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Abstract
This paper is concerned with the global nonlinear stability of sharp traveling waves for
combustion model with degenerate diffusion. We prove that the solutions to the Cauchy
problem converge to the unique sharp traveling wave (with a shift depending on the initial
data), even the perturbation can be allowed arbitrarily large within the admissible range. Note
that the traveling wave and the solution are at most Hölder continuous, and their supports are
semi-compact. The degenerate diffusion and the low regularity make the study nontrivial.
The proof is based on the monotonicity principle to which we add some new aspects.

Keywords Sharp traveling wave · Nonlinear stability · Combustion nonlinearity ·
Degenerate diffusion

1 Introduction andMain Results

We consider the Cauchy problem for the following reaction diffusion equation with degen-
erate diffusion and combustion nonlinearity

ut = (D(u)ux )x + f (u), (1.1)
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where u is the renormalized temperature, 0 ≤ u ≤ 1, the reaction term f (u) satisfies

there exists θ ∈ (0, 1), such that f (u) = 0,∀u ∈ [0, θ ] ∪ {1},
f (u) > 0,∀u ∈ (θ, 1), f ∈ C([0, 1]) ∩ C1([θ, 1]), and f ′(1) < 0. (1.2)

If f is merely defined on [0, 1], we extend f (u) = f ′(1)(u − 1) for u > 1; otherwise we
further assume that f ∈ C1([θ,+∞)), and f ′(u) < 0 for u > 1. We refer to this source
term as combustion nonlinearity and θ represents the ignition-temperature [1]. We assume
the diffusion coefficient D(u) is temperature-dependent, which is degenerate at u = 0. A
natural choice in chemical engineering is D(u) = mum−1 with m > 1, the so called porous
medium type diffusion [2].

In the pioneeringwork [3], Berestycki, Nicolaenko and Scheurer proposed the combustion
model (1.1) describing the premixedBunsen flame, where f (u) is combustion-type, diffusion
coefficients D(u) ≥ D0 > 0 is a smooth function of temperature u with strictly positive
infimum. They assumed both heat conductivity and diffusion coefficients are temperature-
dependent. Since then, several works have considered the combustion models of the form
(1.1) with constant diffusion coefficients D = D0 > 0. Bonnet and Hamel [4] established
the existence result of two-dimensional V-shaped traveling fronts. Then Hamel, Monneau
and Roquejoffre [5] proved the asymptotic stability of V-shaped traveling fronts. After that,
Hamel and Monneau [6] studied the stability of conical traveling fronts in higher dimension.
Recently, Bu andWang [7–9] proved existence, uniqueness and asymptotic stability of three-
dimensional pyramidal traveling fronts.

Degenerate diffusion equations arise in many natural phenomena, with applications to
developmental biology, population dynamics, combustion theory, chemical reaction and fluid
in porous media (see [2, 10–13]). The existence of traveling waves for degenerate diffusion
equations has been well-studied in [12–22] for kinetics of Fisher-KPP (monostable) type and
in [23] of Nagumo (bistable) type. Different from the mentioned works above, Gilding and
Kernser [24] employed the integral equation approach instead of the phase plane analysis
method to study the existence of traveling waves of the following equation

ut = (D(u)ux )x + B(u)ux + F(u)

with general diffusion, convection and reaction.
In the combustion case with degenerate diffusion, the dynamics of traveling waves are

much richer, due to the degeneracy of both the diffusion and reaction at equilibrium point
u = 0. However, the propagation properties of Cauchy problem for the combustion model
(1.1) with degenerate diffusion are challenging and still remain open. In this paper, we first
show that, due to the effect of degeneracy of diffusion, the traveling waves of (1.1) are sharp
type (with semi-compact supports) for unique wave speed c∗ > 0, and further prove the
time asymptotic stability of the sharp traveling wave, which indicates the finite propagation
property of solutions to Cauchy problems.

For the reaction diffusion equations with degenerate diffusion, the traveling waves usually
loss the regularity due to the degeneracy. Stability results of traveling waves for degenerate
diffusion equations are quite limited. In the case of degenerate diffusion equations with
Fisher-KPP nonlinearity f (u) = u(1− u), Biró [25] first proved their nonlinear stability by
upper and lower solutions method for the sharp fronts with critical wave speed c = c∗. For
the non-critical traveling waves with c > c∗, Huang–Jin–Mei–Yin [26] and Liu–Mei–Yang
[27] obtained the stability of these smooth non-critical traveling waves to the local/nonlocal
degenerate diffusion equations with time-delay by the weighted energy method and the
viscosity vanishing technique respectively. In [28], Leyva and Plaza established the spectral
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stability in exponentially weighted spaces of non-critical traveling waves for degenerate
diffusion equations of Fisher-KPP type. After that, the spectral stability of traveling waves
for degenerate diffusion equation with Nagumo (bistable) type reaction was studied in a
companion paper [29]. Recently, Dalibard et al. [30] established the nonlinear stability of
degenerate diffusion sharp traveling fronts in the porous medium case. However, the stability
and the corresponding convergence rate of sharp traveling waves for the degenerate diffusion
equations with combustion type source term remain open due to some technical issues. The
effect of the degenerate diffusion Eq. (1.1) causes essential difficulty. In this paper, we are
going to prove the nonlinear stability of sharp traveling waves for the combustion equations
with degenerate diffusion (1.1), where the nonlinear diffusion function D(u) vanishes at
u = 0.

We are interested in the propagation properties of the Cauchy problem (1.1) of combustion
modelwith porousmedium type degenerate diffusion D(u) = mum−1 (m > 1). The traveling
wave solutions of (1.1) connecting the two equilibria 1 and 0with the form u(x, t) = φ(ξ) :=
φ(x − ct) satisfy the following degenerate elliptic equation{

cφ′ + (φm)′′ + f (φ) = 0,

φ(−∞) = 1, φ(+∞) = 0.
(1.3)

It is equivalent to the case with ξ̂ = x + ct such that the traveling wave propagates to the left
with opposite status.

The existence of traveling wave is already known for the reaction diffusion equation (1.1)
of porous medium type, which is unique up to translation for composition type reaction. See
the reference book ofGilding andKernser [24] employing the integral equation approach. The
unique traveling wave is sharp type (with semi-compact support) for degenerate diffusion.

We summarize the properties of the sharp traveling waves of the combustion model (1.1)
with degenerate diffusion.

Proposition 1.1 (Existence and properties of sharp traveling wave) For the degenerate diffu-
sion equation (1.1) with composition type reaction f (u) satisfying (1.2) and porous medium
type diffusion D(u) = mum−1 (m > 1), there exists a constant c∗ = c∗(m, f ) > 0 such that

(i) (1.1) admits a unique (up to translation) traveling wave solution φ(x −c∗t) connecting
1 and 0 with φ(−∞) = 1 and φ(+∞) = 0;

(ii) the traveling wave is of sharp type (with semi-compact support), i.e., there exists
ξ0 ∈ R, such that φ(ξ) = 0 for all ξ ≥ ξ0, and 0 < φ(ξ) < 1 with φ′(ξ) < 0 for all ξ < ξ0;

(iii) the optimal regularity is φ ∈ Cα(R) (Hölder spaces) with α = 1
m−1 , and

φ(ξ) ∈ (θ, 1), ξ < ξ1, φ(ξ) =

⎧⎪⎨
⎪⎩

(
m − 1

m
c∗ · |ξ − ξ0|

) 1
m−1

, ξ ∈ [ξ1, ξ0],
0, ξ > ξ0,

where ξ1 < ξ0 is such that φ(ξ1) = θ .

Without loss of generality, we always assume that ξ0 = 0. The Hölder spaces Cα are
interpreted as Lipschitz spaces Cα−1,1 for positive integer α, and are interpreted as Hölder
spaces C [α],{α} for positive non-integer α.

We show that the solution to the Cauchy problem (1.1) of the combustion model with
degenerate diffusion propagates in the form of sharp traveling wave φ(ξ) and also converges
to the sharp traveling wave with a shift.
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Theorem 1.1 (Stability of sharp traveling waves) For any solution u(x, t) of the Cauchy
problem (1.1) with initial data u0 such that

u0 ∈ L∞(R), u0(x) ≥ 0, supp u0 ⊂ (−∞, x∗] for some x∗ ∈ R, lim inf
x→−∞ u0(x) > θ, (1.4)

there exists a x0 ∈ R such that u(x, t) converges to φ(x − c∗t − x0):

lim
t→+∞ sup

x∈R
|u(x, t) − φ(x − c∗t − x0)| = 0, (1.5)

where φ(x − c∗t) is the sharp traveling wave with critical wave speed c∗ in Proposition 1.1
(with ξ0 = 0).

Remark The condition lim infx→−∞ u0(x) > θ of the initial data in (1.4) is almost necessary.
Otherwise for some initial data u0(x) such that u0(x) ≤ θ for all x ∈ R, we can see that
u(x, t) ≤ θ for all x ∈ R and t > 0 according to the comparison principle with supper-
solution ū(x, t) ≡ θ . It follows that the solution does not converge to any traveling wave
connecting 1 and 0.

Theorem 1.1 shows the development of the free boundary of the solution to Cauchy
problem.

Corollary 1.1 Let u(x, t) be the solution of the Cauchy problem (1.1) with initial data u0

satisfying (1.4), and let ζ(t) be the free boundary of the semi-compact support of the solution
u(x, t), i.e., ζ(t) := sup{x ∈ R; u(x, t) > 0}. Then there exists an x0 ∈ R such that

lim
t→+∞(ζ(t) − c∗t) = x0.

The approach adopted here is based on weak sub- and super-solutions with semi-compact
supports, in order to characterize the motion of the free boundary of the solution. Note that
both the solution u(x, t) of the Cauchy problem (1.1) in Theorem 1.1 and the sharp traveling
wave solutions with shifts ū(x, t) = φ(x − c∗t − x0) have the distinct free boundaries
ζ(t) := sup{x ∈ R; u(x, t) > 0} and ζ̄ (t) := sup{x ∈ R; ū(x, t) > 0} = x0 + c∗t ,
respectively. Our approach differs from the energy method such that it avoids the weak
regularity of the solution u(x, t) near the free boundary ζ(t) and the traveling wave solution
ū(x, t) near ζ̄ (t), where the solutions are at most Hölder continuous.

2 Proof of theMain Results

We first show the existence and properties of sharp traveling wave in Proposition 1.1.

Proof of Proposition 1.1. The existence results have already been proved by Gilding and
Kernser [24] employing the integral equation approach for a large class of nonlinear dif-
fusion equations with reaction and convection. Their results include the combustion model
(1.1) with degenerate diffusion. The existence results can also be shown by studying the
asymptotic behavior with a phase plane analysis, see the references [26, 31] for example.
We note that for the combustion reaction f (u) such that f (u) ≡ 0 for u ∈ [0, θ ], an explicit
formula of the traveling wave φ(ξ) is obtained locally for φ(ξ) ∈ [0, θ ]. According to (1.3),
(φm)′ = −cφ for φ ∈ [0, θ ], it follows that (φm−1)′ = −m−1

m c and then

φm−1(ξ) − φm−1(ξ0) = −m − 1

m
c · (ξ − ξ0), ξ < ξ0,

123



Journal of Dynamics and Differential Equations

where ξ0 is the edge of the support of sharp traveling wave such that φ(ξ0) = 0 and φ(ξ) > 0
for ξ < ξ0. Other properties follow from the locally explicit formula and the asymptotic
behaviors of φ(ξ). ��

Note that both the unique sharp traveling wave φ(x − c∗t) and the solution u(x, t) to the
Cauchy problem are semi-compactly supported, and they are at most Hölder continuous at
the free boundaries. Therefore the key step of the global L∞ stability of sharp traveling wave
is to estimate the evolution of the free boundary.

The characterization of the motion of the free boundary via weak sub- and super-solutions
with semi-compact supports is developed by Biró [25] for degenerate diffusion equations of
porous medium type D(u) = mum−1 and the Fisher-KPP type reaction f (u) = u p − uq

with 1 ≤ p < min{m, q}. Later, Xu et al. [32] extended the above method to degenerate
diffusion equations with advection of Burgers type and a general Fisher-KPP type reaction
term f (u) satisfying the following growth condition

sup
s∈(0,1)

s f ′(s)
f (s)

< m. (2.1)

However, the growth condition (2.1) fails for the combustion type reaction in this paper,
which plays an important role in the construction of weak sub- and super-solutions with semi-
compact supports in [32] (see Lemma 2.4 therein). Therefore, we construct weak solutions
more carefully and take advantage of the combustion structure under the almost necessary
condition lim inf x→−∞ u0(x) > θ of the initial data in (1.4), which allows us to formulate
convergence results without the growth condition (2.1).

The weak sub- and super-solutions with semi-compact supports are constructed based on
the unique sharp traveling wave φ(x − c∗t) with variable amplitude and propagation speed,
of the following form

W (x, t) := F(t) · φ(x − G(t)),

where F(t) denotes the amplitude of the weak solution, and G(t) characterize the evolution
of the free boundary.

Lemma 2.1 ([25, 32]) Let F(t)and G(t)be the solutions to the following ordinary differential
system ⎧⎪⎨

⎪⎩
F ′(t) = ε1F(t)(1 − F(t)),

G ′(t) = c∗Fm−1(t) − ε2(1 − F(t)),

F(0) = F0 > 0, G(0) = G0,

(2.2)

where ε1 and ε2 are positive constants. Then
(i) limt→+∞ F(t) = 1, and the convergence rate is exponential;
(ii) if F0 < 1, then F(t) is strictly increasing, while if F0 > 1, then F(t) is strictly

decreasing, such that F(t) ∈ [min{F0, 1},max{F0, 1}];
(iii) limt→+∞ G ′(t) = c∗;
(iv) there exists x0 ∈ R such that limt→+∞(G(t) − c∗t) = x0, and the convergence rate

is exponential.

For the sake of convenience, we fix two constants

F1 ∈ (θ, lim inf
x→−∞ u0(x)), F2 > sup

x∈R
u0(x), (2.3)
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for any given initial data u0 satisfying (1.4) in Theorem 1.1 since lim infx→−∞ u0(x) > θ .
Without loss of generality, we may assume that F1 < 1 and F2 > 1; otherwise we replace
them by F̂1 = min{F1, 1 − ε} and F̂2 = max{F2, 1 + ε} with a small constant ε > 0.

The validity of W (x, t) := F(t) · φ(x − G(t)) being a weak sub- or super-solution lies in
the verification of a differential inequality in the sense of distributions. In the previous works,
for f (u) = u p − uq with 1 ≤ p < min{m, q} in [25] and for f (u) satisfying the growth
condition (2.1) in [32], the mono-stable Fisher-KPP type reaction plays an essential role
such that λm f (u)− f (λu)

(λ−1)u admits a positive infimum. However, the above existence of positive
infimum is not true for a combustion type reaction satisfying (1.2).

Denote

H(F, ϕ) := Fm f (ϕ) − f (Fϕ)

F − 1
, F ∈ [F1, F2]\{1}, ϕ ∈ [0, 1]. (2.4)

For combustion type reaction f (u) satisfying (1.2), we see that f ′−(θ) = 0 and f ′+(θ) ≥ 0
such that H(F, ϕ) may have jump discontinuity for ϕ = θ and F near 1 since

lim
F→1+ H(F, θ) = −θ f ′+(θ), lim

F→1− H(F, θ) = 0,

and then H(F, ϕ) cannot be continuously extended to F = 1 and ϕ ∈ [0, 1].
Lemma 2.2 For combustion type reaction f (u) satisfying (1.2), and for any given F1 ∈ (θ, 1)
and F2 > 1, there exists a positive constant M0 > 0 such that

inf
F∈[F1,F2]\{1},ϕ∈[0,1] H(F, ϕ) ≥ −M0, inf

F∈[F1,F2]\{1},ϕ∈(0,1]
H(F, ϕ)

ϕ
≥ −M0.

Proof We rewrite the definition (2.4) of H(F, ϕ) into the following equality

H(F, ϕ) = Fm f (ϕ) − f (Fϕ)

F − 1
= Fm − 1

F − 1
f (ϕ) − f (Fϕ) − f (ϕ)

F − 1
. (2.5)

The first term in (2.5) is always nonnegative. It suffices to show that f (Fϕ)− f (ϕ)
F−1 is bounded

above for the lower bound of H(F, ϕ) and similarly the upper bound of f (Fϕ)− f (ϕ)
(F−1)ϕ yields

the lower bound of H(F,ϕ)
ϕ

. For the combustion type reaction f (u) satisfying (1.2), we see

that f (u) ≡ 0 for u ∈ [0, θ ] and f ∈ C([0, 1]) ∩ C1([θ, F2]) with f ′+(θ) ≥ 0. Although it
may happen that f /∈ C1([0, F2]), we always have that f is absolutely continuous on [0, F2]
and the almost everywhere derivative

f̃ ′(u) :=
{
0, u ∈ [0, θ),

f ′(u), u ∈ (θ, F2],
is theweak derivative (generalized derivative) in the sense of distributions.Hence theNewton-
Leibniz formula is valid. It follows that

f (Fϕ) − f (ϕ) = f (ϕ + s(F − 1)ϕ)

∣∣∣s=1

s=0
= (F − 1)ϕ ·

∫ 1

0
f̃ ′(ϕ + s(F − 1)ϕ)ds. (2.6)

Therefore,

f (Fϕ) − f (ϕ)

F − 1
= ϕ ·

∫ 1

0
f̃ ′(ϕ + s(F − 1)ϕ)ds

≤ sup
u∈[0,F2]

f̃ ′(u) ≤ sup
u∈(θ,F2]

f ′(u) ≤ ‖ f ‖C1([θ,F2]) =: M0.
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Similarly, f (Fϕ)− f (ϕ)
(F−1)ϕ ≤ M0. ��

Lemma 2.3 For combustion type reaction f (u) satisfying (1.2), and for any given F1 ∈ (θ, 1)
and F2 > 1, there exist positive constants μ1 ∈ (0, 1− θ), λ1 ∈ (0, 1− θ), and δ1 > 0, such
that

inf
F∈[1−λ1,1+λ1]\{1},ϕ∈[1−μ1,1]

H(F, ϕ) ≥ δ1 > 0.

Proof Since f is combustion type reaction satisfying (1.2), we see that f ∈ C1([θ, F2])with
f ′(1) < 0. There exists a positive constant δ∗

1 > 0 (it suffices to take δ∗
1 = | f ′(1)|/2), and

a neighborhood [1 − μ∗
1, 1 + μ∗

1] with μ∗
1 ∈ (0, 1 − θ) such that f ′(u) ≤ −δ∗

1 < 0 for all
u ∈ [1 − μ∗

1, 1 + μ∗
1].

We choose positive constants μ1 ∈ (0, 1 − θ), λ1 ∈ (0, 1 − θ) such that both ϕ and Fϕ

lie in the neighborhood [1 − μ∗
1, 1 + μ∗

1] for all F ∈ [1 − λ1, 1 + λ1] and ϕ ∈ [1 − μ1, 1].
For example, we take μ1 = μ∗

1/2 and λ1 = μ∗
1/2, then Fϕ ≤ 1 + λ1 < 1 + μ∗

1 and
Fϕ ≥ (1 − λ1)(1 − μ1) ≥ (1 − μ∗

1/2)
2 > 1 − μ∗

1.
According to (2.5) and (2.6), we have

H(F, ϕ) = Fm − 1

F − 1
f (ϕ) − f (Fϕ) − f (ϕ)

F − 1

≥ − ϕ ·
∫ 1

0
f̃ ′(ϕ + s(F − 1)ϕ)ds

≥ − ϕ · sup
u∈[min{ϕ,Fϕ},max{ϕ,Fϕ}]

f̃ ′(u)

≥(1 − μ1)δ
∗
1 =: δ1 > 0, (2.7)

for all F ∈ [1 − λ1, 1 + λ1]\{1} and ϕ ∈ [1 − μ1, 1]. ��

Lemma 2.4 For combustion type reaction f (u) satisfying (1.2), and for any given F1 ∈ (θ, 1)
and F2 > 1, let μ1 ∈ (0, 1 − θ) and λ1 ∈ (0, 1 − θ) be the constants in Lemma 2.3, then
there exists a positive constant δ2 > 0, such that

inf
F∈[1+λ1,F2],ϕ∈[1−μ1,1]

H(F, ϕ) ≥ δ2 > 0.

Proof According to the proof ofLemma2.3, f ′(u) ≤ −δ∗
1 < 0 for allu ∈ [1−μ∗

1, 1+μ∗
1]. By

the assumptions on f wehave f ∈ C1([θ, F2]) and f ′(u) < 0 for all u ∈ [1, F2]. There exists
a positive constant δ∗

2 > 0 (we may assume that δ∗
2 ∈ (0, δ∗

1 ]) such that f ′(u) ≤ −δ∗
2 < 0

for all u ∈ [1, F2]. Then for all F ∈ [1 + λ1, F2] and ϕ ∈ [1 − μ1, 1], both ϕ and Fϕ lie in
the interval [1 − μ∗

1, F2].
Similar to (2.7) in the proof of Lemma 2.3, we have

H(F, ϕ) ≥ −ϕ ·
∫ 1

0
f̃ ′(ϕ + s(F − 1)ϕ)ds

≥ −ϕ · sup
u∈[min{ϕ,Fϕ},max{ϕ,Fϕ}]

f̃ ′(u)

≥ (1 − μ1)δ
∗
2 =: δ2 > 0.

The proof is complete. ��
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Lemma 2.5 For combustion type reaction f (u) satisfying (1.2), and for any given F1 ∈ (θ, 1)
and F2 > 1, let λ1 ∈ (0, 1 − θ) be the constant in Lemma 2.3, then there exist positive
constants μ2 ∈ (0, 1 − θ) and δ3 > 0, such that

inf
F∈[F1,1−λ1],ϕ∈[1−μ2,1]

H(F, ϕ) ≥ δ3 > 0.

Proof Note that F1 ∈ (θ, 1) and λ1 > 0, then [F1, 1−λ1] ⊂ (θ, 1). Take F∗
1 ∈ (θ, F1), such

as F1 = (θ + F1)/2, then [F1, 1−λ1] ⊂ [F∗
1 , 1−λ1] ⊂ (θ, 1). According to the combustion

structure, there exists a positive constant δ∗
3 > 0 such that

inf
u∈[F∗

1 ,1−λ1]
f (u) ≥ δ∗

3 > 0,

since f is positive and continuous on (θ, 1). Noticing that f (1) = 0 and f ′(1) < 0, we see
that there exists a positive constant μ∗

2 > 0 and μ∗
2 < λ1, such that

sup
u∈[1−μ∗

2,1]
f (u) ≤ δ∗

3

2
.

The last step is to take μ2 ∈ (0, μ∗
2) such that Fϕ lies in the interval [F∗

1 , 1 − λ1] for all
F ∈ [F1, 1 − λ1] and ϕ ∈ [1 − μ2, 1]. It suffices to take μ2 > 0 sufficiently small such that
(1 − μ2)F1 > F∗

1 , which is possible since F1 > F∗
1 .

According to (2.5) and the above selection, we have

H(F, ϕ) = Fm − 1

F − 1
f (ϕ) − f (Fϕ) − f (ϕ)

F − 1

≥ f (Fϕ) − f (ϕ)

1 − F
≥ f (Fϕ) − f (ϕ)

≥ inf
u∈[F∗

1 ,1−λ1]
f (u) − sup

u∈[1−μ∗
2,1]

f (u) ≥ δ∗
3

2
=: δ3 > 0,

for any F ∈ [F1, 1 − λ1] and ϕ ∈ [1 − μ2, 1]. ��
We conclude from the above Lemmas 2.3–2.5 the positive infimum of H(F, ϕ) for ϕ

sufficiently close to 1.

Lemma 2.6 For combustion type reaction f (u) satisfying (1.2), and for any given F1 ∈ (θ, 1)
and F2 > 1, there exist positive constants μ0 ∈ (0, 1 − θ) and δ0 > 0 such that

inf
F∈[F1,F2]\{1},ϕ∈[1−μ0,1]

H(F, ϕ) ≥ δ0 > 0.

Proof Takingμ0 = min{μ1, μ2} > 0 and δ0 = min{δ1, δ2, δ3} > 0, we arrive at the positive
infimum of H(F, ϕ) over ([F1, F2]\{1})×[1−μ0, 1] according to Lemma 2.3, Lemma 2.4,
and Lemma 2.5. ��
Lemma 2.7 Let φ(ξ) = φ(x − c∗t) be the unique sharp traveling wave in Proposition 1.1.
For combustion type reaction f (u) satisfying (1.2), and for any given F1 ∈ (θ, 1) and F2 > 1,
there exist a sufficiently small ε1 > 0 and a sufficiently large ε2 > 0, such that

ε1Fφ(ξ) + ε2Fφ′(ξ) − H(F, φ(ξ)) ≤ 0, (2.8)

for any F ∈ [F1, F2] and any ξ ∈ R. The above inequality (2.8) is valid for any smaller ε1
and any larger ε2.
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Proof Note that the sharp traveling wave φ(ξ) ≡ 0, for all ξ ≥ 0, we only need to consider
the case ξ < 0. According to properties in Proposition 1.1, φ(−∞) = 1, φ′(ξ) < 0 for all
ξ ∈ (−∞, 0). There exists a unique ξ∗ ∈ (−∞, 0) such that φ(ξ∗) = 1 − μ0, where μ0 is
the positive constant in Lemma 2.6. We next divide the proof into two cases.

For ξ ∈ [ξ∗, 0), we see that φ(ξ) ∈ (0, φ(ξ∗)] = (0, 1−μ0]. According to the asymptotic
behavior in Proposition 1.1

φ(ξ) =
(

m − 1

m
c∗ · |ξ − ξ0|

) 1
m−1

, ξ ∈ [ξ1, ξ0], with ξ0 = 0,

there exists a positive constant δ14 > 0 such that

inf
ξ∈[ξ1,0)

|φ′(ξ)|
φ(ξ)

≥ δ14 > 0.

Since φ(ξ) is monotone decreasing and φ(ξ∗) = 1−μ0 > θ = φ(ξ1), it is clear that ξ∗ < ξ1.
The following continuous function admits its positive minimum

min
ξ∈[ξ∗,ξ1]

|φ′(ξ)|
φ(ξ)

= δ24 > 0.

For simplicity, we denote δ4 := min{δ14, δ24} > 0. Consider the following function

J (F, ξ) := −ε1F − ε2F
φ′(ξ)

φ(ξ)
+ H(F, φ(ξ))

φ(ξ)
, F ∈ [F1, F2], ξ ∈ [ξ∗, 0),

for positive constants ε1 and ε2 to be determined. We calculate according to Lemma 2.2 that

J (F, ξ) = −ε1F + ε2F
|φ′(ξ)|
φ(ξ)

+ H(F, φ(ξ))

φ(ξ)

≥ −ε1F2 + ε2F1δ4 − M0 ≥ 0, ξ ∈ [ξ∗, 0),

provided that ε2 ≥ 2M0/(F1δ4) and ε1 < M0/F2. Therefore,

ε1Fφ(ξ) + ε2Fφ′(ξ) − H(F, φ(ξ)) = −J (F, ξ) · φ(ξ) ≤ 0.

For ξ ∈ (−∞, ξ∗), we see that φ(ξ) ∈ (φ(ξ∗), 1) = (1−μ0, 1). In this case, H(F, φ(ξ))

admits positive infimum δ0 > 0 according to Lemma 2.6. Hence,

ε1Fφ(ξ) + ε2Fφ′(ξ) − H(F, φ(ξ)) ≤ ε1F2 − δ0 ≤ 0,

provided that ε1 < δ0/F2. The proof is complete. ��

Nowwe are ready to construct weak sub- and super-solutionswith semi-compact supports.
The comparison principle for degenerate parabolic equations, see [2, 25] for example, implies
that the sub- and super-solutions (with the comparison of the initial data) enclose the solution
to the Cauchy problem.

Lemma 2.8 Define
W (x, t) := F(t)φ(x − G(t)), (2.9)

where F(t) and G(t) are the solutions in Lemma 2.1 with initial data (F0, G0), ε1 and ε2
are the constants in Lemma 2.7, φ(ξ) = φ(x − c∗t) is the unique sharp traveling wave
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in Proposition 1.1. Then W (x, t) is a sub-solution to (1.1) if F0 ∈ [F1, 1); W (x, t) is a
super-solution to (1.1) if F0 ∈ (1, F2]. Moreover there exists x0 ∈ R such that

lim
t→+∞ sup

ξ∈R
|W (ξ + c∗t, t) − φ(ξ − x0)| = 0.

Proof Lemma 2.1 shows that F(t) ∈ [F0, 1) ⊂ [F1, 1) if F0 ∈ [F1, 1) and F(t) ∈ (1, F2] if
F0 ∈ (1, F2]. Note that φ(ξ) ≡ 0 for all ξ ≥ 0, and φ(ξ) > 0 for all ξ < 0. It suffices for
sub-solutions to prove that for any t > 0 and x < G(t),

F ′(t)φ(η) − F(t)φ′(η)G ′(t) − Fm(t)(φm)′′(η) − f (F(t)φ(η)) ≤ 0, (2.10)

where η := x − G(t) < 0. Since φ(ξ) is a sharp traveling wave, satisfying (1.3), substituting
(1.3) into (2.10), we see (2.10) is equivalent to

F ′(t)φ(η) − (F(t)G ′(t) − c∗Fm(t))φ′(η) + Fm(t) f (φ(η)) − f (F(t)φ(η)) ≤ 0.

According to the differential system (2.2), (2.10) is further transformed into

ε1F(t)(1 − F(t))φ(η) + ε2F(t)(1 − F(t))φ′(η) + Fm(t) f (φ) − f (F(t)φ(η)) ≤ 0,

which is valid according to Lemma 2.7 since

ε1F(t)(1 − F(t))φ(η) + ε2F(t)(1 − F(t))φ′(η) + Fm(t) f (φ) − f (F(t)φ(η))

=(1 − F(t)) · (ε1F(t)φ(η) + ε2F(t)φ′(η) − H(F(t), φ(η))) ≤ 0,

for F(t) ∈ [F1, 1)with F0 ∈ [F1, 1). It follows that W (x, t) is a sub-solution if F0 ∈ [F1, 1).
The above inequality is reversed for F(t) ∈ (1, F2] with F0 ∈ (1, F2] such that W (x, t)
corresponds to super-solutions.

The convergence follows from Lemma 2.1 such that

lim
t→+∞ sup

ξ∈R
|W (ξ + c∗t, t) − φ(ξ − x0)|

= lim
t→+∞ sup

ξ∈R
|F(t)φ(ξ + c∗t − G(t)) − φ(ξ − x0)|

≤ lim
t→+∞ sup

ξ∈R
(|(F(t) − 1)φ(ξ + c∗t − G(t))| + |φ(ξ + c∗t − G(t)) − φ(ξ − x0)|

)
≤ lim

t→+∞ |F(t) − 1| + lim
t→+∞ sup

ξ∈R
|φ(ξ + c∗t − G(t)) − φ(ξ − x0)|

=0,

since limt→+∞ F(t) = 1 and limt→+∞(G(t) − c∗t) = x0. The proof is complete. ��

Lemma 2.9 Let F(t) and G(t) be the solutions in Lemma 2.1 with initial data (F0, G0). Then
there exists a function ω(·) ≥ 0 such that

|G(t) − c∗t − G0| ≤ ω(|F0 − 1|), lim
F0→1

ω(|F0 − 1|) = 0.

Proof This is proved in the proof of Lemma 2.5 in [32]. Note that the above properties only
depend on the ordinary differential system (2.2), which is valid here. ��

The last step is to confirm the global L∞ stability result.
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Lemma 2.10 Let u(x, t) be the solution of the Cauchy problem (1.1) with initial data u0

satisfying (1.4). Then there exists a x0 ∈ R such that u(x, t) converges to φ(x − c∗t − x0)
in the sense that for any 0 < ε < 1, there exists T > 0 such that

(1 − ε)φ(ξ − x0 + ε) ≤ u(ξ + c∗t, t) ≤ (1 + ε)φ(ξ − x0 − ε), (2.11)

for all t ≥ T and ξ ∈ R.

Proof The global L∞ stability result for mono-stable Fisher-KPP reaction such that f (u) =
u p − uq with 1 ≤ p < min{m, q} was first proved by Z. Biró in [25]. For general mono-
stable Fisher-KPP reaction f (u) satisfying growth condition (2.1), the L∞ stability result
was proved byXu et al. [32]. Herewe show that the L∞ stability result is valid for combustion
reaction f satisfying (1.2) once the sub- and super-solutions with semi-compact supports are
constructed as in Lemma 2.8.

For any u0 satisfying (1.4), let F1 and F2 be the constants as defined in (2.3). There exist
sub- and super- solutions in the form

W (x, t) := F(t)φ(x − G(t)), W (x, t) := F(t)φ(x − G(t)),

where F(t) and G(t) are solutions to problem (2.2) in Lemma 2.1 with initial data F(0) = F2

and G(0) = x2, similarly, F(t) and G(t) are solutions to problem (2.2) with initial data
F(0) = F1 and G(0) = x1, such that

W (x, 0) < u0(x) < W (x, 0). (2.12)

It is achieved for x1, x2 chosen appropriately. Therefore, Lemma 2.7 shows that W (x, t)
and W (x, t) are sub- and super-solutions to the equation (1.1), which together with the
comparison of initial data (2.12) imply that W (x, t) and W (x, t) are sub- and super-solutions
to the Cauchy problem with initial data u0(x).

According to Lemma 2.1, both G(t) − c∗t and G(t) − c∗t converge to some points ξ∗
1

and ξ∗
2 and lie in a bounded interval [ξ1, ξ2]. It follows from the comparison with the sub-

and super-solutions W (x, t) and W (x, t) that

F(t)φ(ξ − ξ1) ≤ u(ξ + c∗t, t) ≤ F(t)φ(ξ − ξ2), t > 0, ξ ∈ R, (2.13)

which provides bounds of the free boundary in the moving coordinates.
Applying the compactness arguments, we can show the convergence of u(x, t) to the

sharp wave φ(x − c∗t − x0) with a shift. The proof is quite similar to the proof in [25] and
also the proof of Lemma 2.6 in [32]. So we only sketch the outline and omit the details.
Denote z(ξ, t) := u(ξ + c∗t, t) in the moving coordinates. For any sequence {tn} with
limn→∞ tn = +∞, denote zn(ξ) := u(ξ + c∗tn, tn). The uniform estimate (2.13) implies
that

F(tn)φ(ξ − ξ1) ≤ zn(ξ) ≤ F(tn)φ(ξ − ξ2),

which means

zn(ξ) − 1 ≤ (zn(ξ) − φ(ξ − ξ2)) + (φ(ξ − ξ2) − 1) ≤ C1e
−β1tn + C2e

−β2|ξ |, (2.14)

and similarly

zn(ξ) − 1 ≥ (zn(ξ) − φ(ξ − ξ1)) + (φ(ξ − ξ1) − 1) ≥ −C3e
−β3tn − C4e

−β4|ξ |, (2.15)
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for some positive constants Ci and βi , i = 1, 2, 3, 4, independent of n. The compactness
arguments in Cα(R), together with the above uniform asymptotic behavior (2.14) and (2.15),
show the existence of a function z(ξ) ∈ Cα(R) and a convergent subsequence of {zn}, denoted
by {zn} itself for simplicity, such that

lim
n→∞ sup

ξ∈R
|zn(ξ) − z(ξ)| = 0. (2.16)

There exists θn ∈ (tn, tn+1) such that {z(ξ, θn)} converges to the unique sharp traveling wave
φ(ξ − x0) with some shift x0, and the free boundary of z(ξ, θn), denoted by ζn , converges to
x0,

lim
n→∞ ζn = x0, lim

n→∞ sup
ξ∈R

|z(ξ, θn) − φ(ξ − x0)| = 0. (2.17)

Lemma4of [25] shows that the closeness of boundaries (|ζn−x0|being sufficiently small) and
the L∞ convergence of function sequences (supξ∈R |z(ξ, θn)−φ(ξ − x0)| being sufficiently
small) imply the uniform similarity in shape, i.e., for any ε∗ > 0, there exists δ > 0 such
that

(1 − ε∗)φ(ξ − x0 + ε∗) ≤ z(ξ, θn) ≤ (1 + ε∗)φ(ξ − x0 − ε∗),

provided that |ζn −x0| ≤ δ and supξ∈R |z(ξ, θn)−φ(ξ−x0)| ≤ δ. Actually, this is true for any
bounded monotone function with sharp edge. Starting from time T = θn , we construct weak
sub- and super-solutions in the same form as in Lemma 2.8 but with more accurate amplitude
F(t) and free boundary G(t). We may take ε∗ > 0 smaller, such that ε∗ +ω(ε∗) < ε, where
ω(·) is the function in Lemma 2.9. Lemma 2.9 shows that if the amplitude F(t) is sufficiently
close to 1, then the bound of the evolution of the free boundary |G(t) − c∗t − G0| can be
sufficiently small. Therefore,

(1 − ε)φ(ξ − x0 + ε) < u(ξ + c∗t, t) < (1 + ε)φ(ξ − x0 − ε),

for all t ≥ T . The proof is completed. ��
Proof of Theorem 1.1. This is proved in Lemma 2.10. ��
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