l, t) = 1 − 1
l , t ≥ 0,

u(x, s) = ul0(s, x), (s, x) ∈ [−r, 0] × [−l.l].
(2.6)

e state the definitions of the upper and lower solutions of (2.6) and some lemmas before we prove the
xistence of the approximate solutions to (2.6).

efinition 2.3. A function u ∈ C(R+ × [−l, l]) with um ∈ W 1,2
loc (R+ × [−l, l]) is called a upper (lower)

olution of (2.6), if it satisfies⎧⎪⎨⎪⎩
ut(x, t) − ∆um(x, t) ≥ (≤)g(u(x, t), J ∗ S(u(x, t− r))), t ≥ 0, x ∈ [−l, l],
u(−l, t) ≥ (≤) 1

l , u(l, t) ≥ (≤)1 − 1
l , t ≥ 0,

u(x, s) ≥ (≤)ul0(s, x), (s, x) ∈ [−r, 0] × [−l, l].

Let T > 0 be a given positive constant and QT := [0, T ] × [−l, l], define a space

C+([0, T ];H1([−l, l])) = {v(t, x)|v(t, x) > 0 for (t, x) ∈ QT and

v ∈ C([0, T ];H1([−l, l]))}.
(2.7)

or v(t, x) ∈ C+([0, T ];H1([−l, l])), denote

F (v) := K1v(t, x) + g(v, J ∗ S(vr)), vr := v(t− r, x), (2.8)

here
K1 = sup

(u,v)∈[0,1]×[S(0),S(1)]
|g1(u, v)|. (2.9)

For 0 < v1(t, x) ≤ v2(t, x), (t, x) ∈ [−r, T ] × [−l, l],

F (v2) − F (v1)
= K1(v2 − v1) + g(v2, J ∗ S(v2r)) − g(v1, J ∗ S(v2r)) + g(v1, J ∗ S(v2r))

− g(v1, J ∗ S(v1r))
= K1(v2 − v1) + g1(θ1, J ∗ S(v2r))(v2 − v1) + g2(v1, J ∗ S(θ2))S′(θ3)J ∗ (v2r − v1r)
= (K1 + g1(θ1, J ∗ S(v2r)))(v2 − v1) + g2(v1, J ∗ S(θ2))S′(θ3)J ∗ (v2r − v1r)
≥ 0, (t, x) ∈ QT , θi ∈ [0, 1], i = 1, 2, 3,

which follows from the definition of K1 and (H2). Let v1 = 0, then F (v) ≥ 0 for (t, x) ∈ QT . We first pay
attention to the following problem⎧⎪⎨⎪⎩

ut(x, t) − ∆um(x, t) +K1u(t, x) = F (v), t ≥ 0, x ∈ [−l, l],
u(−l, t) = 1

l , u(l, t) = 1 − 1
l , t ≥ 0,

u(x, s) = ul0(s, x), (s, x) ∈ [−r, 0] × [−l, l].
(2.10)

rom [12], the following lemmas hold.
4
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Lemma 2.3 ([12]). Let u(t, x) be the solution of (2.10) with 0 < v(t, x) < 1 for (t, x) ∈ QT and
< ul0(s, x) < 1 for (s, x) ∈ [−r, 0] × [−l, l]. Then

0 < u(t, x) < 1, (t, x) ∈ QT . (2.11)

Lemma 2.4 ([12]). Let 0 < v1(t, x) ≤ v2(t, x) < 1 for (t, x) ∈ [−r, T ] × [−l, l] and u1(t, x) and u2(t, x) be
the solution of (2.10) with respect to v1(t, x) and v2(t, x), respectively. Then

0 < u1(t, x) ≤ u2(t, x) < 1, (t, x) ∈ QT . (2.12)

Lemma 2.5. For any given f(t, x) ∈ C∞
0 (QT ), where QT := [0, T ] × [−l, l] with l > 1, ϵ ∈ (0, 1), η ∈ (0, 1),

and 0 ≤ A(t, x) ∈ L∞(R) ∩ C(R), B(t, x) ∈ C1(R) is bounded. Let ψϵ,η(t, x) be the solution of the following
parabolic problem ⎧⎪⎨⎪⎩

ψt + (Aϵ(t, x) + η)ψxx +Bϵψ = f(t, x), (t, x) ∈ QT ,

ψ(t,−A) = 0, ψ(t, A) = 0, t ∈ [0, T ],
ψ(T, x) = 0, x ∈ [−l, l],

(2.13)

where Aϵ(t, x) and Bϵ(t, x) are the smooth approximations of A(t, x) and B(t, x) respectively, such that

A(t, x) ≤ Aϵ(t, x) ≤ A(t, x) + ϵ, lim
ϵ→0

Bϵ(t, x) = B(t, x). (2.14)

Then ψϵ,η(t, x) satisfies

sup
(t,x)∈QT

|ψϵ,η(t, x)| ≤ C,

∫∫
QT

(Aϵ(t, x) + η)
(
∂2ψϵ,η(t, x)

∂x2

)2

dxdt ≤ Cη−1, (2.15)

nd ∫∫
QT

(
∂ψϵ,η(t, x)

∂x

)2
dxdt ≤ Cη−1, sup

t∈[0,T ]

∫ l

−l

⏐⏐⏐⏐∂ψϵ,η(t, x)
∂x

⏐⏐⏐⏐ dx ≤ C, (2.16)

here C denotes a generic constant which is independent of η and ϵ, and may take different values in different
ases.

roof. The proof can be similarly done as shown in Lemma 3.2.1 and Lemma 3.2.2 of [13], so we omit its
etail.

Now, applying Lemmas 2.3–2.5 to Eq. (2.10), we can prove the existence of the solution for (2.6). □

emma 2.6. Let ul0(s, t) ∈ C+([−r, 0];H1([−l, l])) satisfy 0 < ul0 < 1. Then the problem (2.6) admits a
nique smooth solution u(t, x) ∈ C+([0, T ];H1([−l, l])) for any T > 0, satisfying

0 < u(t, x) < 1, (t, x) ∈ [0, T ] × [−l, l]. (2.17)

roof. From Definition 2.3, u := 1 and u := 0 are a pair of upper and lower solutions of (2.6). Note that,
for given function v, the IBVP (2.10) defines an operator P such that the solution of (2.10) can be written
in the form of u = P(v). Thus, by initially setting v = u0 and v = u0, respectively, we can construct two
equences {un} and {un} by un = P(un−1) and un = P(un−1), for n = 1, 2, . . ., respectively.

Thanks to Lemmas 2.3 and 2.4, we can prove

0 = u0 < u1 ≤ · · · ≤ un ≤ · · · ≤ un ≤ · · · ≤ u1 < u0 = 1.

5
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Thus there exist two limit functions û(t, x) and ǔ(t, x) with respect to {un} and {un} as n → ∞, respectively,
satisfying

0 < û(t, x) ≤ ǔ(t, x) < 1, (t, x) ∈ [0, T ] × [−l, l]. (2.18)

ext we need to prove û(t, x) = ǔ(t, x) as the unique solution of (2.6). Let w = ǔ(t, x) − û(t, x), then⎧⎪⎨⎪⎩
wt − ∂2

x(A(t, x)w) = g(ǔ, J ∗ S(ǔr)) − g(û, J ∗ S(ûr)), (t, x) ∈ [0, T ] × [−l, l],
w(t,−l) = 0, w(t, l) = 0, t > 0,
w(s, x) = 0, (s, x) ∈ [−r, 0] × [−l, l],

(2.19)

here
A(t, x) = m

∫ 1

0
(θǔ+ (1 − θ)û)m−1dθ.

e note that 0 < A(t, x) ∈ C([0, T ] × [−l, l]), due to (2.18).
For t ∈ [0, r], t− r ∈ [−r, 0],

g(ǔ, J ∗ S(ǔr)) − g(û, J ∗ S(ûr)) = g(ǔ, J ∗ S(ul0)) − g(û, J ∗ S(ul0)) =: B(t, x)w,

where B(t, x) :=
∫ 1

0 g1(θǔ + (1 − θ)û, J ∗ S(ul0))dθ. Since |g1(u, v)| < K1 for (u, v) ∈ [0, 1] × [S(0), S(1)],
|B(t, x)| < K1, then w satisfies⎧⎪⎨⎪⎩

wt − ∂2
x(A(t, x)w) −B(t, x)w = 0, (t, x) ∈ [0, T ] × [−l, l],

w(t,−l) = 0, w(t, l) = 0, t > 0,
w(s, x) = 0, (s, x) ∈ [−r, 0] × [−l, l].

(2.20)

y the definition of weak solutions, for any test function ψ ∈ C∞([0, r] × [−l, l]), the solution of (2.20)
atisfies ∫∫

Qr

w(ψt +A(t, x)ψxx +B(t, x)ψ)dxdt = 0, (2.21)

here Qr := [0, r] × [−l, l].
Since A(t, x) and B(t, x) are merely bounded and measurable, it is difficult to analyze the solvability of

the adjoint problem directly. Based on this reason, for any given f(t, x) ∈ C∞
0 (Qr), we focus on the following

approximation adjoint problem⎧⎪⎨⎪⎩
ψt + (Aϵ(t, x) + η)ψxx +Bδϵ,ηψ = f(t, x), (t, x) ∈ Qr,

ψ(t,−l) = 0, ψ(t, l) = 0, t ∈ [0, r],
ψ(r, x) = 0, x ∈ [−l, l].

(2.22)

Here, δ > 0 and η > 0 are sufficiently small constants, for |ǔ− û| ≥ δ, A(t, x) ≥ L(δ) > 0, let

bδη =
{

(A(t, x) + η)− 1
2B, |ǔ− û| ≥ δ,

0, |ǔ− û| < δ,

hus Aϵ(t, x) and bδϵ,η are the smooth approximations of A(t, x) and bδη, and Bδϵ,η = bδϵ,η(Aϵ + η) 1
2 .

We take the solution ψϵ,η of (2.22) as the test function in (2.21), then∫∫
Qr

wfdxdt =
∫∫

Qr

w(ψt + (Aϵ + η)ψxx +Bδϵ,ηψ)dxdt

=
∫∫

Qr

wηψxxdxdt+
∫∫

Qr

w(Aϵ −A)ψxxdxdt+
∫∫

Qr

w(Bδϵ,η −B)ψdxdt.

rom [13], let ϵ → 0, η → 0, δ → 0, then the right-hand side of the above equation tends to zero. By the
rbitrariness of f , then w = 0 for (t, x) ∈ Qr, namely, ǔ = û for t ∈ [0, r].

Repeating the above procedure to [r, 2r], [2r, 3r], . . ., we obtain ǔ = û for t ∈ [0, T ] × [−l, l]. The proof is
omplete. □
6
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Proof of Theorem 2.1. Let a ∈ (−l + 2, l − 2), and η(x) ∈ C∞
0 ((a− 2, a+ 2)) be a function satisfying

0 ≤ η(x) ≤ 1; |η′(x)| ≤ 1; η(x) = 1, x ∈ (a− 1, a+ 1).

imilar to [12], by Young’s inequality, the mean value theorem of integrals and 0 < u < 1, it is easy to
educe ∫ t+σ

t

∫
um−1|us|2η4dxds+ sup

t

∫
|(um)x|2η4dx ≤ C, (2.23)

here C is independent of l. We denote the weak limit of ul by u as l → ∞. The solutions of (1.1) satisfy
≤ u ≤ 1 and um ∈ L∞(R+;H1

loc(R)). The solutions also satisfy (um)t ∈ L2((t, t+ δ) × (a− 1, a+ 1)). For
ny t2 ≤ t1 ∈ R+, x ∈ R, take a ball Br of radius r centered at x, where r = |t1 − t2|

1
2 . By the Poincaré

inequality and the mean value theorem, there exists x∗ ∈ Br such that

|um(t1, x∗) − um(t2, x∗)| ≤ C|t1 − t2|
1
2 r− 1

2 .

Then
|um(t1, x) − um(t2, x)| ≤ C|t1 − t2|

1
4 ,

which implies that um ∈ C
1
4 ,

1
2 (R+ × R). Furthermore, u ∈ C

1
4m , 1

2m (R+ × R).
For the uniqueness of original solution, let u1 and u2 be two solutions of (1.1), and denote v = u1 − u2.
hen t ∈ [0, r], u1(t− r, x) = u2(t− r, x) = u0(t− r, x), we note that⎧⎪⎨⎪⎩

vt − ∂2
x(A(t, x)v) −B(t, x)v = 0, (t, x) ∈ R+ × R,

limx→±∞ v(t, x) = 0, t ∈ [0, r],
v(s, x) = 0, (s, x) ∈ [−r, 0] × R,

here
A(t, x) := m

∫ 1

0
(θu1 + (1 − θ)u2)m−1dθ,

nd
B(t, x) :=

∫ 1

0
g1(θu1 + (1 − θ)u2, J ∗ S(u0))dθ.

From the definition of weak solution, the weak form for the above equation is reduced to∫ r

0

∫
R
u(t, x)

[∂ψ
∂t

+DA(t, x)∂
2ψ

∂x2 +B(t, x)ψ
]
dxdt = 0, (2.24)

ith any test function ψ ∈ C∞
0 ([−r, T ] ×R). For any smooth functions g(x, t) ∈ C∞

0 (R× (0, r)), let BR0 be
the ball with radius R0 > 0 such that supp g ⊂ BR0 . For any R > R0 + 1, η > 0, and ε > 0, Aε(t, x) and
Bε(t, x) are the smooth approximations of A(t, x) and B(t, x) respectively, we consider the following adjoint
roblem in C∞

0 ([0, r] × R):⎧⎪⎪⎨⎪⎪⎩
∂ψ

∂t
+ (DAε(t, x) + η)∂

2ψ

∂x2 +Bε(t, x)ψ = −g(x, t), |x| < R, t ∈ (0, r],
∂ψ
∂ν = 0, |x| = R, t ∈ (0, r],
ψ(x, r) = 0, |x| < R.

(2.25)

et ψ(t, x) = ψRε,η(t, x) be the solution of (2.25) with zero extension to the whole space of R, and let
ξR(x) ∈ C∞

0 (R) be a cut-off function such that 0 ≤ ξR(ξ) ≤ 1, ξR(x) = 1 for |x| ≤ R− 1, and ξR(x) = 0 for
x| > R− 1

2 . Particularly, by taking ϕ(t, x) = ξR(x)ψRε,η(t, x) as the test function in (2.24), using Lemma 2.5,
y the same fashion of Proposition 3.2 in [12], we derive∫ r

0

∫
R
u(t, x)g(x, t)dxdt = 0.

epeating the same procedure and using the arbitrariness of g(x, t), we can prove the uniqueness. The proof
f Theorem 2.1 is complete. □
7
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