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Abstract
We are concerned with a class of degenerate diffusion equations with time delay describ-
ing population dynamics with age structure. In our recent study [Nonlinearity, 33 (2020),
4013–4029], we established the existence and uniqueness of critical traveling wave for the
time-delayed degenerate diffusion equations, and obtained the reducing mechanism of time
delay on critical wave speed. In this paper, we now are able to show the asymptotic spreading
speed and its coincidence with the critical wave speed c∗(m, r) of sharp wave, and prove
that the initial perturbation or the boundary of the compact support of the solution propa-
gates at the critical wave speed c∗(m, r) for the time-delayed degenerate diffusion equations.
Remarkably, different from the existing studies related to spreading speeds, the time delay
and the degenerate diffusion lead to some essential difficulties in the analysis of the spreading
speed, because the time delay makes the critical speed of traveling waves slow down in a
more complicated fashion such that the critical speed cannot be determined by the charac-
teristic equation, and the degenerate diffusion causes the loss of regularity for the solutions.
By a phase transform technique we construct upper and lower solutions with semi-compact
supports and then we determine the asymptotic spreading speed. Furthermore, we propose a
brand-new sharp-profile-based difference scheme to handle large variation of degenerate dif-
fusion (um)xx near the sharp edge and carry out some numerical simulations which perfectly
confirm our theoretical results.

Keywords Degenerate diffusion · Time delay · Spreading speed · Sharp waves

Mathematics Subject Classification 35K65 · 35K57 · 35C07 · 35B40 · 92D25

B Shanming Ji
jism@scut.edu.cn

1 School of Mathematics, South China University of Technology, Guangzhou 510641, People’s
Republic of China

2 Department of Mathematics, Champlain College Saint-Lambert, Quebec J4P 3P2, Canada

3 Department of Mathematics and Statistics, McGill University, Montreal, Quebec H3A 2K6, Canada

4 School of Mathematical Sciences, South China Normal University, Guangzhou 510631, People’s
Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-022-10182-x&domain=pdf
http://orcid.org/0000-0001-5673-4327


Journal of Dynamics and Differential Equations

1 Introduction

We consider the following degenerate diffusion equation with time delay
⎧
⎨

⎩

∂u

∂t
= �um − d(u) + b(u(t − r , x)), x ∈ R

n, t > 0,

u(s, x) = u0(s, x), x ∈ R
n, t ∈ [−r , 0],

(1.1)

where the spatial dimension n ≥ 1, u(t, x) denotes the total mature population of the species
at location x and time t > 0, r ≥ 0 is the maturation time, b(u(t−r , x)) is the birth function,
d(u) is the death rate function. The equation (1.1) describes the population dynamics of
single species with age-structure and density-dependent diffusion (m > 1).

The positive density dependence on emigration has been predicted by many theoretical
models and confirmed empirically in various species with age structure [12, 25, 27]. Time
delays arise from the passage through sequential demographic phases in the species’ life
cycle [29]. Hence, time delay and nonlinear dispersal are both inextricably mechanism in
population dynamics. For example, butterflies, the most popular age-structured species for
dispersal studies, have been reported increased emigration at high population densities [27].
Positive density-dependent dispersal is particularly beneficial for females, because it allows
laying the egg-load in less crowded patches to help their offspring avoiding severe intra-
specific competition in the larval period.

In the linear diffusion casewithout time delay, (i.e., r = 0 andm = 1), the equation (1.1) is
reduced to the Fisher andKolmogorov-Petrovsky-Piskunov (KPP) equation [13, 17]. It is well
known that there exists a critical (minimal admissible)wave speed c∗ = 2

√
b′(0) − d ′(0) > 0

(under certain conditions on the functions b(·) and d(·)) for all the travelingwaves connecting
the two constant equilibria 0 and κ > 0, and the level set �ε(t) := {x ∈ R

n; u(t, x) = ε}
with ε ∈ (0, κ) asymptotically propagates at the same speed c∗ [4, 33]. It was Thieme
and Zhao [30] who first established the theory of asymptotic spreading speed for a large
class of nonlinear integral equations, which covers many time-delayed reaction and diffusion
equationswith linear diffusion (i.e., r > 0 andm = 1). Liang andZhao [21] further developed
the theory of spreading speeds to both discrete and continuous time monotone semiflows and
investigated the application to a time-delayed evolution equation. In a series of works (e.g.
[19, 38, 39]), Zhao and his collaborators investigated the traveling waves and spreading
speeds of population dynamics model with nonlocal dispersal. Studies of the coincidence of
the spreading speed with the critical wave speed for various evolution systems with linear
diffusion systems can also be found in [9, 10, 18, 20–22, 24, 30, 40].

When the degenerate diffusion is included, the system can be used to describe biolog-
ical population dynamics with density-dependent dispersal; see for instance [15, 25]. An
interesting peculiarity of degenerate diffusion is the appearance of sharp type waves at the
asymptotic speed [8, 31, 32]. For the case without time delay (r = 0), traveling wave solu-
tions have been found by several authors [1, 2, 11, 14, 28]. Medvedev et al. [23] proved that
the slowest traveling wave in the family yields the asymptotic speed of the propagation of
disturbances in a class of degenerate Fisher-KPP equations. In recent works [5–7], more gen-
eral cases of doubly nonlinear diffusion are considered, which includes both porous medium
and p-Laplacian models.

An increasing attention has been paid to degenerate diffusion equations with time delay in
order to study the effects of degenerate diffusion and time delay on the evolutionary behavior
of biological systems with age structure (see [16, 34, 35, 37]). The existence of smooth
monotone fronts for equations (1.1) with small time delay was proved by Huang et al. [16]
based on a perturbation approach. In our recent works [34, 35], we proved that the time-
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delayed degenerate diffusion equation (1.1) admits a unique sharp type (semi-compactly
supported) traveling wave φ(x + c∗t) for the one dimensional case, which corresponds to
the minimal admissible (critical) wave speed c∗ = c∗(m, r). Moreover, the time delay slows
down the minimal wave speed, i.e., c∗(m, r) < c∗(m, 0) for r > 0. However, the asymptotic
speeds of spreading for solutions with compactly supported initial data and the coincidence
with the critical wave speed of sharp traveling wave still remain open. In this paper, we shall
answer those questions on the spreading properties.

Time delay and degenerate diffusion lead to essential difficulties in the analysis of the
spreading speed of (1.1). In the absence of time delay, the maximum principle and phase
plane analysis proposed by Aronson and Weinberger [3, 4] yield conclusions about the
asymptotic propagation speed of the linear diffusion and similar equations. This method
was extended to cover degenerate diffusion equations of general Fisher-KPP sources without
time delay by Medvedev et al. in [23], where all the trajectories in the phase plane are
determined and correspond to special upper and lower solutions.However, time delay changes
the situation dramatically. It was shown in [35] that the time delay reduces the critical wave
speed c∗(m, r) and the speed is not characterized by the classical phase plane analysismethod.
In order to construct upper and lower solutions with compact (or semi-compact) supports and
with propagating speed approaching c∗(m, r), we employ a new phase transform technique
developed in [35] and utilize the monotone dependence in the phase space, see the phase
comparison principle Lemma 2.3 in this paper. Especially, we need to treat the lower solutions
technically in two ways: first, we show that the support of u(t, ·) expands to including any
given compact subset for large time; and secondly, the value of u(t, x) within given compact
subset grows up as time increases.

The purpose of this paper is to study the propagation speed for the equation (1.1). The
main issue of the paper is to show that the initial perturbation or the boundary of the compact
support of the solution propagates at the critical wave speed c∗(m, r) for the time-delayed
degenerate diffusion equation (1.1). Different from the existing studies related to spreading
speeds, the time delay and the degenerate diffusion lead to some essential difficulties in the
analysis of the spreading speed, because the time delay makes the critical speed of traveling
waves slow down in a more complicated fashion, and the degenerate diffusion causes the loss
of regularity for the solutions. This main result will be proved in Sect. 2. Sect. 3 is devoted to
numerical computations. Since the variation of the degenerate diffusion (um)xx may be large
near the sharp edge, the traditional numerical schemes are failed in the case with moving
sharp-edge. Here, we propose a brand new numerical algorithm, called the sharp-profile-
based difference scheme, and use this scheme to carry out some numerical simulations in
different cases, which are accurate and stable in the sense of numerical performance, and
also perfectly illustrate our theoretical results.

In the end of this section, we are going to state our main theorems on the propagation
speed for the time-delayed degenerate-diffusion equations (1.1). A function u(t, x) is said
to be compactly supported for t ∈ [t1, t2], if supp u(t, ·) is compact for t ∈ [t1, t2]. For the
sake of convenience, we define the half space divided by the hyperplane through a point x0
that has normal vector ν as

	(x0, ν) := {x ∈ R
n; (x − x0) · ν ≥ 0}. (1.2)

A function u(t, x) is said to be semi-compactly supported for t ∈ [t1, t2], if
supp u(t, ·) ⊂ 	(x(t), ν(t)) = {x ∈ R

n; (x − x(t)) · ν(t) ≥ 0}
for t ∈ [t1, t2]with some points x(t) and the unit vectors ν(t). For any variable s, the positive
value of s, denoted by s+, is defined as s+ = max{s, 0}.
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Throughout this paper, we assume that the functions d(s) and b(s) satisfy the following
conditions:

There exist u1=0, u2 > 0 such that d, b ∈ C2([0,+∞)), d(0)=b(0) = 0, d(u2) = b(u2),

(b(s) − d(s)) · (s − u2) < 0,∀s ∈ (0,+∞)\{u2}, b′(0) > d ′(0) ≥ 0, d ′(s) ≥ 0, b′(s) ≥ 0.
(1.3)

Here, u1 = 0 and κ := u2 > 0 are two constant equilibria of (1.1), and the functions b(u),
d(u) are both non-decreasing.

We first recall the properties of the sharp type traveling wave obtained in our previous
study [35].

Theorem 1.1 ([35])Foranym > 1andr ≥ 0, the time-delayeddegenerate diffusion equation
(1.1) admits a unique (up to shift) sharp type (semi-compactly supported) traveling wave
u∗(t, x) = φ∗(x · ν + c∗t) with a unique speed c∗ = c∗(m, r) > 0 and unit vector ν such
that:

(i) supp u∗(t, ·) = 	(−c∗tν, ν), φ∗(ξ) is monotone increasing and φ∗(+∞) = κ;
(ii) c∗(m, r) is the minimal admissible (or critical) traveling wave speed;
(iii) c∗(m, r) < c∗(m, 0), i.e., the time delay slows down the critical traveling wave speed.

If the initial data u0(s, x) are compactly supported (or semi-compactly supported) in a
direction ν ∈ S

n−1, say supp u0(s, ·) ⊂ 	(x0, ν) for example, it is expected that the solution
u(t, x) is compactly supported (or semi-compactly supported) in this direction for all the
time since the diffusion of the equation (1.1) is degenerate. The solution u(t, x) together
with its support supp u(t, ·) expands toward opposite ν direction. In what follows, we always
assume that c∗(m, r) > 0 is the critical (minimal admissible) wave speed of traveling waves
and also is the wave speed of the unique sharp type (semi-compactly supported) traveling
wave of (1.1) shown by Theorem 1.1. Now we present the following large time propagation
speed of the solution with compact (or semi-compact) support.

Theorem 1.2 Let u(t, x) be the solution of (1.1) with bounded and continuous initial data
u0(s, x) for s ∈ [−r , 0] satisfying

supp u0(s, ·) ⊂ 	(x0, ν), u0(s, x) ≥ φ0((x − x0) · ν), (1.4)

where φ0(η) with η = (x − x0) · ν is a non-negative, continuous and non-trivial function.
Then for any 0 < c1 < c∗(m, r) < c2, and any 0 < κ1 < κ < κ2, there exist a time
T = T (c1, c2, κ1, κ2) > 0 and two functions φ1(·) and φ2(·) with semi-compact supports,
such that

φ1((x − x0) ·ν + c1t) ≤ u(t, x) ≤ φ2((x − x0) ·ν + c2t), ∀(x − x0) ·ν ≤ 0, t ≥ T , (1.5)

and

suppφ1(·) = suppφ2(·) = 	(x0, ν), lim
η→+∞ φ1(η) ≥ κ1, lim

η→+∞ φ2(η) ≤ κ2.

Therefore,

	(x0 − c1t, ν) ∩ 	(x0,−ν) ⊂ supp u(t, ·) ⊂ 	(x0 − c2t, ν), t ≥ T . (1.6)

Corollary 1.1 Under the condition of Theorem 1.2, there holds

lim
t→+∞ inf

x∈Rn , u(t,x)>0

(x − x0) · ν

t
= −c∗(m, r),
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and

lim
t→+∞ sup

x∈	(x0,−ν), u(t,x)=0

(x − x0) · ν

t
= −c∗(m, r).

Additionally, for any x ∈ R
n, it holds

lim
t→+∞ u(t, x − ctν) =

{
κ, if c < c∗(m, r),

0, if c > c∗(m, r).
(1.7)

Theorem1.2 implies that, the solutionwith non-trivial and non-negative initial data that are
compactly supported in one direction (or compactly supported for the one dimensional case)
propagates at the same speed as the sharp type traveling wave, which is the minimal wave
speed of all the traveling waves. Particularly for the one dimensional case, any compactly
supported initial perturbation remains compact and the boundary propagates at asymptotic
speed c∗(m, r).

2 Proof of TheMain Results

Before proving ourmain results,we present the definition ofweak solutions since the equation
(1.1) is degenerate.

Definition 2.1 A function u ∈ L2
loc((0,+∞) × R

n) with n ≥ 1 is called a weak solution of
(1.1) if 0 ≤ u ∈ L∞((0,+∞) × R

n), ∇um ∈ L2
loc((0,+∞) × R

n), and for any T > 0 and
ψ ∈ C∞

0 ((−r , T ) × R
n)

−
∫ T

0

∫

Rn
u(t, x)

∂ψ

∂t
dxdt +

∫ T

0

∫

Rn
∇um · ∇ψdxdt +

∫ T

0

∫

Rn
d(u(t, x))ψdxdt

=
∫

Rn
u0(0, x)ψ(0, x)dx +

∫ max{T ,r}

r

∫

Rn
b(u(t − r , x))ψ(x, t)dxdt

+
∫ min{T ,r}

0

∫

Rn
b(u0(t − r , x))ψ(x, t)dxdt .

The weak upper and lower solutions are defined in a similar way (for non-negative test
functions) such that the “=” is replaced by “≥” and “≤” respectively.

For the time-delayed Cauchy problem (1.1), we would like to explain the solvability and
comparison principle here. For 0 < t ≤ r , the birth function b(u(t − r , x)) is already known
according to the initial data u0(t−r , x). In other words, the last two integrals in the Definition
2.1 are already known and no time-delayed terms exist. Therefore, the Cauchy problem (1.1)
for 0 < t ≤ r is equivalent to the following problem without time delay

⎧
⎨

⎩

∂u

∂t
= �um − d(u) + f (t, x), x ∈ R

n, 0 < t ≤ r ,

u(0, x) = u0(0, x), x ∈ R
n,

(2.1)

where f (t, x) = b(u0(t − r , x)). The existence of solutions for the Cauchy problem (2.1)
can be formulated by the compactness method. In fact, we consider the following auxiliary
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problem on bounded domain 
 ⊂ R
n

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
= �um − d(u) + f (t, x), x ∈ 
, 0 < t ≤ r ,

u(t, x) = u0(0, x), x ∈ ∂
, 0 < t ≤ r ,

u(0, x) = u0(0, x), x ∈ 
.

(2.2)

The solvability (locally for t ∈ (0, r ]) and comparison principle of (2.2) are proved in
Theorem 5.14 in [31] for this type of Dirichlet problem with non-zero boundary data (the
proof can be modified to cover the case with death rate function d(u) since it is C2 smooth).
Utilizing the compactness analysis,we can deduce the existence of the solution for theCauchy
problem (2.1). The comparison principle for (2.1) is proved in a similar way as Proposition
9.1 in [31], noticing that the inhomogeneous term f (t, x) is cancelled for comparison. The
above observation is valid for t ∈ (r , 2r ], t ∈ (2r , 3r ], and so on, since once the problem
(1.1) is solved for t ∈ (0, r ], the time-delayed term b(u(t−r , x)) is known for t ∈ (r , 2r ] and
the Cauchy problem (1.1) is reduced to the same problem as (2.1). Furthermore, observing
that u := 0 and u := max{κ, ‖u0‖L∞([−r ,0]×Rn)} are weak lower and upper solutions of
(1.1) respectively, we see that the local solution u(t, x) of (1.1) is uniformly bounded. The
regularity of u(t, x) can be deduced by the standard energy method for parabolic equations,
thus the local solution u(t, x) can not blow up in finite time and then exists globally.

We are interested in the propagation speed of the solutions. We assume that u0(s, x)
for s ∈ [−r , 0] is non-trivial, non-negative, bounded and continuous, therefore the Cauchy
problem (1.1) can be solved step by step such that u(t, x) is non-negative, bounded and
continuous on x ∈ R

n and t ∈ [−r ,+∞). Moreover, the comparison principle holds for the
Cauchy problem (1.1) and the initial boundary value problem on bounded domain since the
time-delayed source b(u(t − r , x)) is monotone increasing with respect to u(t − r , x). We
shall prove that for large time scale the average speed of propagation is consistent with the
sharp type traveling wave speed.

The sharp type traveling wave is the typical solution that is semi-compactly supported and
propagates at a positive and finite speed c∗(m, r). In order to show the large time propagation
speed of general solutions with compact (or semi-compact) supports, we need to construct
upper and lower solutions with compact (or semi-compact) supports and propagating at speed
near c∗(m, r). The case of r = 0 (no time delay) is proved by the phase-plane analysis, where
all the trajectories are determined and correspond to special upper and lower solutions, see
[23] and the references therein. Here we say that the trajectories are determined for non-
delayed case in order to emphasize that the trajectories passing through any non-stationary
point are uniquely determined; while this is not true for time-delayed case since the reaction
term is a non-local effect and the equation cannot be regarded as a classical dynamic system.
For the time-delayed case (r > 0), we need to employ a new phase transform approach
developed in [35].

Consider the following “traveling wave” type special function defined for any c > 0 and
k ≥ κ

ukc(t, x) := φk
c (x · ν + ct) = φk

c (ξ), with ξ := x · ν + ct, (2.3)

such that
φk
c (ξ) = 0, ∀ξ ≤ 0, φk

c (ξ) ∈ (0, k), ∀ξ ∈ (0, ξ kc ), (2.4)

for some ξ kc ∈ (0,+∞]. Note that the sharp type traveling wave φ∗(ξ) in Theorem 1.1 is
a traveling wave type special function φκ

c∗(ξ) corresponding to the critical traveling wave
speed c∗ = c∗(m, r). As proved in [35], c∗ is the unique speed and φ∗ is the unique function
such that φ∗ satisfies (2.3), (2.4), and the time-delayed degenerate diffusion equation (1.1)1.
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Therefore, we only expect that φk
c is a local solution of (1.1)1 near the boundary ξ = 0 for

c �= c∗. Actually, this is solved through a delayed iteration scheme as follows.
The traveling wave type function φk

c (ξ) defined by (2.3) and (2.4) is a local solution of
(1.1)1 on ξ ∈ (−∞, ξ kc ) with ξ kc ∈ (0,+∞] if

{
c(φk

c )
′(ξ) = ((φk

c )
m(ξ))′′ − d(φk

c (ξ)) + b(φk
c (ξ − cr)), ξ ∈ (−∞, ξ kc ),

φk
c (ξ) = 0, ∀ξ ≤ 0, φk

c (ξ) ∈ (0, k), ∀ξ ∈ (0, ξ kc ).
(2.5)

The local solvability of the degenerate second order differential equation (2.5) is proved
in the following lemma.

Lemma 2.1 For any c > 0 and k ≥ κ , the degenerate problem (2.5) admits a unique local
solution φk

c (ξ) on (−∞, ξ kc ) with ξ kc ∈ (0,+∞] (we may assume that (−∞, ξ kc ) is the
maximal existence interval) such that

φk
c (ξ) =

( (m − 1)c

m
ξ
) 1

m−1

+ + o(|ξ | 1
m−1 ), ξ → 0.

Moreover, (a) φk
c (ξ) is strictly increasing on (0, ξ kc ) and φk

c (ξ
k
c ) = k, or (b) φk

c (ξ) is not
strictly increasing on (0, ξ kc ) and φk

c (ξ
k
c ) = 0. For the case (b), there holds ξ kc < +∞ and

there exists a ξ̂ kc ∈ (0, ξ kc ) such that φk
c (ξ) is strictly increasing on (0, ξ̂ kc ) and decreasing

on (ξ̂ kc , ξ kc ).

Proof Note that φk
c is semi-compactly supported and the time-delayed source function

b(φk
c (ξ − cr)) = 0 if ξ ≤ cr . Therefore, (2.5) is locally reduced to the following equa-

tion {
cφ′

c(ξ) = (φm
c (ξ))′′ − d(φc(ξ)), ξ ∈ (−∞, cr),

φc(ξ) = 0, ∀ξ ≤ 0, φc(ξ) > 0, ∀ξ ∈ (0, cr),
(2.6)

whose unique solvability is proved in [35, 37] and the solution is denoted by φc. Lemma
3.1 (and its proof) in [37] shows the locally asymptotical behavior of φc(ξ) near zero and
the strictly increasing monotonicity of φc(ξ) in (0, cr). If φc(cr) ≥ k, then ξ kc = sup{ξ ∈
(0, cr);φc(ξ) < k}. If φc(cr) < k, then we solve (2.5) on (cr , 2cr) as

{
cφ′

c(ξ) = (φm
c (ξ))′′ − d(φc(ξ)) + b(φc(ξ − cr)), ξ ∈ (cr , 2cr),

φc(cr), φ′
c(cr) are determined from left side.

(2.7)

The problem (2.7) is locally solved near cr since φc(cr) > 0 and b(φc(ξ − cr)) is already
known from (2.6). Then three cases may happen:

(i) φc(ξ) is not strictly increasing on whole (cr , 2cr), which means there exists a ξ0 ∈
(cr , 2cr) such that φ′

c(ξ0) ≤ 0. We employ Lemma 3.5 in [35] to derive that φc(ξ) is
always decreasing after ξ0 until reaching zero for ξ > ξ0. If φc(ξ) > 0 for all ξ ∈
(cr , 2cr), then we solve (2.5) further on (2cr , 3cr) and the intervals after this in a similar
way as (2.7) until φc(ξ1) = 0 for some ξ1 > ξ0 > cr . In this case, ξ kc = sup{ξ >

cr;φc(ξ) > 0} and φc(ξ
k
c ) = 0. The assertion ξ kc < +∞ is proved in a similar way as

the proof of Lemma 3.5 in [37].
(ii) φc(ξ) is strictly increasing on (cr , 2cr) and φc(2cr) ≥ k, then ξ kc = sup{ξ ∈

(cr , 2cr);φc(ξ) < k} and φc(ξ
k
c ) = k.

(iii) φc(ξ) is strictly increasing on (cr , 2cr) and φc(2cr) < k, then we solve (2.5) further on
(2cr , 3cr) and the intervals after this until (i) or (ii) happens. Otherwise, φc(ξ) is strictly
increasing and (2.5) is solved on (−∞,+∞) such that ξ kc = +∞ and φc(ξ

k
c ) = k. This
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happens for c = c∗ and k = κ since φ∗(ξ) = φκ
c∗(ξ) is the unique sharp type traveling

wave. ��
In order to show more precise behaviors of φk

c , we employ the following phase transform
approach and formulate phase comparison principle. For any c > 0 and k ≥ κ , let φk

c (ξ)

be the unique solution of the degenerate problem (2.5) on its maximal existence interval
(−∞, ξ kc ) with ξ kc ∈ (0,+∞] as shown in Lemma 2.1, and let ξ̂ kc ∈ (0, ξ kc ] be the largest
number (or equivalently, (0, ξ̂ kc ) be themaximal interval) such that φk

c (ξ) is strictly increasing
on (0, ξ̂ kc ). Define (here we do not explicitly write down the dependence of ψc(ξ) on k for
simplicity)

ψc(ξ) := ((φk
c )

m(ξ))′ = m(φk
c )

m−1(ξ) · (φk
c )

′(ξ), ξ ∈ (0, ξ̂ kc ). (2.8)

Now we have two functions φk
c (ξ) and ψc(ξ) defined for ξ ∈ (0, ξ̂ kc ), and φk

c (ξ) is strictly
increasing on (0, ξ̂ kc ), then we can interpret ψ = ψc(ξ) as a function of φ = φk

c (ξ) through
the intermediate variable

ξ = (φk
c )

−1(φ), φ ∈ (0, φk
c (ξ̂

k
c )).

That is, we rewrite

ψ̃c(φ):=ψc(ξ)=ψc((φ
k
c )

−1(φ)), φ ∈ (0, φk
c (ξ̂

k
c )). (2.9)

A key transform in dealing with the time delay in the degenerate diffusion equation (2.5) is
to rewrite φk

c (ξ − cr) as a function of φ = φk
c (ξ) depending on ψ̃c(φ) in a functional way:

φc,cr (φ) := φk
c (ξ − cr) = φk

c ((φ
k
c )

−1(φ) − cr) = inf
θ≥0

{ ∫ φ

θ

msm−1

ψ̃c(s)
ds ≤ cr

}
, φ ∈ (0, φk

c (ξ̂
k
c )).

(2.10)

Lemma 2.2 (Phase transform) The functional interpretation (2.10) is well-defined for the
sharp type functions φk

c (ξ) for φ ∈ (0, φk
c (ξ̂

k
c )).

Proof We divide the proof into two cases.
Case I. If for some φ = φk

c (ξ) with ξ ∈ (0, ξ̂ kc ) and φ ∈ (0, φk
c (ξ̂

k
c )) there holds

∫ φ

0

msm−1

ψ̃c(s)
ds > cr ,

then we rewrite the above integral through the method of substitution of s = φk
c (t) for

s ∈ (0, φ) and t ∈ (0, ξ) to find

cr <

∫ φ

0

msm−1

ψ̃c(s)
ds =

∫ ξ

0

m(φk
c )

m−1(t)

m(φk
c )

m−1(t) · (φk
c )

′(t)
(φk

c )
′(t) dt = ξ.

Therefore, ξ − cr > 0 and φc,cr (φ) = φk
c (ξ − cr) is the unique value such that

∫ φ

φc,cr (φ)

msm−1

ψ̃c(s)
ds = cr .

Case II. If for some φ = φk
c (ξ) with ξ ∈ (0, ξ̂ kc ) and φ ∈ (0, φk

c (ξ̂
k
c )) there holds

∫ φ

0

msm−1

ψ̃c(s)
ds ≤ cr ,
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then ξ − cr ≤ 0 and φk
c (ξ − cr) = 0 since φk

c is sharp type such that φk
c (t) ≡ 0 for all

t ≤ 0. ��
Lemma 2.3 (Monotone dependence) For any c > 0 and k ≥ κ , let φk

c (ξ) be the unique
solution of the degenerate problem (2.5) on its maximal existence interval (−∞, ξ kc ) with
ξ kc ∈ (0,+∞] and let ψ̃c(φ) and φc,cr (φ) be the phase transform functions defined by (2.9)
and (2.10). Then for c1 > c2 > 0, there holds

ψ̃c1(φ) > ψ̃c2(φ), ∀φ ∈ (0,min{φk
c1(ξ̂

k
c1), φ

k
c2(ξ̂

k
c2})), (2.11)

and
φk
c1(ξ) > φk

c2(ξ), ∀ξ ∈ (0,min{ξ̂ kc1 , ξ̂ kc2}). (2.12)

Proof The monotone dependence of φk
c (ξ) with respect to c is proved in Lemma 3.6 in [35].

The monotone dependence ψ̃c1(φ) > ψ̃c2(φ) means that

(φk
c1)

′(ξ1) > (φk
c2)

′(ξ2), at where φk
c1(ξ1) = φ = φk

c2(ξ2),

or equivalently,
(φk

c1)
′((φk

c1)
−1(φ)) > (φk

c2)
′((φk

c2)
−1(φ)). (2.13)

In contrast to the comparison between two functions φk
c1(ξ) and φk

c2(ξ) at the same point ξ ,
(2.13) shows the comparison of their derivatives at where they take the same value, hence we
would call it the phase comparison principle. The prototype of (2.13) (and (2.11)) is already
formulated in the proof of Lemma 3.6 in [35]. Here we omit the details. ��

The above monotone dependence is used to construct special upper and lower solutions
at speed near the critical wave speed c∗(m, r).

Lemma 2.4 For any c > c∗(m, r), there exists a number k > κ , such that

u(t, x) := φk
c(ξ) :=

{
φk
c (ξ), ξ < ξ kc ,

k, ξ ≥ ξ kc ,
ξ = x · ν + ct,

is an upper solution of (1.1) with the initial data u0(s, x) := φk
c(x · ν + cs) for s ∈ [−r , 0],

where φk
c (ξ) is the unique solution of the degenerate problem (2.5) on its maximal existence

interval (−∞, ξ kc ) with ξ kc ∈ (0,+∞]. Similarly, for any c ∈ (0, c∗(m, r)),

u(t, x) := φκ
c (ξ) :=

{
φκ
c (ξ), ξ < ξκ

c ,

0, ξ ≥ ξκ
c ,

ξ = x · ν + ct,

is a lower solution of (1.1) with the initial data u0(s, x) := φκ
c (x · ν + cs) for s ∈ [−r , 0],

ξκ
c < +∞, and supξ∈R φκ

c (ξ) < κ . Moreover, for any c ∈ (0, c∗(m, r)),

û(t, x) := φ̂κ
c (ξ) :=

{
φκ
c (ξ), ξ < ξ̂κ

c ,

φκ
c (ξ̂ κ

c ), ξ ≥ ξ̂ κ
c ,

ξ = x · ν + ct,

also is a lower solution of (1.1) with initial data û0(s, x) := φ̂κ
c (x · ν + cs) for s ∈ [−r , 0].

Additionally, it holds

lim
c→(c∗(m,r))−

sup
ξ∈R

φκ
c (ξ) = κ.
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Proof For the critical wave speed c = c∗, the unique solution of the degenerate problem
(2.5) is the sharp traveling wave φ∗(ξ) = φκ

c∗(ξ), and the phase transform function ψ̃c∗(φ)

satisfies ψ̃c∗(φ) > 0 for φ ∈ (0, κ) and ψ̃c∗(0) = ψ̃c∗(κ) = 0.
For any c > c∗, according to the phase comparison principle (2.11) in Lemma 2.3, we

see that for any k > κ , ψ̃c(κ) > ψ̃c∗(κ) = 0, that is, (φk
c )

′((φk
c )

−1(κ)) > 0. We choose
k > κ such that case (a) in Lemma 2.1 occurs, i.e., φk

c (ξ) is strictly increasing on (0, ξ kc ) and
φk
c (ξ

k
c ) = k > κ . Therefore, φk

c is an upper solution of the second order differential equation
(1.1)1.

For any 0 < c < c∗, similar to the above analysis, according to the phase comparison
principle (2.11), we have ψ̃c(φ̂) = 0 < ψ̃c∗(φ̂) for some φ̂ ∈ (0, κ) since ψ̃c∗(κ) = 0.
Therefore, φκ

c (ξ) is increasing up to φ̂ < κ and then decreases to zero, which means Case
(b) in Lemma 2.1 occurs. In this case, we have ξκ

c < +∞ and φκ
c (ξκ

c ) = 0. Then it follows
that φκ

c is a lower solution of the second order differential equation (1.1)1. Furthermore,

û(t, x) = φ̂κ
c (ξ) is a lower solution of (1.1) since φκ

c
′(ξ̂ κ

c ) = 0 at the cut-off edge. The
limit of limc→(c∗(m,r))− supξ∈R φκ

c (ξ) = κ follows from the continuous dependence (see
Lemma 3.4 in [35] for example), the monotone dependence Lemma 2.3, and the fact that
supξ∈R φκ

c∗(m,r)(ξ) = κ . ��
Now we investigate the large-time evolution of the solution with semi-compact support.

Lemma 2.5 Let u(t, x) be the solution of (1.1) with the initial data u0(s, x) semi-compactly
supported and bounded

supp u0(s, ·) ⊂ 	(x0, ν), u0 ∈ L∞([−r , 0] × R
n). (2.14)

Then

lim sup
t→+∞

sup
x∈Rn

u(t, x) ≤ κ.

Proof Consider the following differential problem
{
U ′(t) = −d(U ) + b(U (t − r)), t > 0,

U (s) = U0(s) ≡ ‖u0‖L∞([−r ,0]×Rn), s ∈ [−r , 0]. (2.15)

The large-time asymptotic analysis of the time-delayed ordinary differential equation (2.15)
shows that limt→+∞ U (t) = κ . Based on the comparison principle, and taking U (t) as an
upper solution of (1.1), we have

lim sup
t→+∞

sup
x∈Rn

u(t, x) ≤ lim sup
t→+∞

U (t) = κ.

The proof is completed. ��
Lemma 2.6 Let u(t, x) be the solution of (1.1) with initial data u0(s, x) satisfying

u0(s, x) ≥ φ0((x − x0) · ν), (2.16)

where φ0(η) with η = (x − x0) · ν is a non-negative, continuous and non-trivial function.
Then for any compact subset K ⊂ R

n,

lim inf
t→+∞ inf

x∈K u(t, x) ≥ κ.
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Proof The proof is divided into two steps. The first one is to show that the support of u(t, ·)
expands to including any given compact subset for large time, and the second one is to show
that the value of u(t, x) within given compact subset grows up as time increases.

Step I. Define a Barenblatt type function

g(t, x) = ε(τ + t)−σ
[(

γ 2 − |x − x∗|2
(τ + t)β

)

+

]d
, x ∈ R

n, t ≥ 0,

where d = 1/(m−1),β, σ , ε, γ , and τ are positive constants, x∗ ∈ R
n . Then by appropriately

selecting β, ε, τ , σ , γ , and x∗, the function g(t, x) is a weak lower solution of (1.1) for all
the time t > 0. The detailed calculations can be found in the proof of Lemma 4.4 in [36]. We
note that Lemma 4.4 in [36] was proved for a smooth bounded domain 
, where the weak
lower solution means the differential inequality in the sense of distributions together with
the comparison of initial data and the comparison of boundary value on ∂
. Here for the
Cauchy problem (1.1), the weak lower solution (as defined in Definition 2.1) is equivalent to
the differential inequality in the sense of distributions and the comparison of initial data (no
boundary value is needed). The differential inequality is calculated in the same way and the
comparison of initial data is valid by suitably choosing x∗ and the parameters. Although the

value of g(t, x) is decaying, its support is expanding at a rate as (τ + t)
β
2 for some β > 0.

Therefore, for any given compact subsets K1 ⊂ K2 ⊂ R
n , there exists a time t1 > 0 such

that K2 ⊂ supp u(t, ·) for any t ≥ t1 and inf t∈[t1,t2],x∈K1 u(t1, x) > 0 for any t2 > t1.
We point out here that the above proof of expanding support relies on the construction of

lower solutions of Barenblatt type whose initial data is ετ−σ [(γ 2− |x−x∗|2
τβ )+]d (which could

be small enough) within Bγ τβ/2(x∗) such that the radius γ τβ/2 is chosen to be small and the
center x∗ lies in the positive set of u0(0, x). Note that the initial data condition (2.16) is valid
for the translation perpendicular to the vector ν, i.e., the lower solution can be chosen to be
the same under the translations (perpendicular to the vector ν) of the center x∗. Therefore,
the above proof in Step I is valid for any given subset K that is compact in the ν direction:
K ⊂ 	(x1, ν) ∩ 	(x2,−ν) for some x1, x2 ∈ R

n .
Step II. We assert that for any x̂ ∈ K and any κ̂ < κ , there exist a time t̂ and an open

neighbourhood B(x̂) of x̂ such that u(t, x) ≥ κ̂ for all t ≥ t̂ and x ∈ B(x̂). Then the
assertion lim inf t→+∞ inf x∈K u(t, x) ≥ κ follows from the finite covering theorem. For any
given κ̂ < κ , we define

d̂(s) := d(s) + λ0s

with λ0 > 0 sufficiently small such that b(s) > d̂(s) for all s ∈ (0, κ̂] due to b(s) > d(s)
for all s ∈ (0, κ). That is, the minimal positive equilibrium for b(s) and d̂(s) is located in
(κ̂, κ). Consider the following separated variable function

U (t, x) := (cos(μ0(x − x̂) · ν))
1
m+ · g(t) · χZ (x), (2.17)

with μ0 > 0 and function g(t) > 0 to be determined. Here χZ (x) is the characteristic
function of the zone Z := {x ∈ R

n;μ0(x − x̂) · ν ∈ (−π
2 , π

2 )}. In other words, Z =
	(x̂ + R0 · ν,−ν) ∩ 	(x̂ − R0 · ν, ν) with R0 := π

2μ0
.

We have

�Um(t, x) = −μ2
0(cos(μ0(x − x̂) · ν))+ · gm(t) = −μ2

0U
m(t, x), ∀x ∈ Z , (2.18)
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and the generalized derivative (which is not Lebesgue integrable) satisfies

�Um(t, x) ≥ −μ2
0(cos(μ0(x − x̂) · ν))+ · gm(t) · χZ (x) ≥ −μ2

0U
m(t, x), (2.19)

in the sense of distributions. In fact, for the scalar case such that x ∈ R and ν = 1, x̂ = 0, for
example,Um(t, x) = (cos(μ0x))+ · gm(t) · χZ (x) with Z = (− π

2μ0
, π
2μ0

). We can compute
that the generalized derivatives

∂Um

∂x
= − μ0 sin(μ0x) · gm(t) · χZ (x),

∂2Um

∂x2
= − μ2

0 cos(μ0x) · gm(t) · χZ (x) + μ0 · gm(t) · δ± π
2μ0

,

where δ± π
2μ0

is the Dirac measure at two points ± π
2μ0

. Note that

∂Um

∂x

∣
∣
∣
x=( π

2μ0
)+

= 0 and
∂Um

∂x

∣
∣
∣
x=( π

2μ0
)−

= −μ0 sin(μ0x) · gm(t)
∣
∣
x=( π

2μ0
)− = −μ0 · gm(t) < 0,

and also

∂Um

∂x

∣
∣
∣
x=(− π

2μ0
)−

= 0 and
∂Um

∂x

∣
∣
∣
x=(− π

2μ0
)+

= −μ0 sin(μ0x) · gm(t)
∣
∣
x=(− π

2μ0
)+ = μ0 · gm(t) > 0.

It follows that the singular term in the second order generalised derivative of Um (in one-
dimensional case) is a positive measure supported at two points and thus the differential
inequality (2.19) holds in the sense of distributions. For multi-dimensional case, for any
0 ≤ ψ ∈ C∞

0 ((−r , T )×R
n), let
(t) := {x ∈ R

n;ψ(t, x) > 0}. Without loss of generality,
we assume that ν = (1, 0, · · · , 0) such that Z = (x̂1 − R0, x̂1 + R0) × R

n−1, and then

(t) ∩ Z = {x ∈ R

n; x1 ∈ (x̂1 − R0, x̂1 + R0), ω(x1, x2, · · · , xn) < 0} for some smooth
function ω for simplicity. Further we denote x ′ := (x2, · · · , xn), ∇′ and �′ are derivatives
with respect to x ′ in the following, and compute that

∫

Rn
∇Um · ∇ψdx =

∫


(t)∩Z
∇Um · ∇ψdx

=
∫

(x̂1−R0,x̂1+R0)

∫

[ω(x1,x ′)<0]
∇Um · ∇ψdx ′dx1

=
∫ x̂1+R0

x̂1−R0

∫

[ω(x1,x ′)<0]
∂x1U

m · ∂x1ψdx ′dx1

+
∫ x̂1+R0

x̂1−R0

∫

[ω(x1,x ′)<0]
∇′Um · ∇′ψdx ′dx1. (2.20)

Note that ψ and ∇ψ vanish at the boundary ∂
(t), integration by parts implies that
∫ x̂1+R0

x̂1−R0

∫

[ω(x1,x ′)<0]
∇′Um · ∇′ψdx ′dx1 = −

∫


(t)∩Z
�′Um · ψdx . (2.21)

The above inequality (2.21), valid for general function U , is trivial if one has observed that
here the special function U is independent of x ′. More importantly,
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∫ x̂1+R0

x̂1−R0

∫

[ω(x1,x ′)<0]
∂x1U

m · ∂x1ψdx ′dx1

=
∫


(t)∩Z
∂x1(∂x1U

m · ψ)dx ′dx1 −
∫


(t)∩Z
∂2x1U

m · ψdx ′dx1

=
∫

[ω(x̂1+R0,x ′)<0]
∂x1U

m · ψdx ′ −
∫

[ω(x̂1−R0,x ′)<0]
∂x1U

m · ψdx ′

−
∫


(t)∩Z
∂2x1U

m · ψdx ′dx1

=: I1 + I2 + I3. (2.22)

We point out that left side limit ∂x1U
m < 0 at x1 = (x̂1 + R0)

− and ψ(x) ≥ 0, thus the first
integral I1 in the end of (2.22) is non-positive. The same is true for I2 since the right side
limit ∂x1U

m > 0 at x1 = (x̂1 − R0)
+ and it starts with a minus sign. Therefore, according to

(2.21) and (2.22),

< �Um, ψ >:= −
∫

Rn
∇Um · ∇ψdx

=
∫


(t)∩Z
�′Um · ψdx − I1 − I2 +

∫


(t)∩Z
∂2x1U

m · ψdx ′dx1

≥
∫


(t)∩Z
[�Um]reg · ψdx, (2.23)

where [�Um]reg is the regular part as calculated in (2.18) of the generalized derivative�Um .
Hence the differential inequality (2.19) is valid in the sense of distributions.

Let us choose g(t) ∈ (0, κ) and μ0 = √
λ0/κm−1, then

�Um(t, x) ≥ −μ2
0U

m(t, x) ≥ −μ2
0κ

m−1U (t, x) = −λ0U (t, x).

In order to construct U (t, x) as a lower solution of (1.1) for t > t1 with some T > 0, it
suffices to set

⎧
⎨

⎩

∂U

∂t
≤ −d̂(U ) + b(U (t − r , x)), x ∈ R

n, t > T ,

U (s, x) ≤ u(s, x), x ∈ R
n, s ∈ [T − r , T ].

(2.24)

Therefore, we have

∂U

∂t
≤ −d̂(U ) + b(U (t − r , x))

= −λ0U − d(U ) + b(U (t − r , x))

≤ �Um(t, x) − d(U ) + b(U (t − r , x)),

which is the differential inequality in the sense of distributions for lower solutions. Similar to
the proof of (2.23), the above differential inequality in the sense of distributions is equivalent
to the integral inequality in the definition of lower solutions (the only singular term is <

�Um, ψ > and is realized as the integral of −∇Um · ∇ψ). As to the comparison of the
initial data, we have

U (s, x) ≤ g(s) · χZ (x).

According to Step I, by setting K1 = Z and T = t1 + r , t2 = T , we further have

u(s, x) ≥ inf
t∈[t1,t2],x∈K1

u(t, x) := ε0 > 0, ∀x ∈ Z , s ∈ [T − r , T ].
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It follows that a sufficient condition for (2.24) is
⎧
⎪⎪⎨

⎪⎪⎩

(cos(μ0(x − x̂) · ν))
1
m+ · g′(t)

≤ −d̂((cos(μ0(x − x̂) · ν))
1
m+ · g(t)) + b((cos(μ0(x − x̂) · ν))

1
m+ · g(t − r)), x ∈ Z , t > T ,

g(s) = ε0, s ∈ [T − r , T ], g(t) ∈ (0, κ), t > T ,

(2.25)
or alternatively,

⎧
⎪⎨

⎪⎩

g′(t) ≤ inf
λ∈(0,1)

b(λg(t − r)) − d̂(λg(t))

λ
, t > T ,

g(s) = ε0, s ∈ [T − r , T ], g(t) ∈ (0, κ), t > T .

(2.26)

Note that

lim
λ→0+

b(λs) − d̂(λs)

λ
= b′(0)s − d̂ ′(0)s = b′(0)s − (d ′(0) + λ0)s,

which is strictly increasing for all s > 0 since b′(0) > d ′(0) ≥ 0 (λ0 is sufficiently small),
and b(s) > d̂(s) for all s ∈ (0, κ̂]. There exists a constant δ0 > 0 such that

inf
λ∈(0,1)

b(λs) − d̂(λs)

λ
≥ δ0 > 0, ∀s ∈ [ε, κ̂].

We now solve the following time-delayed ordinary differential equation step by step:
⎧
⎪⎨

⎪⎩

g′(t) = inf
λ∈(0,1)

b(λg(t − r)) − d̂(λg(t))

λ
, t > T ,

g(s) = ε0, t ∈ [T − r , T ].
(2.27)

Firstly, for t ∈ [T , T + r ], we have

g′(T ) = inf
λ∈(0,1)

b(λε0) − d̂(λε0)

λ
≥ δ0 > 0,

which means g(t) is strictly increasing until t ≥ T + r or

inf
λ∈(0,1)

b(λε0) − d̂(λg(t))

λ
= 0. (2.28)

Since there exist two constants C2 ≥ C2 > 0 such that C1g(t) ≤ d̂(λg(t))/λ ≤ C2g(t), the
asymptotic analysis of linear differential inequality shows that (2.28) cannot happen in finite
time. Therefore, g(t) is strictly increasing on [T , T + r ] and

inf
λ∈(0,1)

b(λε0) − d̂(λg(t))

λ
> 0, ∀t ∈ [T , T + r ]. (2.29)

Secondly, for t ∈ [T + r , T + 2r ], we have

g′(T + r) = inf
λ∈(0,1)

b(λg(T )) − d̂(λg(T + r))

λ
= inf

λ∈(0,1)

b(λε0) − d̂(λg(T + r))

λ
> 0,

due to (2.29). It follows that g(t) is strictly increasing until t ≥ T + 2r or

inf
λ∈(0,1)

b(λg(t − r)) − d̂(λg(t))

λ
= 0, (2.30)
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where g(t−r) is already knownas t−r ∈ [T , T+r ]. An asymptotic analysis shows that (2.30)
cannot happen in finite time, especially, in [T +r , T +2r ]. Otherwise, let t∗ ∈ (T +r , T +2r ]
be the minimal time such that (2.30) is valid. Then g′(t) = 0 and b(λg(t − r))/λ is strictly
increasing. Hence there exists a t̂∗ ∈ (T + r , t∗) such that

inf
λ∈(0,1)

b(λg(t − r)) − d̂(λg(t))

λ
< 0, t ∈ (t̂∗, t∗), and inf

λ∈(0,1)

b(λg(t̂∗ − r)) − d̂(λg(t̂∗))
λ

= 0,

which contradicts to the minimality of t∗. Repeating the above arguments, we see that g(t)
is increasing and the minimal positive equilibrium of infλ∈(0,1) (b(λs) − d̂(λs))/λ is greater
than κ̂ . There exists a time t̂ > T such that g(t) > κ̂ for all t ≥ t̂ . Furthermore, by the
comparison principle,

u(t, x) ≥ U (t, x) = (cos(μ0(x − x̂) · ν))
1
m+ · g(t) > (cos(μ0(x − x̂) · ν))

1
m+ · κ̂, t ≥ t̂ .

That is,

u(t, x̂) ≥ U (t, x̂) = g(t) > κ̂, t ≥ t̂ .

Based on the uniformly continuity of (cos(μ0(x − x̂) · ν))+ near x̂ with respect to t , we can
find a neighborhood B(x̂) of x̂ , independent of time, such that u(t, x) ≥ κ̂ , for all x ∈ B(x̂)
and t ≥ t̂ . The proof is complete. ��

Next, in order to get the large time speed of propagation, we are going to prove it by
combining the large time evolution of the solution proved in Lemma 2.5, Lemma 2.6, and
the special upper and lower solutions in Lemma 2.4.

Proof of Theorem 1.2. First of all, from Lemma 2.5 and Lemma 2.6, we have the large time
evolution such that

lim sup
t→+∞

sup
x∈Rn

u(t, x) ≤ κ,

and for any compact subset K ⊂ R
n

lim inf
t→+∞ inf

x∈K u(t, x) ≥ κ.

Note that the initial condition (1.4) is translation invariant in the direction perpendicular to
ν, similar to the proof of Lemma 2.6, for any finite numbers s1 < s2, there holds

lim inf
t→+∞ inf

(x−x0)·ν∈[s1,s2]
u(t, x) ≥ κ.

Without loss of generality,wemay assume thatφ0(η) is symmetric (after shifting if necessary)
with respect to η = 0. Otherwise, we can choose another function with symmetry and
smaller than φ0(η). Then the lower solution u∗(t, x)with the initial data given by u∗

0(s, x) =
φ0((x−x0)·ν) is also symmetricwith respect to η = 0. The propagation properties of u∗(t, x)
at one side of η < 0 is equivalent to the initial boundary value problem with homogeneous
Neumann condition in the half space according to the refection principle.

For any c > c∗(m, r), let ĉ ∈ (c∗(m, r), c) and u(t, x) = φk
ĉ(ξ) with ξ = x · ν + ĉt be

the upper solution of (1.1) corresponding to ĉ > c∗(m, r) as proved in Lemma 2.4. Note that
limξ→+∞ φk

ĉ(ξ) = k > κ , we can change the initial time to some T > 0 such that

sup
x∈Rn

u(t, x) <
k + κ

2
< k, ∀t > T ,
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and then shift u(t, x) = φk
ĉ(ξ) such that the comparison of the initial data is valid. The

comparison principle shows that

lim
t→+∞ u(t, x − ctν) ≤ lim

t→+∞ u(t, x − ctν) = lim
t→+∞ φk

ĉ((x − ctν) · ν + ĉt)

= lim
t→+∞ φk

ĉ(x · ν − (c − ĉ)t) = 0,

since c > ĉ and φk
ĉ(ξ) = 0 for ξ ≤ ξ0, where ξ0 is given after the shifting.

Similarly, for any c < c∗(m, r), let ĉ ∈ (c, c∗(m, r)) and û(t, x) = φ̂κ
ĉ (ξ) with ξ =

x ·ν + ĉt be the lower solution of (1.1) corresponding to ĉ < c∗(m, r) constructed in Lemma
2.4. Since supξ∈R φκ

ĉ (ξ) < κ , we change the initial time to some T > 0 such that

inf
x ·ν∈[−(ξ̂ κ

ĉ +ĉr+1),0]
u(t, x) > sup

ξ∈R
φκ
ĉ (ξ), t ≥ T ,

Note that φ̂κ
ĉ (ξ) = 0 for ξ ≤ 0 and φ̂κ

ĉ (ξ) = φκ
ĉ (ξ̂ κ

ĉ ) for ξ ≥ ξ̂ κ
ĉ , we shift φ̂κ

ĉ (ξ) such that

φ̂κ
ĉ (ξ) = 0 for ξ ≤ −(ξ̂ κ

ĉ + 1) and φ̂κ
ĉ
′(ξ) = 0 for ξ ≥ −1. Therefore, û(t, x) = φ̂κ

ĉ (ξ)

is a lower solution of the corresponding homogeneous Neumann problem (1.1) on the half
space. According to the comparison principle, we have

lim
t→+∞ u(t, x − ctν) ≥ lim

t→+∞ û(t, x − ctν) = lim
t→+∞ φ̂k

ĉ((x − ctν) · ν + ĉt)

= lim
t→+∞ φ̂k

ĉ(x · ν + (ĉ − c)t) = φκ
ĉ (ξ̂ κ

ĉ ),

since ĉ > c. According to Lemma 2.4,

lim
ĉ→(c∗(m,r))−

sup
ξ∈R

φκ
ĉ (ξ) = lim

ĉ→(c∗(m,r))−
φκ
ĉ (ξ̂ κ

ĉ ) = κ,

and ĉ ∈ (c, c∗(m, r)) is arbitrary, we see that limt→+∞ u(t, x − ctν) ≥ κ . Combining this
with the fact that lim supt→+∞ supx∈Rn u(t, x) ≤ κ , we have limt→+∞ u(t, x − ctν) = κ .
The proof is completed. ��

3 Numerical Simulations

This section is devoted to the numerical simulations for the propagation properties of the
degenerate diffusion equation (1.1) with time delay. The most artful part is the numerical
calculation of �um near the sharp edge (i.e., the boundary of the support). For simplicity, we
only consider the 1-dimensional case. We note that the sharp traveling wave φ∗(x + c∗t) is a
typical solution that propagates to the left directionwith fixed speed c∗ > 0 and c∗(r) < c∗(0)
for time delay r > 0 according to Theorem 1.1.

We point out that the classical second order difference scheme

(um)xx
∣
∣
xk

≈ um(t, xk+1) + um(t, xk−1) − 2um(t, xk)

(�x)2
(3.1)

does not work well near the boundary, since the solution of the degenerate equation has sharp
moving edge. In fact, Lemma 2.1 shows that the sharp traveling wave

φ∗(ξ) =
( (m − 1)c∗

m
ξ
) 1

m−1

+ + o(|ξ | 1
m−1 ), ξ → 0. (3.2)
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Therefore, if we take φ∗(x) as the initial data, the solution u(t, x) propagates to the left
direction with the same profile. Remarkably, (um)xx is not continuous near the boundary for
m ≥ 2, hence the second order difference scheme based on the values at nearby discrete
points loses accuracy.

Sharp-profile-based difference scheme. In order to handle the large variation of (um)xx
near the boundary, we propose the following sharp-profile-based difference scheme based on
the expansion of the profile in (3.2).We take the case ofm = 2 for example.Other cases can be
converted to a similar equation of the so-called pressure function v(t, x) := m

m−1u
m−1(t, x).

(i) Besides the partition points x−N < x−N+1 < · · · < x0 < · · · < xN−1 < xN , we
additionally introduce an edge point x̂ ∈ (xk−1, xk] for some −N < k ≤ N depending
on time t such that u(t, x j ) = 0 for j < k and u(t, x j ) > 0 for j > k;

(ii) The second order derivatives (u2)xx
∣
∣
x j

away from the boundary (i.e., for j > k) are

calculated by the classical second order difference scheme (3.1) and (u2)xx
∣
∣
x j

= 0 for

j < k since locally u(t, x) ≡ 0 near x j ;
(iii) For (u2)xx near the boundary, i.e., for (u2)xx

∣
∣
xk
, we use the profile ansatz according to

(3.2)

u(t, x) = c1(x − x̂)+ + c2(x − x̂)2+ + o((x − x̂)2+), x → x̂,

and the values u(t, xk), u(t, xk+1), u(t, xk+2) to fit the coefficients c1 and c2, then

u2(t, x) = c21(x − x̂)2+ + 2c1c2(x − x̂)3+ + o((x − x̂)3+), x → x̂,

such that we calculate (u2)xx
∣
∣
xk

= 2c21 + 12c1c2(xk − x̂)+.
(iv) We compute the values u(t+�t, x j ) according to the equation (1.1), and special attention

should be paid to the values u(t + �t, x j ) near the edge. We use the ansatz

u(t + �t, x) = c′
1(x − x̂ ′)+ + c′

2(x − x̂ ′)2+ + o((x − x̂ ′)2+), x → x̂ ′,

where x̂ ′ is the new edge point, and the new values u(t + �t, xk), u(t + �t, xk+1),
u(t + �t, xk+2) to fit the new coefficients c′

1, c
′
2, and the new edge x̂ ′. If the distance

xk − x̂ ′ is larger than or equal to �x , we modify

u(t + �t, xk−1) = c′
1(xk−1 − x̂ ′)+ + c′

2(xk−1 − x̂ ′)2+,

which means the solution propagates across xk−1 and the values are calculated based on
the edge profile instead of the classical difference scheme based on nearby values.

Testing the sharp-profile-based difference scheme with known profiles. The above
sharp-profile-based scheme works perfectly for the degenerate diffusion equations with and
without time delay. For the non-delayed case, it is known that the following degenerate
diffusion equation with Fisher-KPP source

ut = (u2)xx + u − u2, (3.3)

admits an explicit sharp traveling wave solution u(t, x) = (1− e
−x−t
2 )+, see [26]. Therefore,

the minimal wave speed and the propagation speed is c∗(2, 0) = 1 form = 2 and r = 0 since
the sharp travelingwave is unique (up to translation) according to [35]. Note that c∗(1, 0) = 2
for the non-degenerate case m = 1 and r = 0.

We first take the non-smooth initial value

u0(x) := (1 − e− x
2 )+ (3.4)
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Fig. 1 The sharp-profile-based scheme for degenerate diffusion equations: (left) non-delayed case; (right)
delayed case with the time delay r = 0.1
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Fig. 2 (left) The 3-dimensional image of solution for r = 0.1; (right) The edge point as a function of time
for r = 0, r = 0.1, r = 0.2, and r = 0.3, respectively

for the non-delayed degenerate diffusion equation (3.3), and the expected explicit solution is
u(t, x) = (1−e

−x−t
2 )+, which has a sharp edge propagating to the left with speed c∗(2, 0) =

1. The numerical simulation using the sharp-profile-based difference scheme shows that the
solution propagates with the same profile and the sharp edge is preserved. See the illustration
Fig. 1.

Time-delayed degenerate diffusion equations. For the time-delayed case, we apply the
above sharp-profile-based scheme to

ut (t, x) = (u2(t, x))xx + u(t − r , x) − u2(t, x), (3.5)

with the given initial data

u0(s, x) := (1 − e− x
2 )+, uniformly in s ∈ [−r , 0]. (3.6)

Numerical simulation shows that the solution propagates to the left with a smaller speed
c∗(2, r) < c∗(2, 0), which coincides with the theoretical result in Theorem 1.2. See the
illustration Fig. 1 and the 3-dimensional image in Fig. 2.
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Fig. 3 The local solutions for searching of critical wave speed for r = 0.1

Propagation speed influenced by time delay. We take the time delay r = 0, 0.1, 0.2,
0.3, respectively. Numerical simulations show that the corresponding propagation speed is
monotonically decreasing with respect to the time delay. Illustrated figure is presented in
Fig. 2. Here, we show that the asymptotic propagation speed after the evolution on [0, T ]
with time T = 10 is

c∗(2, 0) ≈ 1.0000, c∗(2, 0.1) ≈ 0.9115, c∗(2, 0.2) ≈ 0.8439, c∗(2, 0.3) ≈ 0.7891,
(3.7)

for the time delay r = 0, 0.1, 0.2, and 0.3, respectively.
Coincidence with the critical wave speed for sharp traveling waves. The critical wave

speed for the non-delayed case is know explicitly as c∗(2, 0) = 1, while the speed of the time-
delayed case is characterized by a variational inequality in [35] such that c∗(m, r) < c∗(m, 0)
without information for the (numerical) calculation. According to the proof in Sect. 3, the
sharp wave is determined as the local solution φk

c (ξ) of a singular ODE (2.5) such that φk
c (ξ)

admits global extension and is monotone increasing. This primary idea of proof provides a
numerical method to calculate the critical wave speed, although it may not be efficient:

(i) for large c > c∗, the local solution φk
c (ξ) grows up to beyond the positive equilibrium 1;

(ii) for small c < c∗, the local solution φk
c (ξ) eventually declines down to 0;

(iii) the local solution φk
c (ξ) is monotonically increasing with respect to c.

Based on the above theoretical observations, we carry out the following simulation of the
critical wave speed for the time delay r = 0.1 in Fig. 3. This kind of simulation shows that

c∗(2, 0) ≈ 1.0000, c∗(2, 0.1) ≈ 0.9108, c∗(2, 0.2) ≈ 0.8430, c∗(2, 0.3) ≈ 0.7880,
(3.8)

for r = 0, 0.1, 0.2, and 0.3, respectively. We see that the numerical propagation speeds
shown in (3.7) coincide with these calculated critical wave speeds (3.8), and the numerical
errors are somewhat like 10−4, which are pretty good.

Numerical stability. We take the initial value

u0(s, x) := (1 − e− x
2 )+ + 0.2 sin(π(x − 2)/20) · χ[2,42](x), uniformlly in s ∈ [−r , 0],

(3.9)
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Fig. 4 The evolution of perturbation: (left) the 2-dimensional image; (right) the 3-dimensional image

where the perturbation is chosen within the support of the profile. According to the numer-
ical simulation in Fig. 4, we see that the perturbation decays to zero, and the solution still
propagates to the left with sharp edge.

The datasets generated during the current study are available from the corresponding
author on reasonable request.
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