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ABSTRACT. This paper is concerned with the large-time behavior of solutions
to the Cauchy problem for the one-dimensional unipolar Euler-Poisson equa-
tions with critical time-dependent over-damping. We prove that the Cauchy
problem admits a unique global smooth solution which time-asymptotically
converges to the stationary solution in the logarithmic form O(ln’g(l + 1))
for the integer k € [1,+00). In particular, the integer k can be large enough as
the initial perturbation is small enough. This convergence rate is much better
than the previous studies with critical over-damping. The proof is based on
the technical time-weighted energy estimates and the mathematical induction.

1. Introduction. In this paper, we study the one-dimensional unipolar hydrody-
namic model for semiconductors, which can be represented by the following Euler-
Poisson equations

T +—J¢ ZZO,

J? I

< Y 1
Jt—i—(n —i—p(n))z n (1+t)/\J, (1)
E, =n— D(z).

Here the unknown functions n(z,t) > 0, J(x,t), and E(z,t) denote the electron
density, the current density, and the electric field, respectively. The given function

p(n) is the pressure-density function and D(x) is the doping profile which denotes

the prescribed density of positive charged background ions. The term — ﬁ‘] with

physical parameter y > 0 and A\ € R is the time-dependent damping effect, which
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will have a great influence on the large-time behavior of solutions. When A < 0, the
damping effect is time-asymptotically enhancing and it is called the over-damping
case. When A\ > 0, the damping effect is time-asymptotically degenerate and it is
called the under-damping case.

The hydrodynamic model for semiconductors is usually used in describing the
motion of the charged particles, such as electrons and holes in semiconductor devices
[19]. Since its firstly introduced by Blgtekjeer [1], it has been one of the hot spots
in mathematical physics because of its application to model hot electron effects
that are not accounted for in the classical drift-diffusion model [22]. For its steady-
state system, Degond and Markowich obtained the existence and uniqueness of
the smooth subsonic solution in one-dimensional case [3] and in three-dimensional
irrotational case [4]. The existence of subsonic solutions in two-dimensional case was
considered by Markowich in [18]. Peng and Violet [21] investigated the existence and
uniqueness of the supersonic solution for the one-dimensional steady-state Euler-
Poisson system. For the study on the steady transonic solutions, we refer the reader
to the interesting work [2] and the references therein.

When g > 0 and A = 0, the damping in the system (1) becomes the regular
damping. There are many results about the large-time behavior of the solutions to
(1) with regular damping [6, 9, 14, 17, 20, 23]. Among them, Li-Markowich-Mei
[14] proved that the system (1) in bounded domain (0,1) with Dirichlet bound-
ary conditions possesses a unique global smooth solution and the solution time-
exponentially converges to the corresponding steady-state. In [23], Sun-Mei-Zhang
considered the system (1) on the half line with inflow/outflow /impermeable bound-
ary conditions or the insulating boundary conditions. They found that the solu-
tions of the inflow/outflow /impermeable problem (insulating problem) tend expo-
nentially (exponentially/algebraically) to corresponding steady-states as t — +oo.
For the Cauchy problem, Luo-Natalini-Xin [17] investigated the global existence
of the solutions and obtained the solutions time-exponentially converging to the
stationary solutions of the drift-diffusion equations. They required the condi-
tion J(+00,0) = J(—00,0) = E(—00,0) = 0, which physically stands for the
switch-off case. This stiff condition ensured that they can establish the energy
estimates in L? framework. In [9], Huang-Mei-Wang-Yu studied the case that
J(400,0) # J(—00,0), which physically stands for the switch-on case. They techni-
cally constructed some correction functions to delete the gaps between the original
solutions and the stationary solutions in L? space. Furthermore, they proved that
the solutions to the system (1) with regular damping time-exponentially converge to
the stationary solutions. Regarding the multi-dimensional case, we refer to [7, 10]
and the references therein. For the other interesting studies on the bipolar hydro-
dynamic model for semiconductors, see [5, 8] and the references therein.

When g > 0 and A # 0, the effect of damping is time-asymptotically enhancing
or degenerate, which makes the fantastic variety of the Euler-Poisson system, and
the research results are very limit. In [24], Sun-Mei-Zhang investigated the Cauchy
problem for the unipolar Euler-Poisson system (1) with A € (—1,0) U (0,1). They
proved that, when A € (—1,0), the Cauchy problem admits a unique global solution
converging to the steady-state in the sub-exponential form as ¢ — +o00, and when
A € (0,1), the system with the completely flat doping profile possesses a unique
global solution time-asymptotically converging to the constant steady-state in the
sub-exponential form. The authors observed that the time-dependent damping es-
sentially affects the large-time behavior of solutions to the unipolar Euler-Poisson
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system (1), and causes the decay rate to be sub-exponential, which is slower than
the exponential rate in the case of A = 0. Besides, Li-Mei-Xu [15] studied the initial
boundary-value problem for the system (1) with A € (0,1). They proved that the
initial boundary-value problem admits a unique global solution time-asymptotically
converging to the constant steady-state in the sub-exponential form when the doping
profile is completely flat. For the bipolar hydrodynamic model of semiconductors,
Li-Li-Mei-Zhang [12] obtained that the one-dimensional bipolar Euler-Poisson sys-
tem with time-dependent damping for A € (—1, 1) possesses a unique global solution
time-algebraically converging to the corresponding diffusion wave. In [16], Luan-
Mei-Rubino-Zhu considered the critical case A = 1 and p > 2, they proved that the
global solution of the bipolar Euler-Poisson system time-algebraically converges to
the constant steady-state. Wu [25] investigated the one-dimensional bipolar quan-
tum Euler-Poisson system in the critical case A = —1. The author showed that
the solution of the system exists globally and time-asymptotically converges to the
nonlinear diffusion wave in the logarithmic form.

Our target in this paper is to study the large-time behavior of solutions for the
unipolar Euler-Poisson system (1) in the more interesting and challenging critical
over-damping case, namely, A = —1. Without loss of generality, we set 4 = 1, then
the system (1) becomes

ne + JI = 0,
J2
St (L 4pm) =nE- (1407 @HERX (tnto) (2
E, =n— D(x),
where to > 0 is a given constant. The initial data of (2) are given by
(n, J)(x,to) = (ng, Jo)(z), z € R. (3)
Throughout this paper, we assume that the pressure function p satisfies
p € C*((0,+00)), p'(s) >0 for s > 0, (4)

a physical example is p(n) = An” with A > 0 and v > 1. And the assumptions on
the doping profile D(z) are

D(x) >0, lim D(x) = Dx, D'(x) € C°(R) N H2(R). (5)
The studies on the critical over-damping case with A = —1 are very limited.

The first studies related to this critical case were [13] for the 1-D time-dependently
damped Euler equations, and [11] for the n-D Euler equations with n > 7. The
similar result was then extended to the bipolar quantum Euler-Poisson system in
[25]. However, for the unipolar Euler-Poisson system, we observe that there is some
advantage arising from the Poisson equation. With this help, the perturbed equation
around its steady-states is reduced to the well-known Klein-Gordon equation with
nonlinear perturbation (see (21)). Even though the critical over-damping makes the
decay very weak like O(In(1 + t)) as showed in [11, 13, 25], the strong dissipative
term 7w in (21) will help us to expect to have a much faster decay.

As shown in [17, 24], since the doping profile D(z) in (2) is nonzero, the expected
asymptotic profiles of the solutions to (2)—(3) are stationary solutions. Therefore,
the main task for us is to investigate the solutions of the Cauchy problem (2)-(3)
converge to the stationary solutions. There are some technical issues in the proof
we want to point out. In [24], the a priori estimates were established by choosing
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appropriate polynomial time-weights, however, this method is no longer applicable
in the critical case A = —1. Inspired by [13] for the 1-D damped Euler equations
and [11] for the n-D damped compressible Euler equations, we technically construct
logarithmic time-weights to establish the a priori estimates. But different from the
Euler system in [13] and the bipolar quantum Euler-Poisson system in [25], we
observe that the decay rates of the solutions to the unipolar Euler-Poisson system

(2) can be enhanced to lnfg(l +t), where k € [1,400) is an integer and could
be large enough as the initial perturbation is small enough. This decay rate is
much better than the existing studies [11, 13, 25] in the critical over-damping case.
In order to avoid repeated calculation, we adopt the mathematical induction to
prove the important lemmas. Even though we use the induction in the proof, the
calculation is still complicated than that in [13]. In summary, we state our main
result as follows:

For the unipolar Euler-Poisson system (2) with critical over-damping, we expect
that the asymptotic profile of the solution is the stationary solution (7, E)(z) to
the well-known drift-diffusion equations where the current density J(x) = 0, and
prove that the unique solution (n, J, E)(x,t) of the Cauchy problem (2)—(3) globally
exists and satisfies

_k
[n(t) — 7l Lo ry < C'In™ 2 (1 4 1),
()] ooy < C(1+ )" In™ 5 (1 41),
n _k
[E(t) — Ellpe® < Cln™2(1 +1),

if the initial perturbation is sufficiently small. Here k € [1,+00) is an integer, as
mentioned in the above, it can be large enough as the initial perturbation is small
enough.

Regarding the fluid dynamics, including hydrodynamic models of semiconduc-
tors, from the mathematical point of view, the smallness of initial perturbation is
usually requested for the global existence of solutions, because the Euler-Poisson
system lacks the maximum principle. On the other hand, from physical point of
view, the small perturbation around the subsonic initial data is also necessary for
the dynamical system. Otherwise, a big initial perturbation may allow the initial
data to be supersonic, which could cause the system does not hold any physical
solutions, namely, the semiconductor device may not efficiently work out.

Regarding the compressible Euler equations with time-dependent damping, we
refer to the relevant studies [11, 13] and the references therein.

The rest of this paper is arranged as follows. In Section 2, we introduce the well-
known results of the stationary solutions and state the main results of this paper.
Section 3 devotes to establish the a priori estimates, which is the crucial part of
this paper.

Notations. Throughout this paper, the symbol C' denotes a generic positive
constant which maybe different in different lines. C; (i = 1,2,3,...) denotes some
specific positive constant. L?(R) is the square integrable real-valued function space
on R whose norm is defined by || - ||z2®) = ([ |- [*dz)/2. L>®(R) is essentially

bounded measurable function space on R whose norm is defined by || - ||z ®) =
esssup| - |. For a nonnegative integer m, H™(R) is the Hilbert space whose norm
z€R

is defined by ||f\|§{m(]R) =3 ||3§;f|\%2(R). For the sake of convenience, we denote

=11 2@y [T lloo := - ooy and ||+ [l := Il - [l -
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2. Preliminaries and main results. In this section, we show some well-known
results of the stationary solutions, and state the main results of this paper.

As shown in [17, 24], the asymptotic profiles of the solutions to (2)—(3) are
stationary solutions which satisfy the following stationary equations corresponding
to the well-known drift-diffusion equations

(RE — p(R)z)s = 0,
{Ex =n— D(x), ©

with the boundary value conditions

mkrinoo n(z) = Dy, mkr_noo E(z)=0. (7)
It then follows from (6), and (7) that
J :=aFE — p(n), = constant = f(—o0)E(—o0) = 0. (8)

Let us denote

D, = inf D(z), D* = sup D(x).
z€R zER
We introduce the existence and uniqueness result of the solutions to stationary
equations (6) with (7) in the following Lemma. The proof of Lemma 2.1 is omitted
here and one can see [17] for details.

Lemma 2.1. Assume that the pressure function p satisfies (4) and the doping
profile D(x) satisfies (5). Then there exists a unique smooth solution (n, E)(z) of

(6)—(7) satisfying

D, <n(x) < D*, foranyz €R, (9)
|7 — D|13 + ||7]l3 < Cino, (10)
3 . 2 o
D 1090lloc + D 104E |0 < Cado, (11)
j=1 j=0

where Cy and Cs are positive constants depending only on D, and D*, and
m = |D')°+ D",
72 = D717 + 1D + 1 D)1,
o = [ D'[[* + v + 72,
8o = D123 + 1D I + | D27
+ D292 e 4 1D oo ey

Based on Lemma 2.1, we are able to state the main result of this paper as follows.

Theorem 2.2. Let (0, E)(z) be the solution of the stationary equations (6) with
(7) and define

%@w:/mmaw—mwMy (12)

—0o0

Suppose that (4)—(5) hold, wo(z) € H3*(R), Jo(x) € H*(R) and |wollz + ||Joll2
is sufficiently small. For any given k, if &y is chosen sufficiently small, then the
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Cauchy problem (2)—(3) possesses a unique global smooth solution (n,J, E)(x,t),

which satisfies
" (1 +8)([In(t) = 2ll3 + [ E@) = E|3) + (1 + ) W (L + )| J(¢)]]3 (13)
< Cr(llwoll3 + 190113

where k € [1,+00) is an integer, Cr is a positive constant depending on k and
satisfies C’k(||w0|\§ + HJ0||§) < 00.

Remark 2.3. Actually, the integer k is closely related to the initial perturbation.
In order to obtain the global existence of the solution by the continuation argu-
ment, as showed later in Proposition 2.5, we need to guarantee (k! E?:o In’ (1 +

t0))"/?(|lwoll3 + || Jol|2) < 1. Therefore, once the initial perturbation |lwol|s + || Jo]|2
is small enough, the integer k£ can be large enough.

From the Sobolev inequality
1£lloo < V2IFIM21 fI1M2, (14)

we have the following Corollary.

Corollary 2.4. Under the assumptions of Theorem 2.2, it holds that

[n(t) = fillae < CIn"% (1 + 1), (15)
1T (#)]loe < C(L+6)" ™5 (1 4 1), (16)
|E(t) — Ellos < CIn"2(1+1), (17)

where k € [1,400) is an integer.
Now we reformulate the original problem (2)—(3). Set
o(x,t) = n(x,t) — ax), w(z,t) = E(x,t) — E(z). (18)
It then follows from (2) that (¢, J,w)(x,t) satisfies
o+ Jp =0,

st (F55) + o) ) =k (B+ade— (401 (19
Wy = .
By (19), and (19)5, we obtain
we(x,t) = p(z,t), wi(z,t) = —=J(z,1). (20)
Combining (19), and (20), one has

wie + (1 + w — (p' (R)wy)e + Iw

w? ) e

= (B )i+ (0 ) = ()~ ) + (75

From (3), (12), (18), and (20), we can get the initial value for the perturbation
system (21),
w(x, tg) = wo(x), wi(x,tg) = —Jo(x). (22)

Besides, we choose

Blavto) = | " (no - D)(y)dy

— 00
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:/I (no—ﬁ)(y)dy+/m (7 — D)(y)dy

= wo(r) + E(x).

Let T € (to, +o0], we define the solution space for the Cauchy problem (21)-(22)
as

X(T) := {w(x,t) | 8w € C([to, T); H*(R)), j =0,1,2},
where its norm is defined by

N(T)?:= sup {In"(1+1¢) ZH@J ®)]1?
to<t<T =

+<1+t>21n’“<1+t>(2|@zwt(t)n?+Z||a;wtt<t>||2) ,

Jj=0 Jj=0

(23)

where k € [1,+00) is an integer.
For the Cauchy problem (21)—(22), we have the following result.

Proposition 2.5. Under the assumptions of Theorem 2.2, if both N(T) and dg
are sufficiently small, then, the Cauchy problem (21)—(22) admits a unique global
smooth solution w(z,t) € X(T) satisfying

In*( 1+tZII6J O+ (1487 W" (1 +1) leafwt ||2+Z||87wtt @®)I?

t
—|—/ I (1 +7) [1+7)" ZH@j 2+ (1+7) ZH@]wt )12

to j=0

+(1+7)° E [07wie (T)[[*| dr < CK! E I’ (1 + o) ([lwoll3 + [1o]l3) ,
j=0 j=0
(24)

where k € [1,400) is an integer.

Proof of Theorem 2.2. Once Proposition 2.5 is proved, from (18) and (20), we can
immediately obtain Theorem 2.2. O

In what follows, we mainly focus on the proof of Proposition 2.5.

3. Proof of Proposition 2.5. In this section, we devote to prove Proposition 2.5.
In fact, the local existence of the solution to the Cauchy problem (21)-(22) can be
obtained by the standard iteration method, then, from the a priori estimate (24)
and the standard continuation arguments, we can extend the local solution to the
global solution. Thus, the main effort in this section is to establish the a priori
estimate (24).

Thanks to (23) and the Sobolev inequality (14), we have

2

sup_ & (|0w()l|oo + (1+1) | D 105w (t)lloo + lwre(t) oo

to<t<T | 555 =0 (25)

k

<Cln"2(1+1t)N(T) =: ¢,
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where k € [1,+00) is an integer. Since N(T') is sufficiently small, we can deduce
e < 1 and further derive €+ 0y is sufficiently small. Thus, from (9), (25) and ¢ < 1,
we obtain, for any (z,t) € R x [to, T},

0< D./2 <#(z) 4w, <2D*. (26)

The proof of Proposition 2.5 is based on several steps of energy estimates which
will be stated as a sequence of Lemmas.

Lemma 3.1. Under the assumptions of Proposition 2.5, it holds that

*(1+8) (w1 + lwz ()1 + llewe ()]1%) + /t n* (1 +7) [(1 4 7)llwi ()]
k
+(1+7) 7 (Jlo())? + llws (1) |?)] dr < Ck! Zlnj(l +to) (lwollT + [ Jo]1?)
§=0
(27)

where k € [1,+00) is an integer.

Proof. We use the induction to prove this Lemma and divide the proof into two
steps.

Step 1. In this step, we are going to obtain the estimate (27) with & = 1. Firstly,
multiplying (21) by 2w; + (1 + #)~!w and integrating the resulting equation with
respect to x over R, after integration by parts, we have

d 1 1
s (wf + 9/ (R)w? 4+ aw? + (1 + ) tww; + §w2 + 5(1 + t)2w2) dx
R

+/]R[2(1+t) - (1+t)—1]w,?dx+/R(1+t)—1p'(ﬁ)w§,dx

+/R[ﬁ+(1+t)— (14 ) 'w?da

=— | (B+ww.(2w; + (1 +1) " w)dz +
/ /

R( wi >$(2wt+(1+t)1w)dx

n+ wy
+ /R(p(ﬁ +wy) — p() — p'(A)we)e(2ws + (1 4+ t) " rw)de =: I + I + Is.
(28)

We estimate I, Iy and I3 as follows. From (11), (25)—(26) and Holder inequality,
I and I, can be estimated as

|I;| < C(5O+5)/ |wmwt|dI+C(50+€)/(1+t)71|wwz|dx
R R

29
< C(b +¢) / [(1+Hw? + (1+1) " (w2 + w?)]dx, .
WtQR -1
L] = ’—An+wz(2th+(l+t) wp)da
< C’/]R |wat|wida + C’/R(l + 1) Hwg |widx (30)

< CE/(l + t)wide.
R
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We can estimate I3 by using (9), (25)—(26), Taylor’s formula and Holder inequality,

Iy = ]— [0+ = () = ) G+ (1 0) i)

1
3 /p”(ﬁ + 0wy w2 (2wer + (1 + 1) twy )da
R

< CE/(lth)*lwgdx,
R

where 6 € (0,1). Substituting (29)—(31) into (28) and employing the smallness of
€ + dp, one has

d 1 1
o (w? + 9/ (R)w? 4 w? + (1 + 1) Lww, + §w2 + 5(1 + t)%ﬂ) dz
R

32
+03/R[(1+t)—1(w2+w§)+(1+t)w§]da:go, )
for some positive constant C's. Noting that
[(1+ ) tww| < %wf + %(1 + 1) 2w, (33)
We integrate (32) over (tg,t) and by (4), (9) and (33) to give
/(w2 + w? +wi)dr + /t/ [(1+7) "N w® +w2) + (1 + 7)wi|dadr
R to JR (34)

< C(llwollF + [17011%)-
Secondly, multiplying (21) by In(1 +#)(2w; + (1 +t)"'w) and integrating it over R,
and then after a similar calculation to (29)—(31), we can get

d

1
p <1n(1 +t)(wi +p'(R)w2 + nw?) + (1 4+ 1) In(1 + t)ww; + 5 n(1+ t)w?
R

+%(1 + )72 In(1 + t)w? — %(1 + t)2w2> dx + /Rln(l +1)[2(1 + 1)

— (1 +t) wide + /(1 +6) 7 In(1 +8)[p'(R)w2 + (A + (1 + )" H)w?dz
R

< /R(l +t)7! {w? +p/ (R)w? + (n + % + g(l +t)_2> w2] dx
+C(e +80) / (1 + 81+ )l + (148~ (@2 + w?)]da.
R
(35)

Applying the smallness of € 4+ dyp to (35), and integrating the resultant inequality
over (to,t), we have

/ {ln(l +t) (Wi + P (R)w? + nw?) + (1 +1) " n(l + H)ww; + %ln(l + t)w?
R
+%(1 +1)7?In(1 —|—t)w2] dz (36)

+C4/t /Rln(l—l—T)[(l—l—T)wtz+(1+7_)—1(wi_'_wg)]dxdT
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1 t
§/§(1+t)_2w2d:1c+0/ /(1+T)_1(wt2+wi+w2)dxd7
R to JR

+ Cln(1+to) (lwoll + 11 J0l1?)

1
< C1UY (1 +to) (lwoll? + 11 J0l1%) ,
=0

for some positive constant Cy and we used (34) in the last inequality. Then, from
(4), (9) and (33), we can obtain the estimate (27) with k =1,

In(1+ ) ([l + llws (@)1 + llwe ()]1?) +/ In(1+7) [(1+7)[lwe (7)]|?

F(1+7) 7 (oI + llwa ()]7)] dr (37)
<C1Y W (1+to) (fwolld + [1Jo]1?) -

§=0
Step 2. We make the induction hypothesis that (27) holds for the integer k =1—1
with [ > 2, i.e.,
t
' (14 8) (lw @17 + s (O + lwe()1?) + /t W' (L ) [(1 4+ 7) e ()2
0

+H@+ 1) (I + llws (N)]1?)] dr
-1

<C(l—- 1)!Zhlj(1 +to) ([lwoll? + lIJ0l?) -
= (38)

It suffices to prove that (27) holds for k = [ under the induction hypothesis (38).
Multiplying (21) by In‘(1 + #)(2w; + (1 4+ t)~'w) and integrating it over R, then
analogous to (29)-(31), one can verify that

%/ (hll(l +t)(w? +p'(R)w? + 1w?) + (1 + )" In' (1 + t)wew,
R

1 2, 1 —2 2 ! -2, 2
+§1nl(1+t)w +5(1+1) In' (1 4 t)w -5+ In' (1 + t)w )dx
- /(1 + )7 ' (14 ) (A)w? + (A + (1 + )" H)w?|dz

R

+/lnl(1 + )21 + 1) — (1 + 1) Hwida

R

+ %(z —1) /R(1 + )3 (1 4 twda

< l/(l +6) ' 1 +¢) [wf + p' (R)w? + (ﬁ + % + %(1 + t)—‘") w2] da
R

+C(e +80) / ' (1 4 6)[(1 + )l + (148~ (@2 + w?)]da.
R
(39)
Employing the smallness of € 4+ dp and I > 2 to (39), and then integrating the
resultant inequality over (to,t) gives
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/ <lnl(1 + 1) (W2 + P/ (A)w? + Aw?) + (1 + 1) " Int (1 + t)ww;
R

1 1
+3 In’ (1 4 t)w? + S+ )2 In’(1 + t)w2> da

+C5/tt/Rlnl(1—|—7‘)[(1—|—7')wt2+(1+T)—1(wg+w2)]dxd7_

I
<5 /(1 + 172 (1 + Bwdda + Ot (1 + to) (lwol2 + [ Jo]|?)
R

t
+cz/ /(1+7)*11nl—1(1+7)(w§+w§+w2)dxdT
to R

l
< CIY I (14 tg) (flwollF + [150117)

J=0

where we used (38) in the last inequality. Thus, by (4), (9) and (33), we have the
estimate (27) with k = [. The proof of Lemma 3.1 is completed. O

Lemma 3.2. Under the assumptions of Proposition 2.5, it holds that

n* (1 +¢) ([lows (01 + llwaa (01 + llwze (0)]1%) + / * (1 +7) [(1+7)l|wae (7)1

to
k
1+ 7) 7 (o (D7 + llwse (1)1)] dr < CLY JIn (1+t0) (|lwol3 + 1 o1F)
= (41)
where k € [1,400) is an integer.
Proof. Differentiating (21) with respect to z yields
wart + (1 + t)war — (P (M)waa)o + Mo
= —fpw — (Ep + wy)wy — (B + W)Wy (42)

OJ2
+ [(p/(ﬁ +wy) — p/(ﬁ))(ﬁx + Waz)]z + <n _~_th) :

We use induction to prove the estimate (41). The proof is divided into two steps.

Step 1. The goal of this step is to prove that the estimate (41) holds when k =1,
ie.,

In(1+ ) ([lwa (O + wae O + lwa (D7) + / In(1+7) [(1 4 7) lws: (7)]*

+(1+7) 7 (lwe (MNP + llwaa (7)1I7)] dr
<C1Y W (1+to) (lwoll3 + [10ll3) -

§=0
(43)

We first multiply (42) by 2w, + (1 +1)~*w, and integrate the resultant equation
with respect to x over R by parts to get
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d 1 1
%/ [wgt + 9/ (R)w?, + w2 + (14 t) L wpwer + 50@ + 5(1 + 1) 2W2 | da
R

+ /R[Q(l +t) = (L+1t) wydx

—|—/(1 + )7 (R)w2, + (A4 (1 +t) " ?)w?]dx
) ) (44)

=— / [aw + (Ep 4+ wp)ws + (B + 0)wee] (2uwer + (1 + 1) twy)de
R

M / (P (2 + wz) = P'(7)) (710 + Waa )]z (2wee + (1 + t)ilwz)dm
R

w2
+/ (FL +tw ) (2wt + (1 + 1) wy)de =: Iy + I5 + Ig.
R T/ rx

The right hand side of (44) can be estimated as below. It is easy to see that

I, < Cle + &) /(|wth\ + |wewat| + |Werwat|)dT
R
H O+ )L+ 07 [ (s + 02 + loyionsl)do (45)
R

< C(e +60) / (1457 WP+ w2+ w2) + (1+ B de
R

It follows from Taylor’s formula, Hélder inequality, (9) and (25) that

Is =~ /R(p/(ﬁ +wz) — p/(ﬁ))(ﬁx + Waa) 2weet + (1 + t)flwxx)dl‘

d
=g [, WOt ) = pm)er,d +2 / (7' (1 + wo) = P () Agoeorida
R R

+ / (7 + wm)wmtngdx
R
Lo / D (7 + ws) (e + W) — P ()i Fratwneda (46)
R

- / (146" (A + ws) — P (1)) (7 + g )waadle
<=5 [t~ @)

+C(e 4 6) /R [(1+ )N W) +w2,) + (1 + t)wl,]de.

We apply (25)—(26) and Holder inequality to estimate I as

2w Wy w? _ _
fo= 7/1@ {n fr w: ~(n +th)2 (e + wm)] (zot + (1 +0) war)do

d/%sz/WdHZ/MdI
dt Jp (7 +wg) r (0 +ws) r (0 +ws)?

2 3 — 9
wwi, Wy, N Wi Wt
-2 —F - (h,+w dx—l—Q/_ dx—Q/_idx
/R(n"‘wz)Q( ’ =) i r (N + wz)?

- 2 _ 9
nthth nwwt Wyt _
—4 7d$+4/7nm+wm dx
/R (7T on)? ot ) )

(47)
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2,2
1 Wtz tWee —1 Wt W;Ez
-2 1+t 17d$+/1+t —— _dy
/R( ) 4+ Wy R( ) (7 + wy )2

Apwiw
+ [ (A4 ) L g
oo g,

d W2%2cz ~1 2 2 2
< dt/RdeJrC(aJréo)/R[(1+t) w2, 4+ (14 ) (wi + w?,)]de.

Putting (45)—(47) into (44) and using the smallness of € 4 &y, we know that there
exists a positive constant Cg such that

% s (w2, + P (R)w2, + nw? + (1 +t) " wwee + (P (7 + wy)
—p/(n))w?, — (nwich:)Z + %wi + %(1 + )22 | da "
+ Cs /]R[(l + w2, + (1 +t) w2, +w?)]de
< O/R[(l + t)w? + (1 +t) " 'w?]da.
Integrating (48) over (tg,t), by (34), one has
/R [wie + P/ (A)wZ, + 1wy + (148 wawar + (9 (7 + wr)
—p(n))w2, — m + %wg + %(1 1) 22| da )

t
e / / (04 )2+ (1 7) " (@2 + w2))dadr
to JR
< C (o3 + [ Joll2)

then, from (4), (9), (25)-(26), Cauchy-Schwartz’s inequality and the smallness of &,
we obtain

t
J@rratovatyde s [ 10477102402 + (04 il dodr
R to JR

< C (llwoll3 + l14o]I3) -

(50)

Next, we multiply (42) by In(1 +#)(2ws¢ + (1 +¢)"'w,) and integrate it over R,
after a similar process to (45)—(47), we get

d
% (1 +t) (w2, +p'(R)w?, + fw2) + (1 +1) 7" In(1 + t)wpwae
R

1

+%(1 + 1) 2In(1 4 t)w? + %m(l + t)w? — S+ t) w2 ]dx

(51)

+/[2(1 +1) = (1+ )" In(1 + t)w?,dx
R

+/(1+t)_lln(1+t)[p'(ﬁ)w3z + (A4 (1 + 1) ?)w?]dx
R
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< [+t o Pt + (a5 + o0 +072 )l | da
foom] (5 Sas0)ed

+ C’e/(l +t) " tw? dr
R

2
wtw

d
- — In(1 (7 — l
G [ 00 @)~y @+ G [

+C(e +80) / (1 + )14+ 1) " (@2 + w2 +w2,) + (1+6)(w? +w2,)]dz.

Applying the smallness of € + §y to (51), and integrating the inequality over (o, t)
yields

/[ln(l—i—t)(wzt—&—p( Yoy + 7w?) + (14 £) " (1 + £)wswar
R

1 _ 1
+§(1 +6) % In(1 + t)w? + 3 In(1 + t)w? 4+ In(1 + ) (p' (7 + w.)
2 2
! — 2 W Wy
_ —In(1 _ Kt Waz
p (n))wzz n( + t) (T_L + wz)2:| dx

t
+c7/ /ln(l—Q—T)[(l—l—’r)wzt—i—(l—i—T)_l(wiz+w2)]dwd7’
L : (52)
< [avoatdrre [ [arn w4 wDdudr
R to JR

+C/tO/IRln(1—|—7')[(1+T)_ w”+ (1 + 7)wi|dzdr

+ Cn(1 + to) (lenll3 + 19]?)
1
<C1Y W (1+to) (lwoll3 + 1017 ,
=0

where we used (37) and (50) in the last inequality. Therefore, the desired estimate
(43) can be deduced by using (4), (9), (25)—(26), € < 1 and the Cauchy-Schwartz’s
inequality.

Step 2. We make the induction hypothesis that (41) holds when the integer k = [—1
with [ > 2, i.e.,

"™ (L4 8) (lwe (DN + llwsa (N + llwse (8)])

+ / W=+ 7) [+ Dllwa (DI + (1 7)™ (e (T + o (7)117) I
-1
< C=1)1Y 1/ (1+to) (llwoll3 + [1o]l7) -
. 53)

In what follows, we only need to prove that the estimate (41) holds when k = [ by
using the induction hypothesis (53). Multiplying (42) by In'(14t) (2w +(14t) " wy)
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and integrating it over R, analogous to (45)—(47), one has

= [ln(l—kt)(th—kp() 4 w?) + (14 1) (1 wewar

1 1 !
+§(1+t)—21nl(1+t)w§+§ln (1+ t)w? — 51417 2" (1 + )Wl | da

+/(1—|—t) Tl(1 4+ ) (@)W, + (@4 (148 2)w]de
R
—|—/[2(1 +1) — (146" In' (1 + t)w?,dz
R
+ £(l — 1)/(1 + )73 I (1 + t)wida
R

1
<l/ (1+1) “n!- 1(14—1?){ w2, +p' (7 wm+< 5 1+t) > i] dx
d 2 2

In' (1 + ) (p' (7 4 wo ) — P’ () w2, da + In'(1 e

Cdt dt Jy (i + wy )2

+C(e+60)/1nl(1+t)[(1+t)* (W? + w2 +w2) + (1 +t)(w? + w2,))dx
R

+Csl/(1 + ) I (1 A+ t)w?, da.
R

(54)
We apply the smallness of € + dy to (54), and integrate the resultant inequality over
(to,t) to get

/[lnl(l—i—t)( 2040 (A)w?, +w?) + (1 + 1) In' (1 + t)wpwa

1 1
+5(1+ )72’ (1 4 t)w? + 3 In'(1 4 t)w?
1 w2w2
+In' (14 6P (7 4 we) — p'(7))w?, — In' (1 + t)ﬁ dx

+cg/tt/1nl(1+7)[(1+7)wgt+(1+T) Yw?, + w?)|dadr

(55)

l _
< Ol (1t t0) (ol + [0l) + 5 [ (1462~ (14 o
R

2

t
+ cz/ /(1 + )7 M T A+ 1) (WP + WP, + wP)dadT
t
tO
+ C/ / In'(1+7)[(1+7)"*w? + (1 + 7)w?]dzdr
to JR

l
<Y 1 (1+to) (lwoll3 + [156lI3) ,
§=0

here we used (27) and (53) in the last inequality. Thus, by (4), (9), (25)—(26
Cauchy-Schwartz’s inequality and the smallness of €, we derive the estimate (4
with k& = [. This finishes the proof of Lemma 3.2.

DCV
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Lemma 3.3. Under the assumptions of Proposition 2.5, it holds that

(1+6)? (1 +1) (w17 + ozt (DI + lwee (8)]I7)

k
+ /tt(l +7)° W (14 7)|wre (7)Pdr < CRLY I (1+t0) (flwoll3 + [1T0ll3) ,
0 = (56)
where k € [1,400) is an integer.
Proof. Differentiating (21) in t gives
wiet + (L4 t)wee — (p'(7)wat)z + (7 + 1wy
= —wywy — (B + w)we + [(p/ (R4 wy) — p'(R))wetls + (n iiw)xt . (57)

We also use induction to prove this Lemma and divide the proof into two steps.
Step 1. This step devotes to obtain the estimate (56) with k£ =1, i.e.,
(1 +6)* (1 + ) (e @) + lwae (O + lwee (t)]])
' 3 2 =~ 2 2y (98)
+/ (1+ 72 (1 + 7)[lwee(7)[Pdr < C1Y " In? (1+ o) (llwoll3 + 1T0117) -
to j=0
Firstly, multiplying (57) by 2(8+t)%wy, where 3 > 1 is a constant to be determined

later, and integrating the resultant equality over R, we have

d o i
T R(B +1)?[wi + P (A)wi, + (7 + Dwilda

+/2(ﬁ+t)[(5+t)(1+t)—1]wt2tdx
R

= 2/(5 + [P (R)w?, + (A + 1)w?]dz
R

- (59)
-2 / (B + t) 2wy |wews + (E + w)wy]dz
R
+2 [ (84 0Pl (0 + w2) — ()l
R
w2
+2/(ﬂ+t)2wtt ( ¢ > de =: I7 + Iy + Io.
R n+ we xt
We choose S = 2 to ensure that
B+t +1t)—1> (1+1)% (60)
It is easy to verify that
I7 S C(E + 60)(5 + t)2/(|wtwtt| + |wztwtt|)dx
- (61)

< Cle +6) / (140302 + (1 + 1) (w2, + w2)]dz.
R
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It follows from (9), (25)—(26), Taylor’s formula and Hélder inequality that

Iy = -2 /R (B + 1) 2wenn (P (1 + w3) — P (1) warde

— =g [+ 020 ) - o+ [ (8407 (1t e
t Ju R

(62)
2 (5400 (0 +ws) = p/(0))do
R
<= [B 0200+ —p @t + e [ (14 e
By (11), (2 9)7(26), and Holder inequality, we can estimate Iy as
2wiwyy w2wmt
Iy = -2 t)%w, T d
9 /D%(B+ )wn<n—|—wx (n+wx)2> T
d 2 wiwg / wiw3,
I )2 _Lt%at g £t Fat g
dt /]R(ﬁ+ ) (ﬁ"’(&)x)? B+ )(n+wx)2 !
2,3
Wyww2 w
-2 t)? ———2Lq 2/ $)2 it g 63
[e+0 (s S P de (63)

/(ﬁ+t) :t_ajtd —2/(ﬁ+t)2_%w’52t(n$+wm)dx

z (7 + wy )2
d y wWiw?,
< %/R(ﬁﬂ) mdw+0(€+5o)/]R[(1+ Hw?, + (1 + t)3wd]de.

Substituting (61)—(63) into (59), by using (60) and the smallness of € + &y, we get

G 8+ 0% [+ )+ (1) (00 ) = )
L (64)
_W]dx+/ﬂ{( )wttdaj<0/1+t (w? + w?,)dx.

We multiply the equation (21) by wy to give

= | = (b o — o= (B + )+ (o0 ) — o)+ (2 H“’

n + wg
(65)
Integrating (65) over R and using (25)—(26), Holder inequality, one has
/ widr < C/[(l +1)2w2 + w? + w? + w?, + w?]de. (66)
R R
Now, integrating (64) over (to,t), by (34), (50) and (66), we obtain
[ B +17 [+ P02, + (14 1) + (04 2)
R
1=\, 2 wiwz,
— dx + / / + dxd
P’ (7))wis — (7t wa)? ] x 7)3w2 drdr ©7)

t
< c/ /(1 +7)(w? + w2 )dadr + C ([lwoll? + [ Joll?)
to /R

< C (lwoll3 + lI70113) -
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Therefore, it follows from (4), (9), (25)—(26) and € < 1 that

t
[ ord vt v wtyda s [ (4 nidodr < C(lunll + 1017)- (68)
R to JR

Secondly, we multiply (57) by 2(8 + t)?In(1 + t)ws and integrate it over R, and
then after a similar calculation to (61)—(63) to have

i LB Dm0 O+ p () + (7 sl

+/ 208+ t)In(1+ 1)[(B+t)(1 + 1) — Hwpda
R
/}R (6+ 0 (1 + ) (W), + (1 + Dw?]de
+ / (L4678 + 02w + (W), + (1 + Dbl (69)

i Lm0t ) (1))

+ — d (,8+t) 1n(1+t)wt2w’2“dm+cs/(1+t)w2 dx
dt (71 4 wy)? . ot

+Ce + ) / (1 + 51+ )%w? + (1 + D)2, +w?)dr.
R

Applying the smallness of € 4+ dg to (69), and integrating the inequality over (tg,1),
by (34), (37), (43), (50), (66) and (68), we get

/R (B+ 021+ 1) [l + 0 (W), + (2 + D + (7 + wy) — 3 (7)),

2.2
__Wila

(7t )2 }d:ch/ / (1+7)3In(1 + 7)widedr

< Cn(1 + to) (woll? + [ Jol12) +C / / (14 D)@ + w2 +wf)dedr ()
to R

t
+C/ /(1+T)ln(1+7)(wit+wf)dxdr
R
1 .
< CUY I (1+to) (lwol3 + [1Jo1F) -

=0
Thus, the desired estimate (58) can be derived by using (4), (9), (25)—(26), and
ek 1.

Step 2. We make the induction hypothesis that (56) holds when the integer k = [—1
with [ > 2, i.e.,

(L +6)* ' 1+ 1) (e + lwze (O + e (8)1I7)

+/t:(l+T)31nl_1(1+T)||o.)tt(7')||2d7' )
-1
<CI -1 In? (1 + o) (llwoll3 + 1T017) -

=0
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Next, we only need to prove that (56) holds when & = I. Multiplying (57) by
2(8 4 t)2In' (1 + t)wyy and integrating it over R, analogous to (61)-(63), we get

% /(ﬁ +6)2In' (1 + t)[w? + p'(R)w?, + (A + 1)w?|da
R

+ / 208+ t) ' (1+O)[(B+1)(1 +1t) — Nwdr
R
< 2/(5 + ) In' (1 + 1) [p' (R)w2, + (7 + 1)w?]dx
R
+1 /R(ﬁ + )21+ ) In" TN (1 4 )W + P ()W, + (A + 1)w?]de (72)

=5 [[B+O? W A+ D@ (7 +we) — (7)) wyde
R

+ 4 (1402 et [(14 ) (1 4 By
(71 + ws)2 R o

dtR (U)

+ C(e + 8) / In'(1+4)[(1+t)°wf, + (1 + 1) (w2, + w})]da.
R

We employ the smallness of € + dg to (72) and integrate the resultant inequality
over (to,t), by (27), (41), (66) and (71), it holds that

/R (B+1)2 I (1 +1t) [wh + P/ (A)w2, + (7 + Dwi + (0 (7 + ws) — P (7)) w2,
2,2

t

Wi Wat 3.0 2

- dx—i—/ / 1+7)°In"(1 + 7w dedr
(n+wz)2:| to R( ) ( ) tt

t
<Cll (14 10) (ol + 1900) + € [ [ (14 m (1 m) 2, + wbdadr (7
to JR

t
+Cl/ /(1—|—7') In' " (1 + 7) (W2 4 w2, + w?)dadr
to /R

l

< CIY I/ (1 +t0) (lwoll3 + [1JollF) -
j=0

Therefore, we derive the estimate (56) with k = [ by using (4), (9), (25)—(26) and
€ < 1. This completes the proof of Lemma 3.3. O

Lemma 3.4. Under the assumptions of Proposition 2.5, it holds that
lnk(l +1) (me(t)||2 + ||Wzm(t)H2 + wawt(t>||2)

+/ (1 +7) [(1+ 7)llwaat (D1 + 14+ 7) 7" (lowwa (D) + lwwes (7)]1)] dr

to
k

< CEYY I/ (1 +to) (llwoll3 + 1J0]13) »
=0
(74)

where k € [1,400) is an integer.
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Proof. Differentiating (42) with respect to = gives
Wertt + (1 + t)wa::rt - (p/(ﬁ)wxwz)z + ﬁwmw

_ _ = = = w?
= —Tgaw — (20g + Epp)we — (2B, + 3wy )wee — (B 4 w)wazs + <n +tw )

+ [(p'(ﬁ +ws) — p,(ﬁ))(ﬁxw + Waaa) + p”(ﬁ + wy) (g + Wﬂcw)2 - pu(ﬁ)ﬁi]w
(75)

We use induction to prove this Lemma and the proof is divided into two steps.

Step 1. In this step, we prove that the estimate (74) holds when k& = 1. We first
multiply (75) by 2wgat + (1 +t)"lw,, and integrate it over R to get

d 1,

N / wgmt +pl(ﬁ) Werga + nwmr + (]‘ + ) WraWrzt + SWer
i Jy 2

+;(1+t)2wix] d:z:+/R[2(1+t)f(1+t) Nw?,,dx
[ A0 @+ 4 ()2 e
__ /R et + (20 + Bra )y + 2By + 302 )wrs + (B + w)nes] (76)

(2wapt + (1 + 1) twyy)da + /R[(p'(ﬁ +wz) = P'(R)(Pas + Wers)

+ 0" (7 w) (Mg + Wer)? = P (W)77]0 (2w0r + (14 8) ™ wge )dar
2
() e 00 e
R rrxr

n—+ wy
=: Lio + In1 + L2

It is easy to see that

110 < 0(8 + 60) / [(1 + t)il(WZ + UJ_,% + wiw + wfll) + (1 + t) th]dx (77)
R

It follows from (9), (11), (25)—(26), Taylor’s formula and Hoélder inequality that

Iy =- / [0/ (7 + wa) = 2 (1)) (g + Waa) + 5 (7 + W) (7 + )
R

- p”(ﬁ)ﬁi](waxxt + (1 + t)ilwxa:x)dx
d

= _7/(pl(ﬁ+w1)_pl( )) mzzdw—i—/p//(ﬁ—’_wf)wl’twa:xxd‘r
dt R R

+ 6/ H(ﬁ + wz)ﬁzmwmxwzztdm + 2 / (p/(ﬁ + w:r) - p/(ﬁ))ﬁzzxwmxtdx
R

/ (7 + wy) — P (7)) g NgeWerrdr + 6 / P (A4 wa )2 WepWaptdT
R R

+6 / P (4 Wa )i pw?  WaptdT + 4/ "7+ we) (Mg + Wag )WarreWaptdT
R R
+ 2/p'" N+ we)wS wepedr + 2/( (A4 we) — " (R)) RS wearda
R R
(78)
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- / (0 (7 + w2) — (7)) (e + wraa)
R

4+ 9" (74 W) (R + Waw)? — P (R)A2](1 + ) wapede

<—— [ (P (A +w,) —p(n)wl,dx
i Js
+C(e +80) / (148 (@2 + w2, + w2 )+ (1 + ), lda.
R

We can estimate I15 by (11), (25)—(26) and Holder inequality as

(.AJ2 _
112 = —/ < t ) (wamt —+ (1 + t) 1wxm)dx
R Tx

n+ Wy
:d/de—2/de+2/de
dt Jr (7 + wz) r (7 +ws) r (N +ws)

2 2
WatWirt WytWezt
10 | —=de—12 | 22— d
+ /]R ot wy X /R (ﬁerz)Q (nz +me> x

2
— 10/ M(ﬁx + Wy )dx
R (

4+ wy)?
WitWetWazt , _ WtWrtWra _
+ 24/]R ﬁ(nm + Wy ) 2da — /]R ﬁ(mnm + 8Wype ) d
WZMT’E —
— 12/ m(nx + Wae ) 2d
R T
w%wwwt (79)
rR (N Wy
- 2/ ﬁx;'v:vw?wx;t dx — /(1 + t)_lwmxz |:2w923t + 2futhzt
r (7 +ws) R n+wy N+ ws
dwpwer  _ 2%2 = 2
—— (N + Wgy ) + —— Ng + Wag
(ﬁ—!—wx)Q( ) (n—&—wx)?’( )
w? B
(0 i e e ¥ wm)] o
d [ wiwi.,

< L TTT
“dt Jg (N +w)?

+ C(e + ) / [(1+6)7 w2, + (1 +t)(w? + w2, +w?,,)]de.
R

Putting (77)—(79) into (76) and using the smallness of £+ dg, there exists a constant
Cy > 0 such that

1
n [wiwt +p/(ﬁ)w5xm + ’ﬁ‘wiaz + (1 + t)_lwiﬂwwﬂﬂwt + 7‘*)513
dt s 2

2, .2
Wiams | (0f (74 wy) — pl (7))l | do

(7 +wz)? (80)
LGy / (1 0wy + (L) (w2 + w2, ]de

1
+§(1+t)*2w§w —

< C/[(l + )7 w? + w?) 4+ (14 t) (w? + w?,)]de.
R
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Integrating (80) over (to,t), by (34) and (50), we obtain

1
/ |:wi:rt + pl(ﬁ)wfczz + ﬁwfcz + (1 + t) WegWeat + 2("}11 + = 2 (1 + t) W
R

w2w%(lj{1} "
o (7 ) — 1 ()|

+6‘9// [(1+ 7wl + (L4 7) " (wl,, + w2, dadT
to

<C// (14 7) M w? + wl) + (14 7)(wf 4+ w2y)]dzdr + C (|woll3 + |1 J0]13)

< C (llwoll3 + lI4ol13) -

(81)
Then, from (4), (9), (25)-(26), ¢ < 1 and the Cauchy-Schwartz’s inequality
0+ ) aatvane] S g2y + 5 (1) 2, (52)
we have
/R(w +wl ., twi, dx+/ /[(1 +7) N wl, + W) (83)

+ (1 + T)wiyldzdr < C (lwoll5 + [170]l3) -

Next, multiplying (75) by In(1 + #)(2wzer + (1 +t) " tw,.) and integrating it over R,
by a similar calculation to (77)—(79), one has

G [ 0 064 5 )i+ )+ (L a1+ ot
+% In(1+t)w?, + %111(1 +1)(1+ 1) 2w, — %(1 + t)%ﬁm} da
+ /Rln(l FORL+ ) — (14 1), do
+ /R(l +1) ' In(1 +t)[p'(R)w2,, + (A + (1 +1) w2, ]dx
S/R(l +t)7! [wimt +p' ()W, + <n+ ; - 3(1 +1)” > im] dx
+Ce [0 e = 5 [ (14 O 1+ 00) = (Dihadle

—/ln 1+ Wira dz+0(a+50)/1n(1+t)[(1+t)*1(w2+w§
wz)? R

+ wwz + wxwz) + (1 + t)(wt + wwt + wth)]dx'
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Applying the smallness of € + dy to (84), and integrating the resultant inequality
over (to,t), by (37), (43) and (83), we have

/ [ln(l + t)(wgzt +p/(ﬁ)w37r + ﬁng) + (1 + t)71 111(1 + t)w:vmwxxt
R

1 1
+5 (1 + i, + 5 L+ 51+ )7 wr, + (1 + (' (7 + w.)

2 .2
(AN —In(1 + )t Yezz
p (n))w.L.L‘L n( +t> (ﬁ+wm)2 dx

t
+ C(10/ / 111(1 + T)[(l + T)wzwt + (1 + T)_l(wimw + wgw)]dxdT
to JR
1 t
<3 /R (1+t)w},dz +C / /R (1+7)7H Wiy + Wine +wigy)dadr
0

t 1/, 2 2 2 9
+C/tO/Rln(1+T)[(1+T) (W +w?) 4+ (1 + 7)(w? + w?,)|dxdr

+ Cn(1 + o) (Jlwoll3 + 193)
1
<Oy w1+ 10) (ol + 10l
j=0

for some positive constant Cyg. Therefore, from (4), (9), (25)—(26), (82) and the
smallness of €, we obtain the desired estimate (74) with k =1, i.e.,

(1 + 1) (Jlwae (O + lwawe (N + llwaee (O]7) + / In(1+7) [(1 4 7)lwaar (7)]|?

(14 7) 7 (lwaa (DI + lwaae (T)]1%)] dr

< C1Y ! (1+to) ([lwoll3 + [1013) -
j=0

(86)

Step 2. We make the induction hypothesis that the estimate (74) holds when the
integer k =1—1 with [ > 2, i.e.,

' (14 8) (Jlwwe (011 + llwaw ()1 + llwaae (D)%)

+/ (1 + 1) [(1+ 7) |waat ()]

to

+(1 4+ 7) 7 (lwaa (DI + |wews (T)]%)] dr (87)
-1
<O -1 In? (1 + to) (lwoll3 + [ To13) -
Jj=0

Now we are going to prove that the estimate (74) holds when k = [ by using (87).
Multiplying (75) by In‘(1 4 ¢)(2weet + (1 + t) " 'w,,) and integrating it over R,
analogous to (77)—(79), we obtain



4426 JIANING XU, MING MEI AND HAILIANG LI

d

2 [ [ @+ @2+ P )y +702,) + (D7 I (L D
R

1 1 l
+5 In (1 + t)w?, + S+ £ 2In' (1 + t)w?, — (1 + )2 (1 + )W, | da

+ / (146 (14 O (M) + (74 (14 )22, Jda
R

+ / In'(1+8)[2(1 +t) — (1 4 t) " Hw?,,dz
R

+ é(z- 1)/(1+t)*31nl—2(1+t)w§zdx
R

1 3
< l/(l +6) ' 1 +0) [wim +p'(R)w2,, + (n + 3 + 5(1 + t)‘Q) wiw} dx
R

2, .2
Wi Waga d

W0 ) e+ [
G [ WD ) = e+ G [0

+C(e 4+ 00) / (14 B0+ (0 + w2 4+ w2, +w2,)
R

F (14 8)(? + w2, + w2, Vdo + Cel / (1+ )~ Il (1 + )2, da.
R
(88)

Applying the smallness of 44y to (88), and then integrating the resultant inequality
over (tg,t) yields

/ [lnl<1 1) (Whay + P (M)l + 1wry) + (1487 I’ (1 4 H)wpptnar
R

1 1
+5 In' (1 4 t)w?, + 5(1 +1)72In' (1 4 t)w?,
FI (L4 0) (0 (7 wa) — (1)) — Tl (1 4 1) 00| g
p xT p rTrT (ﬁ‘i‘w:};)Q
t
+Cn / / In' (14 7)[(1+ 7T)ady + (L4 7) 7 (Whyy + w3, |dadr
to /R

l _ 89
<O+ to) (el + 10lB) + 5 [ 402w s pezae Y
R

t
JrCl/ /(1+T)7llnl_1(1+T)(w3$t+w§m+wfm)d:cd7'
to /R

t l —1/, 2 2 9 9
+C/to/Rln 1+ +7)" (W +wl)+ (14 7)(w; +wsy)]dzdr

l

<O ! (1+t0) (Jlwoll3 + 1 50113) »
=0

where we used (27), (41) and (87) in the last inequality. It then follows from (4),
(9), (25)—(26), (82) and € < 1 that the estimate (74) holds when k = [. The proof
is finished. O
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Lemma 3.5. Under the assumptions of Proposition 2.5, it holds that

1+ )2 " (1 +¢) (JJwar O + l[waat O] + lwze (8)]]?)
t k
+/ 1+ 7)* 0" (1 + 7)l|ware (7)[|Pdr < CEYD I (1+ o) (Jlwoll3 + [1013) ,

to j=0

(90)
where k € [1,400) is an integer.
Proof. We differentiate (57) in x to obtain
Water + (1 + Owere — (0 (R)waat)w + (7 + 1)wae

2
Wi

= —(Ng T 7E7IC6 2wy iEiEfl T - 91
(1 e = (Bt 2o = (B o+ (2] o)

+ [(p/(’ﬁ, + Wx) - p/<ﬁ))wwwt + p//(ﬁ + Ww)(ﬁw + wa)wwt]w~

We also use induction to prove this Lemma. Analogously to Lemma 3.3, mul-
tiplying (91) by 2(2 4 £)2wau, 2(2 + )2 In(1 4 t)was, and 2(2 + )2 In' (1 4 t)wase,
respectively, where the integer [ > 2, and then integrating resultant equations over
R, by using (27), (34), (41), (50), (74), (83), and the equation (42), we can derive

the desired estimate (90). The proof is omitted here. O
Proof of Proposition 2.5. Lemmas 3.1-3.5 imply Proposition 2.5. O
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