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Abstract

We consider a population dynamics model with degenerate diffusion and time delay. We discover sharp-
oscillatory waves with sharp edges and non-decaying oscillations arising from density-dependent dispersal 
and reproduction with age structure. Degenerate diffusion and bad effect of time delay prevent the use of 
existing approaches. Here, we develop a new delayed iteration framework to show the existence of these 
peculiar waves. In particular, the estimate of the admissible wave speed is highly nontrivial. We employ a 
new phase transform method coupled with the detailed analysis of phase energy. Furthermore, we give a 
complete characterization of the dynamical behaviors of various kinds of waves. Our results indicate that 
simple invasion rules can generate complex wave patterns and provide some interesting insights into the 
ecological dynamics.
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1. Introduction

This paper is concerned with the traveling wave solutions to the following population dynam-
ics model for single species with age structure and degenerate diffusion

⎧⎨
⎩

∂u

∂t
= D�um − d(u) + b(u(t − r, x)), x ∈R, t > 0,

u(s, x) = u0(s, x), x ∈R, s ∈ [−r,0],
(1.1)

Here, D > 0 denotes the diffusion coefficient, u = u(t, x) represents the density of total mature 
population at location x and time t , r > 0 is the mature time, D�um with m > 1 is the density-
dependent diffusion. Such a degenerate diffusion means that the spatial-diffusion rate increases 
with population density, particularly, zero density implies non-diffusion. This is with more eco-
logical sense [3,28,29]. Two nonlinear functions b(u) and d(u) represent the birth rate and the 
death rate of the matured population respectively. In this paper we focus on the mono-stable case 
for the equation, which includes the classical Fisher-KPP equations, the Nicholson’s blowflies 
equations and Mackey-Glass equations.

In a very recent article [31], Sullivan et al. explored the fluctuations in invasion speed in a set 
of discrete-time population models with density-dependent dispersal, and a generalized Nichol-
son’s blowflies model with Allee effect and random dispersal. One of the open questions raised at 
the end of [31] is to identify the roles of several intrinsic density-dependent mechanisms, includ-
ing the nonlinear dispersal, and structured population growth, in the spatial invasion dynamics. 
To answer such an open question, we study a continuous population dynamics model with time 
delay, wherein density-dependent dispersal and demography are coupled. On the one hand, we 
identify the different geometric wave patterns from wave speed c, degeneracy index m in density 
dependent dispersal and maturation time r in growth function (Fig. 2 – Fig. 4). We investigate 
the wave propagating dynamics in this ecological process: how fast the population propagates 
and what shape it forms. On the other hand, in contrast to classic models with random dispersal, 
there exists a peculiar form of sharp-oscillating traveling waves which possess the two distinct 
features, sharp profiles caused by degeneracy and oscillations due to large time delay. It is wor-
thy of mentioning that these waves are unusual because their properties are controlled by both 
the leading edge and the bulk of the front. We show that delayed non-monotone growth gener-
ates the oscillations at high densities, and causes dynamical changes in the bulk of waves, while 
degenerate diffusion generates the sharp leading edge at low densities (Fig. 5 – Fig. 6).

Degenerate diffusion caused by competition between conspecifics or deteriorating environ-
mental conditions is a common feature of population spreading modeling in ecology [3,9,23,27]. 
However, there are numerous gaps in our knowledge about the wave dynamical behaviors of de-
generate diffusion equations compared with the well-studied linear diffusion case [1,6,8,16,21,
26,30,32]. The degeneracy raises the possibility of sharp type traveling waves, where the popu-
lation density u decreases to zero at a finite point, rather than decaying to zero asymptotically. 
For the study of monotone sharp waves in degenerate diffusion equations without time delay we 
refer to the works of Aronson [2], Pablo and Vàzquez [5], Gilding and Kersner [7], and the ref-
erences therein. Recently, some detailed discussions of degenerate diffusion equations with time 
delay (1.1) are emerging. An additional complication appearing in the delayed and degenerate 
case is the possible non-monotonicity and non-smoothness of wavefronts. But even the existence 
of smooth monotone fronts for equations with small time delay was proved only very recently, 
in the fundamental contribution [13] by Huang et al. based on a perturbation approach. Later 
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then, we [36] proved the existence of smooth monotone traveling wave solutions for any time 
delay only under the monotonicity assumption of the birth function b(u) by the upper and lower 
solutions method combining with the viscosity vanishing method.

The main novelty of this paper lies in the peculiar form of waves with sharp edges and non-
decaying oscillations, which is a brand new phenomenon in propagating waves. Due to the lack 
of monotonicity, the problem does not admit any comparison principle. Furthermore, the large 
time delay prevents the use of perturbation method, and the degeneracy makes the analysis rather 
complicated. Consequently, the existing methods are not applicable. Indeed, we solve the delayed 
degenerate diffusion equations with so much ingenuity by proposing a new delayed iteration ap-
proach. The method makes use of the delicate structure of time delay and sharp edge, thereby 
reducing the first iteration to the solvability of a degenerate elliptic problem with singularity. 
Thanks to this important insight, such a framework permits traveling waves with a partially com-
pact support and oscillations. To the best of our knowledge, this is the first framework of showing 
the existence of sharp traveling waves for the degenerate diffusion equation with time delay.

Another challenging problem lies in the precise estimate of the lower bound of the admissible 
wave speeds. In the linear diffusion case, non-monotone growth function b(u) and time delay r
produce oscillations in population density. Despite these complicated fluctuation at high popula-
tion density, the admissible wave speed is still determined by the dynamics at low densities, more 
precisely, the characteristic equation around equilibrium zero. In our model, the appearance of 
degenerate diffusion leads to the failure of this “linear determinacy principle” [17]. The propagat-
ing speed no longer depends on the pull of populations at low densities in front of the wave, but 
rather depends on the whole wave structure corresponding to the total population density range. 
This directly places limitations on the way we estimate the wave speed via classic characteristic 
theory. It is noted that the minimal admissible wave speed may decay to zero as time delay tends 
to infinity, and even for the case without time delay, the value of wave speed in degenerate equa-
tions is extremely difficult to compute or estimate. Instead of calculating the admissible wave 
speed directly, we develop a new phase transform approach coupled with the analysis of phase 
energy to estimate the corresponding wave speeds such that there is no sharp or smooth waves 
for arbitrary time delay with correspondingly small wave speed. Generally speaking, classical 
phase plane analysis does not work for delayed equation because of intersecting trajectories in 
the phase plane. Our phase transform method, however, could be a blueprint to draw the prospec-
tive contradiction for proving the wave properties and further give a speed estimate by analyzing 
the phase energy for a broad family of degenerate equations.

The rest of the paper is organized as follows. In Section 2, we present the main results on the 
existence of sharp oscillatory traveling waves. The proofs of the existence of sharp oscillatory 
waves are carried out in Section 3, Section 4 and Section 5, respectively. The classification of 
various kinds of waves for equation (1.1) is presented in Section 6.

2. Main results

We are looking for traveling wave solutions of (1.1) connecting two equilibria 0 and κ > 0
satisfying

d(0) = b(0), d(κ) = b(κ),

in some sense that they may oscillate around the positive equilibrium κ . Let φ(ξ) with ξ = x +ct

and c > 0 be a traveling wave solution of (1.1), we get (we write ξ as t for the sake of simplicity)
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cφ′(t) = D(φm(t))′′ − d(φ(t)) + b(φ(t − cr)), t ∈ R. (2.1)

Our aim is to present a classification of various types of wave solutions with the admissi-
ble wave speeds depending on the time delay. Especially, we will show the existence of sharp 
oscillatory waves, which is never mentioned in the existing literature.

From biological experiments, a typical equation for (1.1) is the mono-stable case. Namely, 
(1.1) admits two constant equilibria u− = 0 and u+ = κ > 0, where u− = 0 is unstable and u+ =
κ is stable for the spatially homogeneous equation associated with (1.1). The important examples 
include the classical Fisher-KPP equation [10] and a large number of evolution equations in 
ecology, for example, the well-studied diffusive Nicholson’s blowflies equation and Mackey-
Glass equation [19,20,24,25] with the death function d(u) = δu, the birth function

b1(u) = pue−auq

, or b2(u) = pu

1 + auq
, p > 0, q > 0, a > 0;

and the age-structured population model [4,11,15,18] with

d(u) = δu2, and b(u) = pe−γ ru, p > 0, δ > 0, γ > 0.

Summarizing these examples, throughout the paper we assume that the death rate function 
d(·) satisfies

d ∈ C2([0,+∞)), d(0) = 0, d ′(s) > 0, d ′′(s) ≥ 0 for s > 0, (2.2)

and the birth function b(·) satisfies the following unimodality condition:

b ∈ C1(R+;R+) has only one positive local extremum point s = sM

(global maximum point) and b(0) = 0, b(κ) = d(κ), b′(0) > d ′(0),

b′(κ) < d ′(κ), d(s) < b(s) ≤ b′(0)s for s ∈ (0, κ). (2.3)

We also need the following feedback condition when showing the divergent semi-wavefronts

(b(s) − κ)(s − κ) < 0, s ∈ [d−1(θ), d−1(M)]\{κ}. (2.4)

Here, we restrain ourselves to the case sM < κ in which b is non-monotone in [0, κ] and 
b(sM) > b(κ) = d(κ). We set M := b(sM) = maxs∈[0,κ] b(s), θ := b(d−1(M)) and according 
to the monotone increasing of the death function d(u), it holds sM < κ < d−1(M). An example 
for the Nicholson’s blowflies model is as follows (Fig. 1).

Before stating our main results, let us give some definitions and notations. Since (1.1) is 
degenerate for u = 0, we employ the following definition of weak solutions for the initial-value 
problem (1.1), where the time delay r ≥ 0, m > 1, D > 0, u0 ∈ L2((−r, 0) ×
) for any compact 
set 
 ⊂ R.

Definition 2.1 (Weak solutions). A function u ∈ L2
loc((0, +∞) × R) is called a weak solution 

of (1.1) if 0 ≤ u ∈ L∞((0, +∞) × R), ∇um ∈ L2
loc((0, +∞) × R), and for any T > 0 and ψ ∈

C∞((−r, T ) ×R)
0
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Fig. 1. The structure on functions b(u) and d(u).

−
T∫

0

∫
R

u(t, x)
∂ψ

∂t
dxdt + D

T∫
0

∫
R

∇um · ∇ψdxdt +
T∫

0

∫
R

d(u(t, x))ψdxdt

=
∫
R

u0(0, x)ψ(0, x)dx +
max{T ,r}∫

r

∫
R

b(u(t − r, x))ψ(t, x)dxdt

+
min{T ,r}∫

0

∫
R

b(u0(t − r, x))ψ(t, x)dxdt.

The initial-value problem (1.1) with degenerate diffusion and time delay can be solved step by 
step. For t ∈ (0, r), the birth rate function b(u(t −r, x)) is determined by the initial value such that 
b(u(t − r, x)) = b(u0(t − r, x)), and then the well-posedness of the degenerate diffusion equation 
(1.1) is shown in [34,35]. Moreover, if 0 ≤ u0(s, x) ∈ L∞((−r, 0) × R), then 0 ≤ u(t, x) ≤
max{‖u0‖L∞((−r,0)×R), κ} according to the comparison principle. Next for t ∈ (r, 2r), the well-
posedness and the uniform boundedness follow similarly. This shows the global solvability of 
the initial-value problem (1.1).

The traveling wave solution φ(t) may be non-monotone and even non-decaying oscillating 
around the positive equilibrium κ since the birth function b(u) is non-monotone. Meanwhile, it 
is also expected that the degenerate diffusion equation (1.1) may admit sharp type wave solution 
with semi-compact support. So we define the following various types of waves.

Definition 2.2 (Sharp wavefronts). A function 0 ≤ φ(t) ∈ W
1,1
loc (R) ∩ L∞(R) with φm(t) ∈

W
1,1
loc (R) is said to be a semi-wavefront of (1.1) if
(i) the profile function φ satisfies (2.1) in the sense of distributions,
(ii) φ(−∞) = 0, and 0 < lim inft→+∞ φ(t) ≤ lim supt→+∞ φ(t) < +∞,
(iii) the leading edge of φ(t) near −∞ is monotonically increasing in the sense that there 

exists a maximal interval (−∞, t0) with t0 ∈ (−∞, +∞] such that φ(t) is monotonically in-
creasing in it and if t0 < +∞ then φ(t0) > κ . We say that t0 is the boundary of the leading edge 
of φ.

A semi-wavefront φ(t) is said to be a wavefront of (1.1) if φ converges to κ as t tends to 
+∞, i.e., φ(+∞) = κ .

A semi-wavefront (including wavefront) is said to be sharp if there exists a t∗ ∈ R such that 
φ(t) = 0 for all t ≤ t∗ and φ(t) > 0 for all t > t∗. Otherwise, it is said to be a smooth semi-
wavefront (or smooth wavefront) if φ(t) > 0 for all t ∈ R.
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Fig. 2. Sharp waves — piecewise-C1 type: (A1) monotone wavefront; (A2) non-monotone wavefront; (A3) divergent 
semi-wavefront.

Fig. 3. Sharp waves — C1 type: (B1) monotone wavefront; (B2) non-monotone wavefront; (B3) divergent semi-
wavefront.

Fig. 4. Smooth waves: (C1) monotone wavefront; (C2) non-monotone wavefront; (C3) divergent semi-wavefront.

Furthermore, for the sharp semi-wavefronts (including wavefronts) φ(t), if φ′′ /∈ L1
loc(R), we 

say that φ(t) is a piecewise-C1 type sharp wave; otherwise, if φ′′ ∈ L1
loc(R), we say that φ(t) is 

a C1 type sharp wave.

According to the above definition, the possible waves are classified into monotone wave-
fronts, non-monotone wavefronts, and divergent semi-wavefronts considering the mono-
tonicity or convergency near +∞; and meanwhile these waves can also be classified into
piecewise-C1 type sharp, C1 type sharp and smooth type concerned with the degeneracy and 
regularity near −∞ or t∗ such that φ(t) tends to zero. See Fig. 2, Fig. 3 and Fig. 4 for illustration. 
In the case of sharp type, we can always shift t∗ to 0 for convenience.

The waves φ(t) may develop many possible features, the combinations of piecewise-C1 type 
sharp, C1 type sharp, or smooth near φ = 0 and monotone wavefront, non-monotone wavefront 
or divergent semi-wavefront as t tends to infinity, see Fig. 2, Fig. 3 and Fig. 4 for illustration. 
Among all those waves, we note that the divergent semi-wavefront of sharp type is the new 
discovery in this paper.

For any given m > 1, D > 0 and r ≥ 0, we define the critical wave speed c∗(m, r, b, d) for the 
degenerate diffusion equation (2.1) as follows
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c∗(m, r, b, d) := inf{c > 0; (2.1) admits semi-wavefronts (including wavefronts)}. (2.5)

Here we omit the dependence of the wave speed c∗(m, r, b, d) on the parameter D for simplicity 
since the dependence is trivial via a re-scaling method such that the speed with D > 0 is the speed 
with D = 1 multiplied by 

√
D. This note is applicable for all the wave speeds in this paper.

Our main results are as follows. First of all, we state the existence and nonexistence results of 
various sharp waves, including semi-wavefronts and wavefronts.

Theorem 2.1 (Existence of sharp waves). For any m > 1, D > 0 and r ≥ 0, there exists a 
constant c0(m, r, b, d) > 0 depending on m, r and the structure of b(·), d(·), such that for 
c = c0(m, r, b, d), (2.1) admits sharp wave φ(t) (semi-wavefronts or wavefronts, piecewise-C1

or C1) with φ(t) ≡ 0 for t ≤ 0,

0 < ζ1 ≤ lim inf
t→+∞ φ(t) ≤ lim sup

t→+∞
φ(t) ≤ ζ2,

and

|φ(t) − C1t
λ+| ≤ C2t

�+ , for any t ∈ (−∞,1),

where t+ = max{t, 0}, λ = 1/(m − 1) and � > λ, C1, C2 > 0 are constants.

The sharp waves are classified into C1 type and piecewise-C1 type according to the degener-
acy index m.

Theorem 2.2 (Regularity of sharp waves). If m ≥ 2, then the sharp waves in Theorem 2.1 are 
piecewise-C1 (as illustrated in Fig. 2); while if 1 < m < 2, the sharp waves in Theorem 2.1 are 
C1 (as shown in Fig. 3).

Remark 2.1. Roughly speaking, the degeneracy strengthens as m > 1 increases and the regular-
ity of the case m ≥ 2 is weaker than that of 1 < m < 2. For the case 1 < m < 2, the sharp waves 
remain C1 regularity but not analytic.

The waves may be oscillatory or divergent according to the wave speed and the time delay.

Theorem 2.3 (Oscillatory or divergent waves). Assume that m > 1, r > 0, b′(κ) < 0, and 
the birth rate function b(·) satisfies the feedback condition (2.4). Then there exist cκ =
cκ(m, r, b′(κ), d ′(κ)) and c∗ = c∗(m, r, b′(κ), d ′(κ)) with 0 < cκ ≤ c∗ ≤ +∞, such that the 
waves (wavefronts or semi-wavefronts, sharp or smooth, if exist) with speed c > cκ are oscil-
latory and these waves with speed c > c∗ are divergent. Moreover,

cκ(m, r, b′(κ), d ′(κ)) = μκ(m,b′(κ), d ′(κ)) + o(1)

r
, r → +∞,

and if further b′(κ) < −d ′(κ), then

c∗(m, r, b′(κ), d ′(κ)) = μ∗(m,b′(κ), d ′(κ)) + o(1)
, r → +∞,
r
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where μκ(m, b′(κ), d ′(κ)) :=
√

2Dmκm−1ωκ

b′(κ)
e

ωκ
2 , ωκ < −2 is the unique negative root of the equa-

tion 2d ′(κ) = b′(κ)e−ωκ (2 + ωκ), and μ∗(m, b′(κ), d ′(κ)) := π

√
Dmκm−1

−b′(κ)−d ′(κ)
.

Remark 2.2. We note that it may hold that cκ = c∗ = +∞ under some conditions, especially 
for small time delay, where no non-monotone waves are guaranteed by Theorem 2.3. In fact, 
the existence of monotone waves is proved in [13] for small time delay. Although the existence 
of monotone waves does not directly preclude the existence of non-monotone waves, there may 
exist a critical value rmin of time delay such that only monotone waves exist for r ≤ rmin, as 
indicated by Kwong and Ou in [16] that oscillatory or periodic behavior of the waves may be 
generated by the Hopf bifurcation near the positive equilibrium.

Remark 2.3. If the number cκ(m, r, b′(κ), d ′(κ)) in Theorem 2.3 is less than the minimal admis-
sible wave speed, which happens if the time delay r is suitable large under some conditions, then 
all the waves are oscillatory; while if c∗(m, r, b′(κ), d ′(κ)) is less than the minimal admissible 
wave speed then all the waves are divergent (no wavefront exists).

We present a lower bound of all the admissible wave speeds as follows.

Theorem 2.4 (Lower bound of wave speeds). For any m > 1, D > 0 and r ≥ 0, there exists 
a constant ċ(m, r, b, d) > 0 depending on m, r and the structure of b(·), d(·), such that, (2.1)
admits no wave solution φ(t) (semi-wavefronts or wavefronts, sharp or smooth) for any c <

ċ(m, r, b, d). Moreover,

ċ(m, r, b, d) = μ0(m,b(·), d(·)) + o(1)

r
, r → +∞,

where μ0(m, b(·), d(·)) > 0.

Theorem 2.4 shows the nonexistence of all kinds of waves with smaller speeds. Here we 
present a sufficient condition for the existence of sharp divergent semi-wavefront.

Theorem 2.5 (Existence of sharp divergent semi-wavefront). Assume that the function b(·)
satisfies the feedback condition (2.4) and let ζ1 ∈ (0, κ) be the constant such that b(ζ1) =
b(d−1(M)), where M = maxs∈[0,κ] b(s). Then, there exist positive constants ε0, K0, r0, such 
that if b′(s) ≥ ε0 for s ∈ (0, ζ1), b′(κ) ≤ −K0 and r ≥ r0, then the constants μ0(m, b(·), d(·)) >
μ∗(m, b′(κ), d ′(κ)) in Theorem 2.3 and Theorem 2.4, and the sharp type wave in Theorem 2.1 is 
a divergent semi-wavefront.

Remark 2.4. Theorem 2.5 shows the case that μ0(m, b(·), d(·)) > μ∗(m, b′(κ), d ′(κ)), which 
implies

ċ(m, r, b, d) > c∗(m, r, b′(κ), d ′(κ)) ≥ cκ(m, r, b′(κ), d ′(κ))

for large time delay according to Theorem 2.3 and Theorem 2.4. The sharp waves in Theorem 2.1
corresponds to the wave speed c0(m, r, b, d), which is greater than or equal to ċ(m, r, b, d) ac-
cording to Theorem 2.4. Therefore, c0(m, r, b, d) is greater than both c∗(m, r, b′(κ), d ′(κ)) and 
cκ(m, r, b′(κ), d ′(κ)). It follows from Theorem 2.3 that the sharp waves are divergent. Actually, 
all the waves are divergent in this case.
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Theorem 2.6 (Existence of smooth waves). For any m > 1, D > 0 and r ≥ 0, there exists a 
constant ĉ(m, r, b, d) > 0 depending on m, r and the structure of b(·), d(·), such that for any 
c > ĉ(m, r, b, d), (2.1) admits smooth wave solutions φ(t) (semi-wavefronts or wavefronts, see 
Fig. 4) with

0 < ζ1 ≤ lim inf
t→+∞ φ(t) ≤ lim sup

t→+∞
φ(t) ≤ ζ2,

and

|φ(t) − C1e
λt | ≤ C2e

�t , for any t < 0,

where λ > 0 is the unique root of χ0(λ) = 0 (χ0 is defined by (5.1)) and � > λ, C1, C2 > 0 are 
constants.

Remark 2.5. In the above theorems, we have introduced constants ĉ(m, r, b, d), ċ(m, r, b, d) and 
c0(m, r, b, d), with obviously

ċ(m, r, b, d) ≤ c∗(m, r, b, d) ≤ min{ĉ(m, r, b, d), c0(m, r, b, d)},

where c∗(m, r, b, d) is the minimal wave speed, or say critical wave speed, defined by (2.5). We 
conjecture that the sharp type traveling wave is unique, and the corresponding wave speed

c∗(m, r, b, d) = c0(m, r, b, d) = ĉ(m, r, b, d).

In other words, the critical wave of the degenerate model is the unique sharp wave, and the speeds 
of smooth waves are greater than the speed of sharp wave. The difficulty lies in the fact that all the 
above thresholds of wave speeds are determined by the whole structure of the equation instead 
of the linearized characteristic function near zero equilibrium and the proofs of the existences 
of different types of waves are based on various approaches without consistency among the 
thresholds. Those conjectures are true for the case without time delay, see for example [13], and 
for the case with time delay and quasi-monotonicity, see our paper [37], where we develop a 
phase transform approach and formulate a variational characterization of the wave speed under 
the monotonicity condition.

Remark 2.6. The speeds ĉ(m, r, b, d), ċ(m, r, b, d), c0(m, r, b, d) and c∗(m, r, b, d) all are as-
sumed to be dependent on the structure of functions b(·) and d(·). It is well known that for the lin-
ear diffusion equation without time delay, i.e., m = 1, r = 0, c∗(1, 0, b, d) = 2

√
D(b′(0) − d ′(0))

provides that b, d satisfy some concave structure. Obviously, the critical wave speed of the linear 
diffusion equation is totally determined by the linearization near zero. However, the critical wave 
speed of the degenerate diffusion equation is nonlinearly determined. The wave front behaviors 
are controlled by the whole structure.

3. Existence of sharp waves and their regularity

In this section, we develop a new delayed iteration approach based on an observation of the 
delicate structure of time delay and sharp edge to solve the delayed degenerate equation. As far 
as we know, this is the first framework of showing the existence of sharp traveling wave solution 
for the degenerate diffusion equation with large time delay. A sharp wave solution φ(t) is a 
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special solution such that φ(t) ≡ 0 for t ≤ 0 and φ(t) > 0 for t > 0. The result is also valid for 
the general birth rate and death rate functions without time delay and here we only focus on the 
case with time delay.

For any given m > 1, D > 0 and r > 0, we solve (2.1) step by step. First step, noticing that 
the sharp wave solution φ(t) = 0 for t ≤ 0 and then φ(t − cr) = 0 for t ∈ [0, cr), (2.1) is locally 
reduced to {

cφ′(t) = D(φm(t))′′ − d(φ(t)), t ∈ (0, cr),

φ(0) = 0, (φm)′(0) = 0,
(3.1)

whose solutions are not unique and we choose the maximal one such that φ(t) > 0 for t ∈
(0, cr) as shown in the following lemma. Here, (φm)′(0) = 0 is the necessary and sufficient 
condition such that the zero extension of φ(t) to the left satisfies (2.1) locally near 0 in the sense 
of distributions.

Lemma 3.1. For any c > 0, the degenerate ODE (3.1) admits a maximal solution φ1
c (t) on (0, cr)

such that φ1
c (t) > 0 on (0, cr) and

φ1
c (t) =

( (m − 1)c

Dm
t
) 1

m−1 + o(t
1

m−1 ), t → 0+.

Proof. Clearly, φ0(t) ≡ 0 is a solution of (3.1). But we are looking for the solution such that 
φ1

c (t) > 0 on (0, cr). Consider the generalized phase plane related to (3.1) and define ψ1
c (t) =

D[(φ1
c (t))m]′, then (φ1

c (t), ψ
1
c (t)) solve the following singular ODE system on (0, cr)

⎧⎪⎨
⎪⎩

φ′(t) = ψ(t)

Dmφm−1(t)
,

ψ ′(t) = cψ(t)

Dmφm−1(t)
+ d(φ(t)).

(3.2)

We solve (3.2) with the condition (φ1
c,ε(0), ψ1

c,ε(0)) = (0, ε) with ε > 0, whose existence, con-
tinuous dependence and suitable regularity follow from the phase plane analysis. Let ε tend to 
zero and (φ1

c (t), ψ
1
c (t)) be the limiting function. Then φ1

c (t) is the maximal solution of (3.1) and 
φ1

c (t) > 0 on (0, cr). Asymptotic analysis shows that

ψ1
c (t) = Dm(φ1

c (t))m−1φ1
c
′(t) = cφ1

c (t) + o(φ1
c (t)), t → 0+,

which means that

φ1
c (t) =

(
(m − 1)c

Dm
t + o(t)

) 1
m−1

, t → 0+. �
Second step, let φ2

c (t) be the solution of the following initial value ODE problem

{
cφ′(t) = D(φm(t))′′ − d(φ(t)) + b(φ1

c (t − cr)), t ∈ (cr,2cr),

φ(cr) = φ1(cr), φ′(cr) = (φ1)′(cr).
(3.3)
c c
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Define ψ2
c (t) = D[(φ2

c (t))m]′, then (φ2
c (t), ψ

2
c (t)) solve the following system on (cr, 2cr)

⎧⎪⎨
⎪⎩

φ′(t) = ψ(t)

Dmφm−1(t)
,

ψ ′(t) = cψ(t)

Dmφm−1(t)
+ d(φ(t)) − b(φ1

c (t − cr)).

(3.4)

The above steps can be continued unless φk
c (t) blows up or decays to zero in finite time for some 

k ∈N+. Let φc(t) be the connecting function of those functions on each step, i.e.,

φc(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ1
c (t), t ∈ [0, cr),

φ2
c (t), t ∈ [cr,2cr),

. . .

φk
c (t), t ∈ [(k − 1)cr, kcr),

. . .

(3.5)

for some finite steps such that φc(t) blows up or decays to zero, or for infinite steps such that 
φc(t) is defined on (0, +∞) and zero extended to (−∞, 0) for convenience.

Lemma 3.2. For any given m, D and r > 0, there exists a constant c > 0 such that if c ≤ c, then 
φc(t) decays to zero in finite time.

Proof. On the existence interval of φc(t), the pair (φc(t), ψc(t)) with ψc(t) := D[(φc(t))
m]′ is 

a trajectory in the phase plane

⎧⎪⎨
⎪⎩

φ′(t) = ψ(t)

Dmφm−1(t)
,

ψ ′(t) = cψ(t)

Dmφm−1(t)
+ d(φ(t)) − b(φ(t − cr)).

(3.6)

In Section 4, we will develop a phase transform approach and prove that all the admissible wave 
speeds have a lower bound. The result of Lemma 4.1 and its proof therein are independent of all 
the results about the existence of sharp waves in this Section. The proof of φc(t) decays to zero 
in finite time when c is sufficiently small is a consequence of Lemma 4.1. �
Lemma 3.3. For any given m, D and r > 0, there exists a constant c > 0 such that if c ≥ c, then 
φc(t) grows up to +∞ as t tends to +∞.

Proof. On the existence interval of φc(t), the pair (φc(t), ψc(t)) defined in the proof of 
Lemma 3.2 is a trajectory in the phase plane (3.6). Now, we utilize the phase plane analysis 
to show that when c is large enough, then φc(t) grows up to the positive infinity as t increases. 
For t ∈ (0, cr), φc is strictly monotonically increasing according to (3.2). Let (0, ζ ) be the max-
imal interval such that φc is strictly monotonically increasing and within this interval, we have 
dψc/dφc satisfies
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⎧⎨
⎩

dψ

dφ
= c − Dmφm−1(b(φcr ) − d(φ))

ψ
=: �

�
,

ψ(0) = 0, ψ(φ) > 0, φ ∈ (0, ζ ),

(3.7)

where φcr is the functional of φc and ψc (we regard ψc as a function of φc since φc is strictly 
increasing) defined by

φcr = inf
θ∈[0,φc]

{ φc∫
θ

Dmsm−1

ψc(s)
ds ≤ cr

}
.

Consider the following auxiliary problem

⎧⎨
⎩

dψ

dφ
= c − Dmφm−1(b̃(φ) − d(φ))

ψ
,

ψ(0) = 0, ψ(φ) > 0, φ ∈ (0, ζ ),

(3.8)

where b̃(s) = supθ∈(0,s) b(θ) is the quasi-monotone modification of b(s) and the solution of (3.8)
is denoted by ψc(φ). Therefore, as φc(t) is strictly increasing (equivalently, ψc(t) > 0) we have

b(φcr ) ≤ b̃(φcr ) ≤ b̃(φ),

and the comparison between (3.7) and (3.8) shows that

ψc(φ) ≥ ψc(φ), φ ∈ (0, ζ ). (3.9)

The phase plane analysis to (3.8) without time delay shows that there exists a c > 0 such that if 
c ≥ c, then ψc(φ) is positive for all φ ∈ (0, +∞), which means according to (3.9) that ψc(φ) > 0
for all φ ∈ (0, +∞), φc(t) is always increasing for t ∈ (0, +∞). It follows that in fact ζ = +∞
and φc(t) grows up to +∞ as t tends to +∞. �

We also need the following continuous dependent property of φc(t) on c.

Lemma 3.4. For any given m, D and r > 0, the solution φc(t) is locally continuously dependent 
on c. That is, for any c > 0 and any given T > 0 and ε > 0, there exists a δ > 0 such that for any 
|c1 − c| < δ and c1 > 0 we have

|φc1(t) − φc(t)| < ε, ∀t ∈ (0, T1 − ε),

where T1 = min{T , Tc} with Tc being the existence interval of φc(t).

Proof. Without loss of generality, we may assume that T1 > cr + ε. The proof is divided into 
two parts: the continuous dependence of the singular ODE (3.1) within (0, cr) and the continuous 
dependence of a regular ODE within (cr, T1 − ε).

Step I. We prove that φc(t) together with φ′
c(cr) is continuously dependent on c for t ∈ (0, cr). 

Since Tc > cr , we see that φc(t) is positive for t ∈ (0, cr]. We note that the maximal solution 
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φc(t) is the unique solution such that φc(t) > 0 in a right neighbor of 0 and the asymptotic 
analysis Lemma 3.1 shows that φc(t) is locally monotonically and continuously dependent on c
within some interval (0, t1) ⊂ (0, cr). In (t1, cr), φc(t) is bounded away from zero and (3.1) is a 
regular ODE, and the continuously dependence follows from the classical theory.

Step II. We prove that φc(t) is continuously dependent on c for t ∈ (cr, T1 − ε). As Tc is the 
existence interval of φc(t), φc(t) is bounded from above and below for t ∈ [cr, Tc − ε] such that 
φc(t) ∈ [M1, M2] ⊂ (0, +∞) for some M2 > M1 > 0. According to the construction of φc(t), 
we see that φc(t) satisfies

{
cφ′(t) = D(φm(t))′′ − d(φ(t)) + b(φ(t − cr)), t ∈ (cr, T1 − ε),

φ(cr) = φc(cr), φ′(cr) = φ′
c(cr),

which is a regular ODE without singularity on a bounded interval. This completes the proof. �
According to the unimodality condition (2.3), if sM ≥ κ , then b is monotonically increasing 

on [0, κ] and it is well known that the non-degenerate diffusion equation (m = 1) admits mono-
tonically increasing wavefronts if and only if c ≥ c∗ with c∗ > 0 being the minimal wave speed 
determined by the characteristic equation near the equilibrium 0. It is also shown in [36] that 
the similar result holds for the degenerate diffusion equation (m > 1) except that the minimal 
wave speed is not determined by the corresponding characteristic equation, which indicates an 
essential difference between those two types of diffusion. Henceforth, we may restrain ourselves 
to the case sM < κ in which b is non-monotone in [0, κ] and b(sM) > b(κ) = d(κ). We set 
M := b(sM) = maxb, θ := b(d−1(M)) and according to the monotone increasing of the death 
function d , it holds sM < κ < d−1(M).

The unimodality condition (2.3) is stronger than the following condition:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b :R+ → R+ is continuous and such that, for some 0 < ζ1 < ζ2 :
b ([ζ1, ζ2]) ⊆ [d(ζ1), d(ζ2)] and b ([0, ζ1]) ⊆ [0, d(ζ2)] ;
mins∈[ζ1,ζ2] b(s) = b (ζ1) ;
b(s) > d(s) for s ∈ (0, ζ1] and b is differentiable at 0, with b′(0) > d ′(0);
in [0, ζ2] , the equation b(s) = d(s) has exactly two solutions, 0 and κ.

(3.10)

Here we can take ζ2 = d−1(M) = d−1(maxb), and ζ1 ∈ (0, sM) such that b(ζ1) = θ , whose exis-
tence and uniqueness are ensured by the unimodality condition (2.3) as shown in the illustrative 
Fig. 1.

The following uniform permanence property is used to show that the above locally solved 
solution is actually a semi-wavefront if it exists globally. For the linear diffusion case (m = 1) in 
[32,33], the authors proved the uniform permanence property based on the variation of constants 
formula for semilinear differential equations. Their approach is not applicable to our case of 
degenerate diffusion equation. Here we adopt an alternative proof applicable for quasi-linear 
diffusion equations (m > 1).

Lemma 3.5 (Uniform permanence property). Assume that the unimodality condition (2.3) or its 
consequence (3.10) holds with additionally sups≥0 b(s) ≤ M . Then any non-trivial wave solution 
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φ(t) of (2.1) satisfies

0 < ζ1 ≤ lim inf
t→+∞ φ(t) ≤ lim sup

t→+∞
φ(t) ≤ ζ2 < +∞.

Proof. We first prove that lim supt→+∞ φ(t) ≤ ζ2. We proceed by contrary, supposing that there 
exists a t∗ ∈R such that φ(t∗) > ζ2. Let (t1, t2) be the maximal interval such that t∗ ∈ (t1, t2) and 
φ(t) > ζ2 in (t1, t2), i.e., (t1, t2) is the connected component containing t∗ of the set that φ(t) >
ζ2. Since limt→−∞ φ(t) = 0 < ζ2, we see that t1 ∈ (−∞, t∗). If there is no local maximum point 
of φ(t) in (t1, t2), then t2 = +∞ and φ(t) is monotonically increasing and converges to some 
equilibrium greater than ζ2 as t tends to positive infinity, which is impossible since the only 
positive equilibrium is κ < ζ2. Now let t0 ∈ (t1, t2) be one of the local maximum points. We have 
φ(t0) ≥ φ(t∗) > ζ2, φ′(t0) = 0, (φm(t))′′|t=t0 ≤ 0 as t0 is also a maximum point of φm(t), and at 
this point t0

cφ′(t) − D(φm(t))′′ + d(φ(t)) − b(φ(t − cr))

≥ d(φ(t)) − b(φ(t − cr)) > d(ζ2) − M = 0,

which contradicts to the equation (2.1). Therefore, we proved that φ(t) ≤ ζ2 for all t ∈R.
We next prove that φ(t) > 0 for t ∈ R unless φ(s) ≡ 0 for all s ≤ t , which is in fact possible 

for the sharp type wave solution. Suppose that there exists a t∗ such that φ(t∗) = 0 and φ(s) �≡ 0
for s ≤ t∗. Here at t∗, we have φ′(t) = 0, (φm(t))′′ ≥ 0 and

b(φ(t − cr)) = cφ′(t) − D(φm(t))′′ + d(φ(t)) ≤ 0,

which means φ(t∗ − cr) = 0 and φ(t∗ − jcr) = 0 for all j ∈Z+ by induction. Supposing that t0
is the boundary of the leading edge of φ(t) (see Definition 2.2) and in this case t0 < t∗ < +∞, 
φ(t0) > κ , φ′(t0) = 0, (φm(t))′′|t=t0 ≤ 0, then we have at t0

b(φ(t − cr)) = cφ′(t) − D(φm(t))′′ + d(φ(t)) > d(κ) > 0.

It follows that φ(t0 −cr) > 0 and φ(t) > 0 for t ∈ (t0 −cr, t0) since φ is monotonically increasing 
in (−∞, t0). That is, we find an interval in (−∞, t∗) longer than cr such that φ(t) has no zero 
point, which contradicts to φ(t∗ − jcr) = 0 for all j ∈ Z+. We conclude that φ(t) > 0 for all 
t > t0.

We finally prove that ζ1 ≤ lim inft→+∞ φ(t). Assuming that lim inft→+∞ φ(t) < ζ1, then 
there exists a sequence {tn}∞n=1 such that tn tends to positive infinity and φ(tn) < ζ1. Let 
A = {t > t1; φ(t) < ζ1}. We denote the set of all the local minimum points of φ(t) in A by 
Amin. We divide the following proof into two parts.

(i) If Amin is empty or bounded to the upwards, then φ(t) is eventually monotone and con-
verges to some equilibrium in [0, ζ1], which can only be 0. Therefore, φ(t) is monotonically 
decreasing on [t∗, +∞) and φ(t) ∈ [0, ε] for some sufficiently large t∗, where ε ∈ (0, ζ1) such 
that

b(s) − d(s) ≥ b′(0) − d ′(0)
, ∀s ∈ (0, ε)
s 2
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since the limit of the left hand side is b′(0) − d ′(0) > 0 as s tends to zero. Now we have for 
t > t∗ + cr , φ′(t) ≤ 0, φ(t − cr) ≥ φ(t) and

b(φ(t − cr)) ≥ b(φ(t)) ≥ d(φ(t)) + b′(0) − d ′(0)

2
φ(t).

Here we have used the monotonicity of b(s) on [0, ε] since b′(0) > 0 and we may take ε even 
smaller if necessary. Then

D(φm(t))′′ = cφ′(t) + d(φ(t)) − b(φ(t − cr)) ≤ −b′(0) − d ′(0)

2
φ(t), (3.11)

which must decay to zero at some finite point t̂ ∈ (t∗, +∞) and φ(t) > 0 for t < t̂ according to 
the phase plane analysis for this sublinear ordinary differential equation (3.11). At this point t̂ , 
we also have

b(φ(t − cr)) = cφ′(t) − D(φm(t))′′ + d(φ(t)) = 0,

which contradicts to φ(t̂ − cr) > 0.
(ii) If Amin is unbounded to the upwards. Suppose that t0 is the boundary of the leading edge of 

φ(t) (see Definition 2.2) and in this case t0 < t1 ≤ infA ≤ infAmin < +∞, φ(t0) > κ , (t1 > t0 is 
trivial as we can modify the sequence {tn}∞n=1). We have already proved that φ(t) > 0 for t > t0, 
and the local regularity of non-degenerate diffusion equation (2.1) shows that there is no bounded 
accumulation point of Amin. For any t∗ ∈ Amin, we find that φ′(t∗) = 0, (φm(t))′′|t=t∗ ≥ 0 and

b(φ(t − cr)) = cφ′(t) − D(φm(t))′′ + d(φ(t)) ≤ d(φ(t)) at t∗. (3.12)

According to the structure assumption on b(s) and d(s), we can choose positive constants k1 > 0
and k2 ∈ (0, 1) such that b(s) −d(s) ≥ k1s and b(s̃) ≥ d(s) for all s ∈ (0, ζ1) and s̃ ∈ [k2s, s]. We 
deduce from (3.12) that φ(t∗ − cr) < k2φ(t∗) < φ(t∗). Noticing that t∗ is a local minimum point, 
we see that t∗ − cr < t1 or there exists another local minimum point t̃∗ < t∗ and t̃∗ ∈ Amin such 
that φ(t̃∗) ≤ φ(t∗ −cr) < k2φ(t∗), which is denoted by t̃∗ = F(t∗) for convenience. Furthermore, 
if F(t1∗ ) = F(t2∗ ) for two different minimum points t1∗ , t2∗ ∈ Amin with t1∗ < t2∗ , then 0 < t2∗ − t1∗ <

cr as t2∗ − cr < t1∗ , otherwise, F(t2∗ ) ≥ t1∗ > F(t1∗ ), a contradiction. Therefore, we can choose a 
subsequence {sn}∞s=1 ⊂ Amin such that φ(sn+1) ≥ φ(sn)/k2 for all n ∈ Z+, which contradicts to 
k2 ∈ (0, 1) and φ(t) < ζ1 for all t ∈ A. The proof is completed. �

Now, we are able to prove the existence of sharp traveling waves.

Proof of Theorem 2.1. Let (0, T1) and (0, T2) be the maximal interval such that φc(t) remains 
positive before decaying to zero and φc(t) < ζ2, respectively, where c and c are constants in 
Lemma 3.2 and Lemma 3.3. For any T > max{T1, T2}, φc(T ) ≥ ζ2 for some c ≥ c and φc(T ) ≤ 0
for some c ≤ c. The continuous dependence of φc(t) with respect to c on the compact interval 
[0, T ] (Lemma 3.4) implies that there exists a cT ∈ [c, c] such that φcT

(T ) = κ . Since the closed 
interval [c, c] is compact, there exists a subsequence of {cT }, i.e., {cT }∞ , and a c0 ∈ [c, c], 
i i=1
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such that limi→∞ cTi
= c0. Meanwhile, φc0(t) exists on the whole (0, +∞), whose zero exten-

sion to the left is a sharp wave solution. The uniform permanence property Lemma 3.5 and the 
asymptotic expansion Lemma 3.1 indicate that the sharp wave solutions φc0(t) satisfies

0 < ζ1 ≤ lim inf
t→+∞ φc0(t) ≤ lim sup

t→+∞
φc0(t) ≤ ζ2,

and

|φc0(t) − C1t
λ+| ≤ C2t

�+ , for any t ∈ (0,1),

where t+ = max{t, 0}, λ = 1/(m − 1) and � > λ, C1, C2 > 0 are constants. �
Remark 3.1. The time delay together with the non-monotone structure of birth rate function 
b(u) causes us essential difficulty in proving the monotonic dependence of φc(t) with respect to 
c. Actually, the possible existence of non-monotone semi-wavefront suggests that the monotonic 
dependence may be violated in general. Without this monotonic dependence, the uniqueness of 
the wave speed for wave solutions of sharp type remains open. For the case that the birth function 
is monotone, we show that the sharp type wave solution is unique in [37].

We show that the sharp waves are classified into C1 type and piecewise-C1 type according to 
the degeneracy index m as stated in Theorem 2.2.

Proof of Theorem 2.2. The asymptotic behavior near 0 in Lemma 3.1 completes the proof. �
4. Lower bounds of the wave speeds

This section is devoted to the formulation of a lower bound of the wave speeds and the nonex-
istence results for all kinds of waves with small speeds. It should be noted that the minimal 
admissible wave speed is generally dependent on the time delay and decays to zero if time delay 
tends to infinity (under some conditions on the birth function). Therefore, there is no existing 
method and result showing the lower bound of the wave speeds for degenerate diffusion equa-
tion with large time delay. For the case with monotone birth function and small time delay, we 
introduced a generalized phase plane analysis in [36] to show the nonexistence results.

Here, we develop a phase transform approach combined with the analysis of corresponding 
phase energy to show the nonexistence results of sharp or smooth waves with small speed de-
pending on arbitrary time delay. We note that this method is generally incapable of showing the 
existence of traveling waves with time delay since the trajectories with time delay may intersect 
with each other. However, it can be a blueprint to draw the prospective contradiction for proving 
the nonexistence. As for as we know, this is the first approach dealing with degenerate diffusion 
equation with large time delay and non-monotone birth rate functions.

Lemma 4.1 (Lower bound of wave speeds). For any m > 1, D > 0 and r ≥ 0, there exists a 
constant ċ(m, r, b, d) > 0 depending on m, r and the structure of b(·), d(·), such that all the 
speeds of the wave solutions of (2.1), no matter sharp or smooth, wavefronts or divergent semi-
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wavefronts, are great than or equal to ċ(m, r, b, d). Moreover,

ċ(m, r, b, d) = μ0(m,b(·), d(·)) + o(1)

r
, r → +∞,

where μ0(m, b(·), d(·)) > 0.

Proof. For any given m > 1, D > 0 and r ≥ 0, we need to find a constant ċ(m, r, b, d) > 0, such 
that, (2.1) admits no wave solution φ(t) (semi-wavefronts or wavefronts, sharp or smooth) for 
any c < ċ(m, r, b, d). The nonexistence result is valid for a typical Nicholson’s birth rate function 
and death rate function without time delay in [13]. We can verify that it is also true for the general 
type of b and d without time delay. Here we only prove the case with time delay r > 0.

We prove by contradiction and assume that φc is a wave solution corresponding to the speed 
c. Recall that ζ1 and ζ2 are the constants in (3.10). Since b′(0) > d ′(0), let (0, ζ3) be the maximal 
interval such that

ψ0(φ) := Dmφm−1(b(φ) − d(φ))

c
(4.1)

is increasing with respect to φ and denote ζ0 = min{ζ1, ζ3}. It should be noted that ζ0 is inde-
pendent of c and r . Let I0 := (−∞, t0) be the maximal interval of the leading edge of φc and let 
I1 = (t1, t2) be the maximal subinterval of I0 such that φc is positive, monotonically increasing 
and φc(t) < ζ0. That is, there exists a unique t̂0 < t0 such that φc(t̂0) = ζ0 and we take t2 = t̂0. 
If φc is of smooth type, then t1 = −∞, while if φc is sharp, we take t1 = 0 instead. Within I1, 
φc(t) is monotonically increasing and b(φc) is monotonically increasing with respect to φc as 
φc ≤ ζ0 ≤ ζ1.

Now we introduce the phase transform approach, see for example [13,36]. Let

ψc(t) = D(φm
c (t))′.

Since φc(t) is positive and monotonically increasing in I1, we have the following singular phase 
plane where (φc(t), ψc(t)) corresponds to a trajectory

⎧⎪⎨
⎪⎩

φ′(t) = ψ(t)

Dmφm−1(t)
=: �,

ψ ′(t) = cψ(t)

Dmφm−1(t)
+ d(φ(t)) − b(φcr (t)) =: �,

(4.2)

with φcr(t) = φ(t − cr). We note that ψc(t) ≥ 0 and the zero points of ψc(t) is isolated since 
φc(t) is a given wave solution. According to the choice of I1, we can regard t ∈ I1 as an inverse 
function of φc and denote ψ̃c(φc) = ψc(t (φc)) ≥ 0. We redefine φcr(t) as a functional of φc and 
ψ̃c as follows

φcr = inf
θ∈[0,φc]

{ φc∫
θ

Dmsm−1

ψ̃c(s)
ds ≤ cr

}
. (4.3)

Consider the following nonlocal problem
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⎧⎨
⎩

dψ

dφ
= c − Dmφm−1(b(φcr ) − d(φ))

ψ
= �

�
,

ψ(0) = 0, ψ(ζ0) = Dmζm−1
0 φ′

c(t2) > 0, φ ∈ (0, ζ0).

(4.4)

Here, nonlocal means that φcr is a functional of φ and ψ(φ), which is caused by the time delay.
We draw a contradiction to the existence of solutions to (4.4) when c is sufficiently small 

with the help of the phase plane (4.2). The curve �c corresponding to ψ0(φ) defined in (4.1)
divides (0, ζ0) × (0, +∞) into two parts, E1 := {(φ, ψ); φ ∈ (0, ζ0), 0 < ψ < ψ0(φ)} and E2 :=
((0, ζ0) × (0, +∞))\E1. For any (φ, ψ) ∈ �c , we have

�

�
= c − Dmφm−1(b(φcr ) − d(φ))

ψ
> c − Dmφm−1(b(φ) − d(φ))

ψ
= 0.

We can check that �/� > 0 for any (φ, ψ) ∈ E2. Let ψ1(φ) be the solution of

⎧⎨
⎩

dψ

dφ
= c + Dmφm−1d(φ)

ψ
,

ψ(0) = 0,ψ(φ) > 0, φ ∈ (0, ζ0).

Asymptotic analysis shows that there exists a constant C1 > 0 depending on the upper bound 
of c (independent of c if c is small) such that

φ1(φ) ≤ C1φ, φ ∈ (0, ζ0).

The comparison principle of (4.4) shows that

ψ̃c(φ) ≤ φ1(φ) ≤ C1φ, φ ∈ (0, ζ0). (4.5)

Let ε ∈ (0, ζ0) be a constant such that

ε∫
0

φm−1d(φ)dφ <
1

4

ζ0∫
ε

φm−1(b(φ) − d(φ))dφ, (4.6)

and

δ := inf
φ∈(ε,ζ0)

(b(φ) − d(φ)) > 0.

We note that ε and δ only depend on the structure of b and d . We assert that for any given r > 0, 
there exists a c1 > 0 such that b(φcr) − d(φ) > 0 for all φ ∈ (ε, ζ0) if c ≤ c1. In fact, according 
to (4.5),

c1r ≥ cr =
φ∫

φcr

Dmsm−1

ψ̃c(s)
ds ≥

φ∫
φcr

Dmsm−1

C1s
ds ≥ Dm

C1(m − 1)
(φm−1 − φm−1

cr ),

and then using the uniform continuity of the function f (s) := s1/(m−1) on the interval [ε/2, ζ0]
with the continuity modulus function being denoted by ω(·), we have
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0 < b(φ) − b(φcr ) = b′(θ)(φ − φcr) ≤ sup
s∈(0,ζ0)

b′(s) · (φ − φcr )

≤ sup
s∈(0,ζ0)

b′(s) · ω(|φm−1 − φm−1
cr |)

≤ sup
s∈(0,ζ0)

b′(s) · ω(
C1(m − 1)c1r

Dm
) ≤ δ

2

for some θ ∈ (φcr , φ), provided that c1r is sufficiently small such that c1r = μ0 := μ0(m, b(·),
d(·)) > 0 (it suffices that c1 is sufficiently small as r is given). Here we note that μ0(m, b(·), d(·))
is a constant depending on m, ε, ζ0, δ, sups∈(0,ζ0)

b′(s), which are all dependent on m and the 
structure of b(·) and d(·). The dependence of μ0(m, b(·), d(·)) on b(·) is basically on the struc-
ture of b(·) within (0, ζ0) and ζ0 ≤ ζ1 with ζ1 depending on the whole structure of b(·) on (0, ζ2). 
Therefore,

b(φcr ) − d(φ) = (b(φ) − d(φ)) − (b(φ) − b(φcr ))

≥ (b(φ) − d(φ)) − δ

2
≥ b(φ) − d(φ)

2
, φ ∈ (ε, ζ0). (4.7)

The first integral of (4.4) over (0, ζ0) shows that

c

ζ0∫
0

ψ̃c(φ)dφ = 1

2
ψ̃2

c (φ)

∣∣∣ζ0

0
+

ζ0∫
0

Dmφm−1(b(φcr ) − d(φ))dφ

≥
ε∫

0

Dmφm−1(b(φcr ) − d(φ))dφ +
ζ0∫

ε

Dmφm−1(b(φcr ) − d(φ))dφ

≥ −
ε∫

0

Dmφm−1d(φ)dφ +
ζ0∫

ε

Dmφm−1(b(φcr ) − d(φ))dφ

≥
(

− 1

4
+ 1

2

) ζ0∫
ε

Dmφm−1(b(φ) − d(φ))dφ,

where we have used (4.6) and (4.7). On the other hand, we have

c

ζ0∫
0

ψ̃c(φ)dφ ≤ c

ζ0∫
0

C1φdφ ≤ c
C1

2
ζ 2

0 .

Now we arrive at a contradiction if we have chosen c ≤ ċ with

ċ = min{c1, c2} = min{μ0(m,b(·), d(·))
, c2(m,b(·), d(·))}
r
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such that

c2
C1

2
ζ 2

0 <
1

4

ζ0∫
ε

Dmφm−1(b(φ) − d(φ))dφ.

The proof is completed. �
Proof of Theorem 2.4. This is equivalent to Lemma 4.1. �
5. Oscillatory property of waves

In this section, we show that the waves (sharp or smooth) are oscillatory convergent or diver-
gent if the wave speed and the time delay is suitable large. More specifically, the sharp waves 
proved in Section 3 is oscillatory divergent if the time delay is large. We note that the lower 
bound demonstrated in Section 4 is needed in deriving the oscillatory properties.

Since the diffusion in (2.1) is degenerate for φ = 0, and nonlinear with respect to φ near κ , we 
define the following characteristic functions for c > 0 near the two equilibria 0 and κ separately

χ0(λ) := b′(0)e−λcr − cλ − d ′(0), λ > 0 (5.1)

and

χκ(λ) := Dmκm−1λ2 + b′(κ)e−λcr − cλ − d ′(κ), c > 0. (5.2)

It should be noted that the characteristic function χ0(λ) is totally deferent from that of linear 
diffusion case such that the quadratic Dλ2 for m = 1 is absent due to the degeneracy for m > 1. 
Therefore, the minimal admissible wave speed cannot be determined by the linearization of the 
equation near the zero equilibrium.

We see that χ0(λ) = 0 has a unique positive real root λ0 for all c > 0. In fact, λ0 = ωr

c
such 

that ωr ∈ (0, b′(0) −d ′(0)) is the unique solution of b′(0)e−rωr = ωr +d ′(0) since b′(0) > d ′(0). 
However, the distribution of the roots of χκ(λ) is much more complicated and plays an essential 
role in determining the oscillatory property of the semi-wavefronts.

The characteristic equation near κ plays an essential role in the investigation of the mono-
tonicity near κ . We have the following results concerned with the distribution of the roots of 
characteristic equation.

Lemma 5.1. For b′(κ) < 0, there exists an extended real number cκ = cκ(m, r, b′(κ), d ′(κ)) ∈
(0, +∞] such that the characteristic equation χκ(λ) defined in (5.2) has three real roots λ1 ≤
λ2 < 0 < λ3 if and only if c ≤ cκ . If cκ is finite and c = cκ , then χκ(λ) has a double root λ1 =
λ2 < 0, while for c > cκ there does not exist any negative root to (5.2). Moreover, if λj ∈ C is a 
complex root of (5.2) for c ∈ (0, cκ ], then �λj < λ2. Furthermore, cκ(m, 0, b′(κ), d ′(κ)) = +∞
and cκ is strictly decreasing in its domain,

cκ(m, r, b′(κ), d ′(κ)) = μκ(m,b′(κ), d ′(κ)) + o(1)

r
, r → +∞,

where μκ(m, b′(κ), d ′(κ)) :=
√

2Dmκm−1ωκ

b′(κ)
e

ωκ
2 , and ωκ < 0 is the unique negative root of 

2d ′(κ) = b′(κ)e−ωκ (2 + ωκ).
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Proof. We note that (2.1) does not degenerate near κ and the linearization of the nonlinear dif-
fusion equation (2.1) near κ is of the same type of the linear diffusion case. This lemma follows 
from a slight modification of Lemma 1.1 in [8]. Here we omit the details for the sake of simplic-
ity. �

Now we prove that the waves are oscillatory if c > cκ . For the case with linear diffusion 
(m = 1), it is proved in [8,32] that the waves are oscillatory if the wave speed are large enough 
based on the semigroup expression of differential equations with linear principle part. Here we 
provide a slightly different argument suitable for nonlinear diffusion.

Lemma 5.2. Assume that b′(κ) < 0 and c > cκ as in Lemma 5.1, then (2.1) does not have any 
eventually monotone semi-wavefront.

Proof. Lemma 5.1 implies that the characteristic function χκ(λ) around κ does not have any 
negative zeros. Arguing by contradiction, suppose that, there exists an eventually monotone trav-
eling wavefront.

Set w(t) = φ(t) − κ , then w(t) is either decreasing and strictly positive or increasing and 
strictly negative on some interval [T , +∞) and satisfies

Dm(φ(t)m−1w′(t))′ − cw′(t) = p(t)w(t) + k(t)w(t − h), (5.3)

where h = cr and

k(t) := −b(φ(t − h)) − b(κ)

φ(t − h) − κ
, p(t) := d(φ(t)) − d(κ)

φ(t) − κ
.

Since φ(+∞) = κ , 0 < k(t) < −2b′(κ), and 0 < p(t) < 2d ′(κ) for all sufficiently large t . We 
will show that for c > cκ , w(t) will oscillate about zero. As a consequence of Lemma 3.1.1 
from [14], we can conclude that w(t) cannot convey super-exponentially to 0. This fact and 
Corollary 24 in [32] imply the existence of a sequence tj → +∞ and a real number δ > 0 such 
that |w(tj )| = maxs≥tj |w(s)| and maxs∈[tj −3h,tj ] |w(s)| ≤ δ|w(tj )| for every j . Without loss 
of generality we assume that w′(tn) ≤ 0 and 0 < w(t) ≤ w(tn) for all t ≥ tn. Additionally, we 
can find a sequence {sj } with lim(sj − tj ) = +∞ such that |w′(sj )| ≤ w(tj ). Now, since w(t)

satisfies (5.3), we conclude that every yj (t) = w(t + tj )/w(tj ) > 0 is a solution of

Dm(φm−1(t + tj )y
′)′ − cy′ − p(t + tj )y − k(t + tj )y(t − h) = 0.

It is clear that limj→+∞ k(t + tj ) = −b′(κ), limj→+∞ p(t + tj ) = d ′(κ), and limj→∞ φ(t +
tj ) = κ uniformly on R+ and also that 0 < yj (t) ≤ δ for all t ≥ −3h, j = 1, 2, 3, . . ..

We need to estimate |y′
j (t)|. Since zj (t) = mφm−1(t + tj )y

′
j (t) solves the initial value problem 

zj (sj − tj ) = w′(sj )/w(tj ) ∈ [−1, 0] for equation

Dz′(t) − c
1

mφm−1(t + tj )
z(t) − p(t + tj )yj (t) − k(t + tj )yj (t − h) = 0,

we obtain that
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zj (t) =e

1
D

∫ t
sj −tj

c

mφm−1(τ+tj )
dτ

zj (sj − tj )

+ 1

D

t∫
sj −tj

(p(t + tj )yj (s) + k(s + tj )yj (s − h))e

1
D

∫ t
s

1
mφm−1(τ+tj )

dτ

ds. (5.4)

In consequence,

|y′
j (t)| ≤ C + C(2|g′(κ)| + 1)d, t ∈ [−2h, sj − tj ], j ∈N, (5.5)

from which the uniform boundedness of the sequence {y′
j (t)} on each compact interval 

[−2h, ξ ], ξ > −2h, follows. Together with 0 < yj (t) ≤ δ, t ≥ −3h, inequality (5.5) implies 
the pre-compactness of the set {yj (t), t ≥ −2h, j ∈ N}, in the compact open topology of 
C([−2h, +∞), R). Therefore, by the Arzela-Ascoli theorem combined with the diagonal 
method, we can indicate a subsequence yjk

(t) converging to a continuous function y(t), t ∈
[−2h, +∞). This convergence is uniform on every bounded subset of [−2h, +∞). Additionally 
we may assume that limk→∞ y′

jk
(0) = y′

0 exists.
Next, putting sj − tj = 0 in (5.4), we find that

zj (t) =mφm−1(t + tj )y
′
j (t)

=e

1
D

∫ t
0

c

mφm−1(τ+tj )
dτ

zj (0)

+ 1

D

t∫
0

(p(t + tj )yj (s) + k(s + tj )yj (s − h))e

1
D

∫ t
s

1
mφm−1(τ+tj )

dτ

ds, t ≥ −h.

Integrating this relation between 0 and t and then taking the limit as j → ∞ in the obtained 
expression, we obtain that

y(t) =1 + Dmκm−1

c

(
e

ct

Dmκm−1 − 1
)

y′
0

+
t∫

0

1

Dmκm−1

σ∫
0

(d ′(κ)y(s) − b′(κ)y(s − h))e
c(t−s)

Dmκm−1 dsdσ, t ≥ −h.

Therefore, y(t) satisfies

Dmκm−1y′′(t) − cy′(t) − d ′(κ)y(t) + b′(κ)y(t − h) = 0, t ≥ −h. (5.6)

Additionally, y(0) = 1, y′(0) = y′
0 ∈ [−1, 0] and 0 ≤ y(t) ≤ δ, t ≥ −2h. Clearly, y ∈ C2(R+)

and we claim that y(t) > 0 for all t ≥ 0. Observe here that y(t), t ≥ −2h, is non-increasing, 
and therefore y(0) = 1, y(s) = 0 imply s > 0. Let us suppose, for a moment, that y(s) = 0
and y(τ) > 0, τ ∈ [−h, s). Then y′(s) = 0, y(s − h) > 0, so that (5.6) implies y′′(s) > 0. Thus 
y(t) > 0 = y(s) for all t > s close to s which is not possible because y is non-increasing on 
[−2h, +∞).
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We have proved that (5.6) has a bounded positive solution on R+. As it was established in 
[14] Lemma 3.1.1, this solution does not decay superexponentially. From Proposition 7.2 in 
[22] (see also Proposition 2.2 in [12]), we conclude that there are b ≤ 0, δ > 0 and a nontrivial 
eigensolution v(t) of (5.6) on the generalized eigenspace associated with the (nonempty) set �
of eigenvalues with �λ = b, such that y(t) = v(t) + O(exp((b − δ)t)), t → +∞.

On the other hand, since c > c∗, we know from Lemma 5.1 that there are no real negative 
eigenvalues of (5.6) hence �λ �= 0 for all λ ∈ �. From Lemma 2.3 in [12], we find that y(t) is 
oscillatory, a contradiction. �
Proposition 5.1 (Oscillatory waves). Assume that m > 1, r > 0, b′(κ) < 0, then there exists a 
number cκ = cκ(m, r, b′(κ), d ′(κ)) ∈ (0, +∞] such that the semi-wavefronts with speed c > cκ

cannot be eventual monotone (i.e., they must be oscillating around κ , convergent or divergent). 
Moreover,

cκ(m, r, b′(κ), d ′(κ)) = μκ(m,b′(κ), d ′(κ)) + o(1)

r
, r → +∞,

where μκ(m, b′(κ), d ′(κ)) :=
√

2Dmκm−1ωκ

b′(κ)
e

ωκ
2 , and ωκ < −2 is the unique negative root of 

2d ′(κ) = b′(κ)e−ωκ (2 + ωκ).

Proof. This result follows from Lemma 5.1 and Lemma 5.2. �
Now we know that if b′(κ) < 0 and the birth rate function b satisfies the feedback condition 

(2.4), then for c > cκ , the semi-wavefront φ(t) is slowly oscillating around the positive steady 
state. In the remaining part of this section, we show that these oscillations are non-decaying for 
the wave speeds greater than some constant c∗.

Before going further, it will be convenient to work with the scaled function ϕ(s) = φ(cs). 
Then ϕ is a positive solution of the delay differential equation

Dσ(ϕm)′′(t) − ϕ′(t) − d(ϕ(t)) + b(ϕ(t − r)) = 0, t ∈ R,

where σ = c−2. The characteristic equation around κ is

χ∗(λ) = Dσmκm−1λ2 − λ − d ′(κ) + b′(κ)e−λr . (5.7)

We recall the following definition in [32] concerned with the non-decaying oscillation around κ .

Definition 5.1. Suppose that b′(κ) ≤ 0. Let c∗ = c∗(m, r, b′(κ), d ′(κ)) ∈ (0, +∞] be the largest 
extended real number such that χ∗(λ) does not have roots in the half-plane {�z > 0} other than 
a positive real root.

Lemma 5.3. The inequality c∗(m, r, b′(κ), d ′(κ)) ≥ cκ(m, r, b′(κ), d ′(κ)) holds for all cases. 
If b′(κ) ≥ −d ′(κ), then c∗(m, r, b′(κ), d ′(κ)) = +∞ for large time delay r; while if b′(κ) <
−d ′(κ), then

c∗(m, r, b′(κ), d ′(κ)) = μ∗(m,b′(κ), d ′(κ)) + o(1)

r
, r → +∞,

where μ∗(m, b′(κ), d ′(κ)) := π

√
Dmκm−1
′ ′ .
−b (κ)−d (κ)
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Proof. According to Lemma 5.1 and Lemma 1.1 in [8], for any c ≤ cκ , any complex root λj

of (5.2) has negative real part such that �λj < λ2 < 0. It follows that c∗ ≥ cκ for all cases. If 
c∗ < +∞ and c > c∗, then (5.7) has a complex root with non-negative real part, denoted by 
α + iβ with α ≥ 0 and β > 0. Then

Dmκm−1σ(α + iβ)2 − (α + iβ) − d ′(κ) + b′(κ)e−r(α+iβ) = 0.

That is,

{
Dmκm−1σ(α2 − β2) − α − d ′(κ) + b′(κ)e−rα cos(rβ) = 0,

2Dmκm−1σαβ − β − b′(κ)e−rα sin(rβ) = 0.
(5.8)

For large time delay r , we assert that α = o(1) as r → +∞. Otherwise, |b′(κ)e−λr | <
|Dσmκm−1λ2 − λ − d ′(κ)| for λ ∈ ∂K for large time delay since the complex-valued function 
Dσmκm−1λ2 − λ − d ′(κ) has at most one complex root within K , where K := {z; �z > α/2} in 
the complex plane. According to the Rouche’s theorem, (5.7) admits at most one complex root 
(that is a positive real number), which is a contradiction. Now, we see that

b′(κ)e−rα cos(rβ) = d ′(κ) + Dmκm−1σβ2 + α − Dmκm−1σα2 > d ′(κ) + Dmκm−1σβ2,

which is impossible if b′(κ) ∈ [−d ′(κ), 0). For the case b′(κ) < −d ′(κ), we let c tend to c∗, then 
α + iβ tends to a purely imaginary number iy, and the following limiting equation of (5.8) has a 
nonnegative solution

{
−Dmκm−1σy2 − d ′(κ) + b′(κ) cos(ry) = 0,

−y − b′(κ) sin(ry) = 0.
(5.9)

We note that according to the definition, c∗ is smallest positive real number such that (5.7)
has complex roots with non-negative real part except for the unique positive real root. That is, 
σ = 1/(c∗)2 is the largest positive real number such that (5.9) has a solution. Asymptotic anal-
ysis as r → +∞ shows that ry → π and Dmκm−1π2/(c∗r)2 → −b′(κ) − d ′(κ). The proof is 
completed. �

Finally, we present a sufficient condition for the existence of divergent semi-wavefronts.

Lemma 5.4. Assume that b′(κ) < 0 and the birth rate function b satisfies the feedback condition 
(2.4). If c > c∗, then the semi-wavefront φ(t) does not converge to κ as t → +∞.

Proof. We prove that the solution does not converge to κ using a similar argument in [32], 
which implies that the oscillation is non-decaying. By contradiction, we assume that φ(t) → κ

as t → +∞. Then v(t) = φ(t) − κ with v(+∞) = 0, satisfies

Dmσ(φ(t)m−1v′(t))′ − v′(t) − d1(v(t)) + b1(v(t − r)) = 0, t ∈R, (5.10)

where b1(s) := b(s + κ) − b(κ), b1(0) = 0, b′(0) = b′(κ), satisfies the feedback condition with 
respect to 0, and d1(s) := d(s + κ) − d(κ), d1(0) = 0, d ′ (0) = d ′(κ).
1
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Since v(+∞) = 0, there exists a sequence tn → +∞ with the property such that |v(tn)| =
maxs≥tn |v(s)|. We can assume that v attains its local extremum at tn so that v′(tn) = 0, 
v′′(t)v(tn) ≤ 0. These relations and (5.10) imply that v(tn)v(tn − r) < 0 and therefore sc(vtn)

must be an odd integer. Since sc(vtn) ≤ 2, sc(vtn) = 1. There are a unique zn ∈ (tn − r, tn) and 
a finite set Fn such that v(s) < 0 for s ∈ [tn − r, zn)\Fn and v(s) ≥ 0 for s ∈ [zn, tn]. We can 
assume that |v(tn)| = max{|v(s)| : s ∈ [zn, tn]}, and that {rn}, rn := tn − zn ∈ (0, r), is monotoni-
cally converging to r∗ ∈ [0, r]. Set yn(t) = v(t + zn)/v(tn), t ∈ R, then yn(t) satisfies

Dmσ(φ(t)m−1y′(t))′ − y′(t) − qn(t)y(t) + pn(t − h)y(t − h) = 0, t ∈ R,

where

pn(t) =
{

b1 (v (t + zn)) /v (t + zn) , if v (t + zn) �= 0,

b′(κ), if v (t + zn) = 0,

and

qn(t) =
{

d1 (v (t + zn)) /v (t + zn) , if v (t + zn) �= 0,

d ′(κ), if v (t + zn) = 0.

Since yn(0) = 0 and |yn(t)| ≤ 1, t ≥ 0, and that limn→∞ pn(t) = b′(κ), limn→∞ qn(t) = d ′(κ), 
limn→∞ φ(t) = κ uniformly in t ∈ R+. From (5.4), we get |yn(t)| is uniformly bounded in 
C1([−2r, ∞)). Hence, using the similar arguments in Lemma 5.2, there exists a sub-sequence 
ynj

converging to y∗(t), which is the solution of the linear equation

Dmσκm−1y′′(t) − y′(t) − d ′(κ)y(t) + b′(κ)y(t − h) = 0, t ≥ 2r. (5.11)

From Proposition 7.2 in [22], for every sufficiently large |ν|, ν < 0, it holds that

y∗(t) = Y0(t) + O(exp(νt)), t → +∞,

where Y0(t) is a nonempty finite sum of eigensolutions of the linear equation (5.11) associated to 
the eigenvalues in {λ ∈ C : �(λ) ∈ (−ν, 0]}. Thus, there exist A > 0, β > 0, α ≥ 0, ζ ∈ R, such 
that y∗(t) = (A cos(βt + ζ ) + o(1))e−αt , t ≥ 2r . From [32] on the location of eigenvalues, we 
have β > 2π/r . Since ynj

converges to y∗ as j → ∞, this ensures that ynj
changes its sign at 

least three times for sufficient large j . It contradicts to sc(vtn) = 1 and completes the proof. �
Proposition 5.2 (Non-decaying oscillating waves). Assume that the birth rate function b(·) sat-
isfies the feedback condition (2.4) and b′(κ) < 0 and the time delay r > 0, then there exists a 
number c∗ = c∗(m, r, b′(κ), d ′(κ)) ∈ (0, +∞] such that the semi-wavefronts with speed c > c∗
have to develop non-decaying slow oscillations around κ . Moreover, if b′(κ) ≥ −d ′(κ), then 
c∗(m, r, b′(κ), d ′(κ)) = +∞ for large time delay r; while if b′(κ) < −d ′(κ), then

c∗(m, r, b′(κ), d ′(κ)) = μ∗(m,b′(κ), d ′(κ)) + o(1)

r
, r → +∞,

where μ∗(m, b′(κ), d ′(κ)) := π

√
Dmκm−1

−b′(κ)−d ′(κ)
.

Proof. This result follows from Lemma 5.3 and Lemma 5.4. �



T. Xu et al. / J. Differential Equations 269 (2020) 8882–8917 8907
Proof of Theorem 2.3. This is proved in Proposition 5.1, Lemma 5.3 and Proposition 5.2. �
Remark 5.1. For b′(κ) ∈ [−d ′(κ), 0), we have c∗(m, r, b′(κ), d ′(κ)) = +∞ and then the speeds 
c∗(m, r, b′(κ), d ′(κ)) > cκ(m, r, b′(κ), d ′(κ)) for large time delay. For b′(κ) ∈ (−∞, −d ′(κ)), 
we also have c∗(m, r, b′(κ), d ′(κ)) > cκ(m, r, b′(κ), d ′(κ)) for large time delay since

μ∗(m,b′(κ), d ′(κ)) = π

√
Dmκm−1

−b′(κ) − d ′(κ)
>

√
2Dmκm−1ωκ

b′(κ)
e

ωκ
2 = μκ(m,b′(κ), d ′(κ)),

according to the fact that 2|ωκ |e−|ωκ | ≤ 2/e < π2 for all ωκ . In fact, we show that c∗(m, r, b′(κ),

d ′(κ)) ≥ cκ(m, r, b′(κ), d ′(κ)) for all cases in Lemma 5.3.

Proof of Theorem 2.5. We show that for functions b(·) and d(·) with some structure condition, 
the curves c0(m, r, b, d) intersect with c∗(m, r, b′(κ), d ′(κ)), and then the sharp divergent semi-
wavefront exists. In fact, μ∗(m, b′(κ), d ′(κ)) is a constant only dependent on the local property 
of b′(κ) and converge to zero as b′(κ) → −∞. From the proof of Theorem 2.4, we see that 
μ0(m, b, d) depends on the structure of b(·) and d(·) within (0, ζ1), where ζ1 is determined by 
the whole structure of b(·) and d(·) as shown in Fig. 1. The local variation of b′(κ) has minor 
effect on μ0(m, b, d) (if the change of b′(κ) has no effect on ζ1, then μ0(m, b, d) is fixed). 
Hence, for functions b(·) with appropriate structure near 0 and suitable large −b′(κ), there holds

0 < μ∗(m,b′(κ), d ′(κ)) < μ0(m,b(·), d(·)),
and further

0 < c∗(m, r, b′(κ), d ′(κ)) < ċ(m, r, b, d) ≤ c0(m, r, b, d),

for large time delay according to the asymptotic behavior in Theorem 2.4 proved in Section 4, 
Proposition 5.1 and Proposition 5.2. �
Remark 5.2. The condition in Theorem 2.5 holds for many kinds of birth functions. If fact, from 
the proof of Theorem 2.4, we see that μ0(m, b, d) depends on the structure of b(·) and d(·)
within (0, ζ1), where ζ1 is determined by the whole structure of b(·) and d(·) as shown in Fig. 1. 
If the change of b′(κ) has no effect on ζ1, then μ0(m, b, d) is fixed. Hence, for functions b(·)
with appropriate structure near 0 and suitable large −b′(κ), the sharp divergent semi-wavefront 
exists.

6. Classification of various waves

This section is devoted to the classification of various waves defined in Definition 2.2. We 
have already shown the existence of sharp type waves in Section 3, especially the sharp diver-
gent waves in Section 5. Here, we prove the existence of smooth waves and then present the 
classification of wave profiles according to the wave speed and time delay.

6.1. Existence of smooth waves

We employ the Schauder’s Fixed Points Theorem to show the existence of monotone and 
non-monotone waves of smooth type. Compared with the linear diffusion case (m = 1), both the 
comparison principle and the solvability of degenerate elliptic problem (m > 1) are not obvious.
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We recall the comparison principle of degenerate diffusion equation on an unbounded domain.

Lemma 6.1 (Comparison Principle, [36]). Let φ1, φ2 ∈ C(R; R) such that for i = 1, 2, 0 ≤ φi ∈
L∞(R), φm

i ∈ W
1,2
loc , φ1(t) > 0 for all t ∈R, φi(t) is increasing for t ≤ t0 with some fixed t0 ∈R, 

lim inft→±∞(φ1(t) −φ2(t)) ≥ 0, lim inft→+∞ φ1(t) > 0 and φi satisfies the following inequality

cφ′
1(t) − D(φm

1 (t))′′ + d(φ1(t)) ≥ cφ′
2(t) − D(φm

2 (t))′′ + d(φ2(t))

in the sense of distributions. Then φ1(t) ≥ φ2(t) for all t ∈ R.

We show the following solvability and monotonicity of degenerate equations on an unbounded 
domain. This is needed to verify the monotone leading edges of the waves, no matter monotone 
wavefronts, oscillatory wavefronts or divergent semi-wavefronts.

Lemma 6.2. Assume that 0 ≤ ψ(t) ∈ L∞(R) ∩ C(R), ψ is monotonically increasing on 
(−∞, t0] for some t0 ∈ R, and ψ(t) ≥ ψ(t0) > 0 for all t > t0, then the following degenerate 
elliptic equation

⎧⎪⎪⎨
⎪⎪⎩

cφ′(t) − D(φm(t))′′ + d(φ(t)) = ψ(t), t ∈ R,

lim
t→−∞φ(t) = 0,

0 < d−1(lim inf
t→+∞ ψ(t)) ≤ lim inf

t→+∞ φ(t) ≤ lim sup
t→+∞

φ(t) ≤ d−1(lim sup
t→+∞

ψ(t)) < +∞,

(6.1)

admits at least one solution φ(t) such that 0 ≤ φ(t) ∈ L∞(R), φ is monotonically increasing on 
(−∞, t0], and φ(t) ≥ φ(t0) > 0 for all t > t0.

Proof. Consider the following regularized problem for any A > max{1, t0} with −A < t0{
cφ′(t) = D

(
m(|φ(t)|2 + 1/A)(m−1)/2φ′(t)

)′ − d(φ(t)) + ψ(t), t ∈ (−A,A),

φ(−A) = d−1(ψ(−A)), φ(A) = d−1(ψ(A)).
(6.2)

The unique existence of solution to (6.2) is trivial. The solution is denoted by φA. We note that 
d(s) is monotonically increasing and ψ(t) ≥ ψ(−A) for all t ≥ −A since −A < t0 and ψ(t) is 
increasing on (−∞, t0). Comparison principle of elliptic equation shows that

0 < d−1(ψ(−A)) ≤ φA(t) ≤ d−1(supψ), t ∈ (−A,A).

In fact, if this is not true, we argue by contradiction. If there exists t0 ∈ (−A, A) such that 
φA(t0) < d−1(ψ(−A)), then the minimum of φA(t) on [−A, A] is less than d−1(ψ(−A)) and 
is attained at some inner point t∗ ∈ (−A, A) since at the endpoints φA(±A) ≥ d−1(ψ(−A)). At 
this point t∗, φ′

A(t∗) = 0, φ′′
A(t∗) ≥ 0, and by (6.2)

ψ(t∗) = cφ′
A(t∗) − D

(
m(|φA(t∗)|2 + 1/A)(m−1)/2φ′

A(t∗)
)′ + d(φA(t∗)) < ψ(−A),

which contradicts to the fact ψ(t) ≥ ψ(−A) for all t ∈ [−A, A]. The proof of φA(t) ≤
d−1(supψ) is similar.
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We assert that φ′
A(t) ≥ 0 for t ∈ [−A, t0]. Otherwise, there exists a t∗ ∈ (−A, t0) such that 

φ′
A(t∗) < 0. Let (t1, t2) be the maximal interval such that t∗ ∈ (t1, t2) and φ′

A(t) < 0 for t ∈
(t1, t2). We note that φA(t) attains its minimum at −A, which implies φ′

A(−A) ≥ 0. Thus, t1 ∈
[−A, t∗), φ′

A(t1) = 0,

(m(|φA(t)|2 + 1/A)(m−1)/2φ′
A(t))′

∣∣
t=t1

≤ 0,

and

ψ(t1) = cφ′
A(t1) − D

(
m(|φA(t1)|2 + 1/A)(m−1)/2φ′

A(t1)
)′ + d(φA(t1)) ≥ d(φA(t1)),

which shows

φA(t1) ≤ d−1(ψ(t1)) ≤ d−1(ψ(t∗)) ≤ d−1(ψ(t0)) ≤ d−1(ψ(A)) = φA(A)

as t1 ≤ t∗ < t0 < A, ψ(t) is increasing on (−∞, t0] and ψ(t) > ψ(t0) > 0 for all t > t0. There-
fore, φA(A) = d−1(ψ(A)) ≥ φA(t1) and φA(t) cannot always decrease on the whole (t1, A). 
Then t2 < A and φ′

A(t2) = 0, φA(t1) > φA(t2),

(m(|φA(t)|2 + 1/A)(m−1)/2φ′
A(t))′

∣∣
t=t2

≥ 0,

and

ψ(t1) = cφ′
A(t1) − D

(
m(|φA(t1)|2 + 1/A)(m−1)/2φ′

A(t1)
)′ + d(φA(t1))

> cφ′
A(t2) − D

(
m(|φA(t2)|2 + 1/A)(m−1)/2φ′

A(t2)
)′ + d(φA(t2))

= ψ(t2), t1 < t2,

which contradicts to the monotonically increasing of ψ on (−∞, t0) and ψ(t) ≥ ψ(t0) > 0 for 
all t > t0.

Next, we show that φA(t) ≥ φA(t0) > 0 for all t > t0. Otherwise, there exists a number t1 ∈
(t0, A) such that φA(t1) < φA(t0). Noticing that φA(t) is increasing on (−A, t0), we see that there 
exists a maximum point t∗ ∈ [t0, t1). Similar to the above analysis at this point t∗, we find that

φA(A) ≥ φA(t∗) ≥ φA(t0) > φA(t1)

and φA(t) cannot decrease on the whole (t∗, A). Then there exist ta ∈ (t∗, t1) and tb ∈ (t1, A)

such that φA(ta) = φA(tb) = φA(t0) and φA(t) satisfies

{
cφ′(t) = D

(
m(|φ(t)|2 + 1/A)(m−1)/2φ′(t)

)′ − d(φ(t)) + ψ(t), t ∈ (ta, tb),

φ(ta) = φA(t0), φ(tb) = φA(t0).

Applying the maximum principle of elliptic equations with ψ(t) ≥ ψ(t0) for all t > t0, we find 
that φA(t) ≥ φA(t0) for t ∈ (ta, tb), which contradicts to t1 ∈ (ta, tb) and φA(t1) < φA(t0).

For any 1 < B < A, let η(t) be the cut-off function such that 0 ≤ η(t) ≤ 1, η ∈ C2
0((−B, B)), 

|η′(t)| ≤ 2 for t ∈ (−B, B), η(t) = 1 for t ∈ (−B + 1, B − 1). Multiply (6.2) by η2(t)φA(t) and 
integrate over (−A, A), we have
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A∫
−A

cη2φA(t)φ′
A(t)dt +

A∫
−A

Dmη2(|φA(t)|2 + 1/A)(m−1)/2|φ′
A(t)|2dt

+
A∫

−A

η2d(φA(t))φA(t)dt

≤
A∫

−A

2Dmη(|φA(t)|2 + 1/A)(m−1)/2φA(t)φ′
A(t)|η′(t)|dt +

A∫
−A

η2φA(t)ψ(t)dt

≤ 1

2

A∫
−A

Dmη2(|φA(t)|2 + 1/A)(m−1)/2|φ′
A(t)|2dt

+
A∫

−A

2Dm(|φA(t)|2 + 1/A)(m−1)/2|φA(t)|2|η′(t)|2dt + 2d−1(supψ) supψB.

Therefore,

1

2

B−1∫
−B+1

Dm(|φA(t)|2 + 1/A)(m−1)/2|φ′
A(t)|2dt +

B−1∫
−B+1

d(φA(t))φA(t)dt

≤
−B+1∫
−B

+
B∫

B−1

2Dm(|φA(t)|2 + 1/A)(m−1)/2|φA(t)|2|η′(t)|2dt + 2d−1(supψ) supψB

≤ 16Dm((supψ)2 + 1)(m−1)/2(supψ)2 + 2d−1(supψ) supψB.

It follows that ‖φm
A‖W 1,2(−B+1,B−1) is uniformly bounded and independent of A. We note that 

the embedding W 1,2(−B + 1, B − 1) into Cγ ([−B + 1, B − 1]) with γ ∈ (0, 12 ) is compact, and 
φm

A ∈ Cγ ([−B + 1, B − 1]) implies φA ∈ Cγ/m([−B + 1, B − 1]). There exist a subsequence of 
{φA(t)}A>1 denoted by {φAn(t)}n∈N and a function φ(t) ∈ Cγ/m(R) such that φm ∈ W

1,2
loc (R), 

0 ≤ φ ≤ K , and φAn(t) uniformly converges to φ(t) on any compact interval, φm
An

(t) weakly 

converges to φm(t) in W 1,2
loc (R). Since each φAn(t) is monotonically increasing on (−∞, t0), we 

see that φ(t) is also increasing on (−∞, t0). We can verify that φ(t) is a solution of (6.1). �
The existence of traveling waves is deduced by Schauder fixed point theorem on an appropri-

ate profile set �ε constructed with upper and lower profiles φ∗ and φε for two auxiliary problems, 
where φ∗, φε will be specified in the following. Inspired by Theorem 1.1 in [21], we construct 
two auxiliary degenerate diffusion equations with quasi-monotonicity. Since b(ζ1) > 0, there is 
a small ε0 ∈ (0, ζ1) such that b(ζ1 − ε) > 0 for every ε ∈ [0, ε0]. If b(s) satisfies (3.10), for any 
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ε ∈ (0, ε0), define two continuous functions as follows

b∗(u) =
{

min
{
b′(0)u,M

}
, u ∈ [0, ζ2],

max {M,b(u)} , u > ζ2,

and

bε(u) =
⎧⎨
⎩

inf
η∈[u,ζ2]

{b(η), d (ζ1 − ε)} , u ∈ [0, ζ2],
min {b(u), d (ζ1 − ε)} , u > ζ2.

If b(s) satisfies the unimodality condition (2.3), then the above functions are simplified as

b∗(u) = min
{
b′(0)u,M

}
,

and

bε(u) = min{b(u), d(ζ1 − ε)}.
According to the definition, we have

Lemma 6.3. Both b∗ and bε are continuous on [0, +∞) and monotonically increasing on [0, ζ2]; 
b∗(s) ≥ b(s) ≥ bε(s) for all s ≥ 0; b∗(ζ2) = d(ζ2) = M and b∗(s) > d(s) for s ∈ (0, ζ2); bε(ζ1 −
ε) = d(ζ1 − ε) < d(ζ1) and bε(s) > d(s) for s ∈ (0, ζ1 − ε).

Proof. The above statements are obvious and their proofs are omitted for the sake of simplic-
ity. �

Consider the following two auxiliary delayed degenerate diffusion equations

wt(t, x) = D(wm)xx(t, x) − d(w(t, x)) + b∗(w(t − r, y)), (6.3)

and

wt(t, x) = D(wm)xx(t, x) − d(w(t, x)) + bε(w(t − r, y)). (6.4)

The wave equations corresponding to (6.3) and (6.4) are

cU ′(t) − DUm′′
(t) + d(U(t)) − b∗(U(t − cr)) = 0, (6.5)

and

cU ′(t) − DUm′′
(t) + d(U(t)) − bε(U(t − cr)) = 0. (6.6)

We note that the characteristic functions of (6.5) and (6.6) near 0 are identical to (5.1), i.e., 
the characteristic function of (2.1) near 0. However, we will show that the critical wave speed is 
not determined by this characteristic function near 0.

Now we recall the existence of monotone traveling wavefronts for the above two auxiliary 
degenerate diffusion equations with time delay.
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Lemma 6.4. For any given m > 1, D > 0 and r ≥ 0, there exist a constant ĉ(m, r, b∗, d) (depend-
ing on m, r and the structure of b∗(·), d(·)) and a constant ĉ(m, r, bε, d) (depending on m, r and 
the structure of bε(·), d(·)) such that (6.5) and (6.6) admit monotonically increasing wavefronts 
φ∗(t) and φε(t) for c1 > ĉ(m, r, b∗, d) and c2 > ĉ(m, r, bε, d), respectively, with 0 < φ∗(t) < ζ2, 
0 < φε(t) < ζ1 − ε,

|φ∗(t) − ζ2e
λc1 t | ≤ C∗e�c1 t , |φε(t) − (ζ1 − ε)eλc2 t | ≤ Cεe

�c2 t , t < 0, (6.7)

where λc1, λc2 > 0 are the unique roots of χ0(λ) = 0 corresponding to c1 and c2 respectively, 
(χ0 is defined in (5.1)) and �ci

> λci
for i = 1, 2, C∗, Cε > 0 are constants. Moreover, Cε is 

uniformly bounded from above and ĉ(m, r, bε, d) is uniformly bounded from above and below 
with respect to ε ∈ (0, ε0).

Proof. The existence result for degenerate diffusion equations with small time delay and mono-
tone birth function is proved in Theorem 2.4 of [36]. We point out that the restriction of the 
smallness of time delay lies in the proof of the positive lower bound of the critical wave speed, 
i.e., Lemma 3.11 of [36]. Here in the proof of Lemma 4.1, we develop the approach further such 
that it is applicable to all the time delay. Therefore, the result of Theorem 2.4 in [36] is valid for 
all time delay as we proved here in Lemma 4.1. We apply this conclusion to the two auxiliary 
degenerate diffusion equations with time delay separately. The dependence of Cε with respect 
to ε is shown by the construction of the upper and lower solutions in [36], which is uniformly 
bounded since ζ1 − ε is uniformly bounded for ε ∈ (0, ε0). According to Lemma 4.1, we see that 
ĉ(m, r, bε, d) is uniformly bounded from below with respect to ε since the structure of the family 
of functions bε near zero is the same. The uniform upper bound of ĉ(m, r, bε, d) with respect to 
ε is trivial as we can construct an upper solution with suitably large wave speed. The proof is 
completed. �
Proof of Theorem 2.6. For any given c > max{ĉ(m, r, b∗, d), ĉ(m, r, bε, d)}, let φ∗(t) and φε(t)

be the monotonically increasing wavefronts of (6.5) and (6.6), respectively, corresponding to the 
same wave speed c. According to (6.7),

|φ∗(t) − ζ2e
λt | ≤ Ce�t , |φε(t) − (ζ1 − ε)eλt | ≤ Ce�t , t < 0,

for � > λ and C > 0 with λ > 0 being the unique root of χ0(λ) = 0 corresponding to c. We may 
assume that

φ∗(t) ≥ φε(t), for all t ∈R.

Otherwise, let t0 < 0 be sufficiently small such that

φ∗(t) ≥ ζ2 + ζ1

2
eλt ≥ φε(t), ∀t < t0, (6.8)

and choose t1 such that φ∗(t1) ≥ ζ2+ζ1
2 . Then we shift φε(t) to φε(t −max{t1 − t0, 0}). Therefore,

φε(t − max{t1 − t0,0}) ≤ ζ2 + ζ1 ≤ φ∗(t), ∀t ≥ t1,

2
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and

φε(t − max{t1 − t0,0}) ≤ φ∗(t − max{t1 − t0,0}) ≤ φ∗(t), ∀t < t1,

according to (6.8) and the monotonicity of φ∗(t). We replace φε(t) by φε(t − max{t1 − t0, 0}).
Define

H ∗[φ](t) = b∗(φ(t − cr)), t ∈ R,

and

Hε[φ](t) = bε(φ(t − cr)), t ∈R,

then for any φ, ψ ∈ C(R, [0, ζ2]) with φ(t) ≥ ψ(t), t ∈ R, we have

H ∗[φ](t) ≥ H ∗[ψ](t) and Hε[φ](t) ≥ Hε[ψ](t) for all t ∈ R,

since b∗ and bε are monotonically increasing on [0, ζ2]. Set

�ε :=
{
φ ∈ C(R;R);φε(t) ≤ φ(t) ≤ φ∗(t), φ(t) is monotonically increasing

on (−∞, t�], and φ(t) ≥ φ(t�) for all t > t�

}
, (6.9)

where t� ∈ R is a fixed constant such that

0 < δ0(ζ1 − ε0) ≤ φε(t�) ≤ φ∗(t�) ≤ φ∗(t� + cr) < ζ1

with δ0 ∈ (0, 1/2) being sufficiently small. We note that φε(t) is depending on ε, but the constants 
in (6.7) can be selected independent of ε in Lemma 6.4, and so is δ0. Then we see that �ε is 
nonempty and convex in E , where E is the linear space Cb

unif(R) endowed with the norm

‖φ‖∗ =
∞∑

n=1

1

2n
‖φ‖L∞([−n,n]).

For any ψ(t) ∈ �ε , we solve the following degenerate equation

⎧⎪⎪⎨
⎪⎪⎩

cφ′(t) − D(φm(t))′′ + d(φ(t)) = b(ψ(t − cr)), t ∈R, lim
t→−∞φ(t) = 0,

0 < d−1(lim inf
t→+∞ b(ψ(t))) ≤ lim inf

t→+∞ φ(t)

≤ lim supt→+∞ φ(t) ≤ d−1(lim supt→+∞ b(ψ(t))) < +∞.

(6.10)

Denote

ψ̂(t) := H [ψ](t) := b(ψ(t − cr)).

Since ψ(t − cr) is increasing on (−∞, t� + cr), ψ(t) ≤ φ∗(t) ≤ ζ1 for all t ≤ t�, and b(s) is 
increasing for s ∈ [0, ζ1], we see that ψ̂(t) is monotonically increasing on (−∞, t�] and ψ̂(t) ≥
ψ̂(t�) for all t > t�. According to Lemma 6.2, (6.10) admits a solution φ(t) such that φ(t)

is monotonically increasing on (−∞, t�] and φ(t) ≥ φ(t�) for all t > t�. Define F ∗ : �ε →
C(R, [0, ζ2]) by F ∗(ψ) = φ with φ(t) being the solution of (6.10) corresponding to ψ(t) ∈ �ε .
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We need to prove that F ∗(�ε) ⊂ �ε . For any ψ(t) ∈ �ε , we have φε(t) ≤ ψ(t) ≤ φ∗(t), then

H [ψ](t − cr) ≤ H ∗[ψ](t − cr) ≤ H ∗[φ∗](t − cr),

and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cφ∗′(t) − D(φ∗m(t))′′ + d(φ∗(t)) ≥ cφ′(t) − D(φm(t))′′ + d(φ(t)), t ∈ R,

lim inf
t→−∞(φ∗(t) − φ(t)) = lim inf

t→−∞ φ∗(t) − lim inf
t→−∞ φ(t) = 0,

lim sup
t→+∞

(φ∗(t) − φ(t)) ≥ lim
t→+∞φ∗(t) − lim sup

t→−∞
φ(t)

≥ ζ2 − d−1(lim sup
t→+∞

b(ψ(t))) ≥ ζ2 − d−1(lim sup
t→+∞

b∗(φ∗(t))) = 0,

since φ(t) and φ∗(t) are solutions of (6.10) and (6.5). Applying the comparison principle 
Lemma 6.1, we find φ(t) ≤ φ∗(t) for all t ∈ R. In a similar way, the property φ(t) ≥ φε(t)

follows from the comparison principle Lemma 6.1 and the inequality

H [ψ](t − cr) ≥ Hε[ψ](t − cr) ≥ Hε[φε](t − cr).

From the proof of Lemma 6.2, we see that the solutions φ(t) of (6.10) are uniformly bounded 
in Cα([−n, n]) with some α ∈ (0, 1/(2m)), φm(t) are uniformly bounded in W 1,2([−n, n]) for 
any compact interval [−n, n], and φ(t) are uniformly bounded in L∞(R). According to the def-
inition of the function space E , F ∗(�ε) is compact in E . By the Schauder’s fixed point theorem, 
it follows that F ∗ has a fixed point U in �ε ⊂ E , which satisfies

cU ′(t) − DUm′′
(t) + d(U(t)) − b(U(t − cr)) = 0,

and

φε(t) ≤ U(t) ≤ φ∗(t) for all t ∈ R. (6.11)

Moreover, U(−∞) = 0 and

ζ1 − ε ≤ lim inf
t→+∞ U(t) ≤ lim sup

t→+∞
U(t) ≤ ζ2.

Since U(t) is independent of ε, taking the limit as ε → 0+, we have

ζ1 ≤ lim inf
t→+∞ U(t) ≤ lim sup

t→+∞
U(t) ≤ ζ2.

The proof is completed. �
6.2. Classification of wave profiles

To conclude, the time delay r and the degenerate diffusion have a strong influence on the 
geometry of wave profiles. Here, we depict the shape of the traveling waves characterized by the 
wave speed c and time delay r . From Theorem 2.6, we know that when the wave speed c > ĉ, 



T. Xu et al. / J. Differential Equations 269 (2020) 8882–8917 8915
Fig. 5. Different types of traveling waves for the degenerate diffusion equation with time delay (1.1) correspond to time 
delay r and wave speed c: the case that the curve c0(m, r, b, d) never intersects with the curves cκ (m, r, b′(κ), d ′(κ))

and c∗(m, r, b′(κ), d ′(κ)).

there exist smooth traveling wave solutions. Theorem 2.1 implies there exists a sharp traveling 
wave with the wave speed c0. After investigate the geometry of leading edge, it is naturally to 
consider the convergence of the semi-wavefronts. So we have Theorem 5.1 and Theorem 5.2
indicating the oscillating properties for both the sharp type and smooth type traveling waves.

According to the above theorems, Fig. 5 and Fig. 6 illustrate two main possible sketches of 
the corresponding wave behaviors varying with the traveling wave speed c and time delay r . The 
critical lines of the wave speeds depend on the time delay and divide the (r, c) plane into several 
parts relating to different wave behaviors. The slopes and structures of these curves depend on 
the functions b(·) and d(·). It is worth to mention that there exist sharp-oscillating waves for 
some proper parameters, which is different from the former literatures (see Fig. 2 and Fig. 3).

In the case that the curve c0(m, r, b, d) never intersects with the curve cκ(m, r, b′(κ), d ′(κ))

and the curve c∗(m, r, b′(κ), d ′(κ)) as illustrated in Fig. 5, we have the following different types 
of waves: the curve c0 is the wave speed of sharp type traveling waves; the waves with the pa-
rameters (r, c) above the curve ĉ are positive and smooth and the types (C1), (C2) and (C3) in 
Fig. 4 are possible; the waves with (r, c) above the curve cκ are oscillatory; the waves with (r, c)
above the curve c∗ are non-decaying oscillatory. If b′(κ) ≥ 0, then cκ(m, r, b′(κ), d ′(κ)) = +∞
and c∗(m, r, b′(κ), d ′(κ)) = +∞, and the curve c0(m, r, b, d) never intersects with the curves 
cκ(m, r, b′(κ), d ′(κ)) and c∗(m, r, b′(κ), d ′(κ)). Actually, for the monotonically increasing func-
tion b(·), the traveling waves are monotone.

Wave dynamics are rather complicated when the curve c0(m, r, b, d) or ĉ(m, r, b, d) intersects 
with the curve cκ(m, r, b′(κ), d ′(κ)) or c∗(m, r, b′(κ), d ′(κ)). It raises the possibility of nine 
types of traveling waves as shown in Fig. 2, Fig. 3 and Fig. 4. Fig. 6 shows the case that the curve 
c0(m, r, b, d) intersects with the curves cκ(m, r, b′(κ), d ′(κ)) and c∗(m, r, b′(κ), d ′(κ)) at rκ and 
r∗ respectively. In this situation, many types of waves occur depending on the wave speed c, the 
time delay r and the degeneracy m as follows:

(i) if the degeneracy is strong with m ≥ 2, then along the curve c0(m, r, b, d), the non-C1

sharp type wave is monotone (A1) for small time delay or non-monotone (A2) if r > rκ or non-
decaying oscillatory (A3) if r > r∗;

(ii) if the degeneracy is weak with 1 < m < 2, then along the curve c0(m, r, b, d), the sharp 
waves are C1 type, that is, (A1), (A2), (A3) are replaced by (B1), (B2) and (B3);

(iii) the waves with the parameters (r, c) above the curve ĉ(m, r, b, d) are positive and smooth, 
that is, (C1), (C2), (C3) are possible if the time delay is small;
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Fig. 6. Different types of traveling waves for the degenerate diffusion equation with time delay (1.1) correspond to time 
delay r and wave speed c: the case that the curve c0(m, r, b, d) intersects with the curves cκ (m, r, b′(κ), d ′(κ)) and 
c∗(m, r, b′(κ), d ′(κ)) at rκ and r∗ respectively.

(iv) after the curve ĉ(m, r, b, d) intersects with cκ(m, r, b′(κ), d ′(κ)) (it happens if ċ(m, r, b, d)

intersects with cκ(m, r, b′(κ), d ′(κ)) since ĉ ≥ ċ), the monotone waves are impossible, that is, 
only (C2) and (C3) of smooth type exist;

(v) after the curve ĉ(m, r, b, d) intersects with c∗(m, r, b′(κ), d ′(κ)) (it happens if ċ(m, r, b, d)

intersects with c∗(m, r, b′(κ), d ′(κ))), the smooth wave has to develop non-decaying oscillations, 
that is, only (C3) of the smooth type exists.
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